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http://programming-scala.org
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DBAs, traditional data analysts: SQL, SAS. “DBs” could also be distributed file systems.
Data Scientists - Statistics experts. Some programming, especially Python, R, Julia, maybe Matlab, etc.
Developers like us, who figure out the infrastructure (but don’t usually manage it), and write the programs that do batch-oriented ETL (extract, transform, and load), and more real-time event handling.

Often this data gets pumped into Hadoop or other compute engines and data stores, including various SQL and NoSQL DBs, and file systems.
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What we’ll focus on.
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Let’s put all this into perspective...

upload.wikimedia.org/wikipedia/commons/thumb/8/8f/Whole world - land and oceans 12000.j
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Let’s put all this into perspective, circa 2008...
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Let’s drill down to Hadoop, which first gained widespread awareness in 2008-2009, when Yahoo! announced they were running a 10K core
cluster with it, Hadoop became a top-level Apache project, etc.




Hadoop Blog 4000 RSS Vide

Scaling Hadoop to 4000 nodes at Yahoo!

By aanand - Tue, Sep 30, 2008 10:04 AM EDT

CLZZEED 1| mweer 0 V ~ Tue, Sep 30, 2008

We recently ran Hadoop on what we believe is the single largest Hadoop installation, ever:

+ 4000 nodes t b
* 2 quad core Xeons @ 2.5ghz per node u a n / y

* 4x1TB SATA disks per node ’

today’s standards
1 gigabit ethernet on each node

* 40 nodes per rack

* 4 gigabit ethernet uplinks from each rack to the core (unfortunately a misconfiguration, we
usually do 8 uplinks)

* Red Hat Enterprise Linux AS release 4 (Nahant Update 5) 16PB

« Sun Java JDK 1.6.0_05-b13

» So that's well over 30,000 cores with nearly 16PB of raw disk! 8
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The largest clusters today are roughly 10x in size.
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The schematic view of a Hadoop v2 cluster, with YARN (Yet Another Resource Negotiator) handling resource allocation and job scheduling. (V2 is actually circa 2013, but this detail is unimportant for this
discussion). The master services are federated for failover, normally (not shown) and there would usually be more than two slave nodes. Node Managers manage the tasks

The Name Node is the master for the Hadoop Distributed File System. Blocks are managed on each slave by Data Node services.

The Resource Manager decomposes each job in to tasks, which are distributed to slave nodes and managed by the Node Managers. There are other services I’'m omitting for simplicity.
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The schematic view of a Hadoop v2 cluster, with YARN (Yet Another Resource Negotiator) handling resource allocation and job scheduling. (V2 is actually circa 2013, but this detail is unimportant for this
discussion). The master services are federated for failover, normally (not shown) and there would usually be more than two slave nodes. Node Managers manage the tasks

The Name Node is the master for the Hadoop Distributed File System. Blocks are managed on each slave by Data Node services.

The Resource Manager decomposes each job in to tasks, which are distributed to slave nodes and managed by the Node Managers. There are other services I’'m omitting for simplicity.




MapReduce Job
MapReduce Job
\ master

MapReduce Job

: Node Mgr Node Mgr '
Data Node Data Node
L C L L Disk L C C L Disk
HDFS

Saturday, January 10, 15
You submit MapReduce jobs to the Resource Manager. Those jobs could be written in the Java API, or higher-level APIs like Cascading, Scalding, Pig, and Hive.




MapReduce

lassic
ompute model
for Hadoop

Historically, up to 2013, MapReduce was the officially-supported compute engine for writing all compute jobs.



Example: Inverted Index

wikipedia.org/hadoop

Hadoop provides
MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive

Hive queries HDFS files and
HBase tables with SQL
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inverse index

block

hadoop

.../nadoop,1)

hbase

.../nbase,1),(.../hive,1)

hdfs

.../hadoop,1),(.../hbase,1),(.../hive,1)

hive

.../hive,1)

(.../hadoop,1),(.../hive,1)




Example: Inverted Index

Web Crawl Compute Inverted Index

wikipedia.org/hadoop ' inverse index

Hadoop provides
MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive - . : :
wikipedia.org/hive
HBass tables wih SQL B
HBase tables with SQL
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Web Crawl

wikipedia.org/hadoop

Hadoop provides
MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive

Hive queries HDFS files and
HBase tables with SQL
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index

Compute Inverted Index

block

wikipedia.org/hadoop

Hadoop provides...

\

block

wikipedia.org/hbase

HBase stores...

block

wikipedia.org/hive

Hive queries...




.org/hadoop Hadoop provides...
org/hbase HBase stores...
org/hive Hive queries...
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Miracle!!

inverse index

block
hadoop (.../hadoop,1)
hbase (.../hbase,1),(.../hive,1)
hdfs (.../hadoop,1),(.../hbase,1),(.../hive,1)
hive (.../hive,1)
block
block
block
and (.../hadoop,1),(.../hive,1)




1 Map step + 1 Reduce step

Map Phase Reduce Phase

Reduce Task
hadoop |
—_— : (.../nbase, 1),(.../hive,1)
Reduce Task
Reduce Task
O F— Reduce Task

and  |(Madoop.t)(mivet) |
N

17
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1 Map step + 1 Reduce step

Map Phase Reduce Phase

Reduce Task

Reduce Task

Reduce Task

Reduce Task




Problems

Nontrivial algorithms are hard to convert to just map and reduce steps, even though you can sequence multiple map+reduce “jobs”. It takes specialized expertise of the tricks of the trade.




Problems

P
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The Hadoop APl is very low level and tedious...




import java.l1o0.I0Exception;
S [ o gS EEE = s S EE DS B o

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.l10.*;
import org.apache.hadoop.mapred. *;

public class LineIndexer {

public static void main(String[] args) {
JobClient client = new JobClient();

JobConf conf =
new JobConf(LineIndexer.class):;

conf.setJobName("LineIndexer") ;
conf.setOutputKeyClass(Text.class); \

conf cetOutnuitV/aliieClacs(Text clacs)

Saturday, January 10, 15
For example, the classic inverted index, used to convert an index of document locations (e.g., URLs) to words into the reverse; an index from
words to doc locations. It’s the basis of search engines.

I’'m not going to explain the details. The point is to notice all the boilerplate that obscures the problem logic.

Everything is in one outer class. We start with a main routine that sets up the job.

| used yellow for method calls, because methods do the real work!! But notice that most of the functions in this code don’t really do a whole lot
of work for us...



JopLLient clLient = new JoplLLienty),
JobConf conf =
new JobConf(LineIndexer.class);

conf.setJobName("LinelIndexer") ;
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(conf,
new Path("input"));
FileOutputFormat.setOutputPath(conf,
new Path("output"));
conf.setMapperClass(
LineIndexMapper.class) ;
conf.setReducerClass(
LineIndexReducer.class) ;

client.setConf(conf) ; 2
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Boilerplate




new Path("output")) ;

conf.setMapperClass(
LineIndexMapper.class) ;

conf.setReducerClass(
LineIndexReducer.class) ;

client.setConf (conf) ;

JEIRNSSE
JobClient.runJob(conf) ;

} catch (Exception e) {
e.printStackTrace() ;

¥
¥

public static class LineIndexMapper
extends MapReduceBase 2
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main ends with a try-catch clause to run the
job.
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public static class LinelndexMapper
extends MapReduceBase
implements Mapper<LongWritable, Text,
Text, Text> {
private final static Text word =
new Text();
private final static Text location =
new Text();

public void map(

LongWritable key, Text val,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {

FileSplit fileSplit =
(FileSplit)reporter.getInputSplit();

Strinc fileName =

24

This is the LinelndexMapper class for the mapper. The map method does the real work of tokenization and writing the (word, document-name)

tuples.




FileSplit fileSplit =
(FileSplit)reporter.getInputSplit();

String fileName =
fileSplit.getPath().getName() ;

location.set(fileName) ;

String line = val.toString();
StringTokenizer 1tr = new
StringTokenizer(line.tolLowerCase()) ;
while (itr.hasMoreTokens()) {
word.set(itr.nextToken()) ;
output.collect(word, location);

|
¥
¥

25

~iahhl1l 5 ~ ~4+ At~ R s |l s AT mnAAvDAAI L~~~
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The rest of the LinelndexMapper class and map
method.




public static class LinelIndexReducer
extends MapReduceBase
imp lements Reducer<Text, Text,
Text, Text> {
public void reduce(Text key,
Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
boolean first = true;
StringBuilder toReturn =
new StringBuilder();
while (values.hasNext()) {
PSS
toReturn.append (", ");
first=false;
toReturn.append/(

valiles next () toStrinc())

26
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The reducer class, LinelndexReducer, with the reduce method that is called for each key and a list of values for that key. The reducer is
stupid; it just reformats the values collection into a long string and writes the final (word,list-string) output.



REPOr Lcr 1 cpor Lcr ) LIr Ows 1LUEXCCPULITOI
boolean first = true;
StringBuilder toReturn =
new StringBuilder();
while (values.hasNext()) {
ASEsq=] e se S
toReturn.append(", ");
first=false;
toReturn.append/(
values.next().toString());
g
output.collect(key,
new Text(toReturn.toString()));

27




import java.io.IOException;
import java.util.x;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;

public class LineIndexer {

public static void main(String[] args) {
JobClient client = new JobClient();
JobConf conf =

new JobConf(LineIndexer.class);

conf.setJobName("LineIndexer");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(conf,
new Path("input"));
FileOutputFormat.setOutputPath(conf,
new Path("output"));
conf.setMapperClass(
LineIndexMapper.class);
conf.setReducerClass(
LineIndexReducer.class);

client.setConf(conf);

try {
JobClient.runJob(conf);
} catch (Exception e) {
e.printStackTrace();

}

}

public static class LineIndexMapper
extends MapReduceBase
implements Mapper<LongWritable, Text,
Text, Text> {
private final static Text word =
new Text();

private final static Text location =
new Text();
public void map(

LongWritable key, Text val,

OutputCollector<Text, Text> output,
Reporter reporter) throws IOException

-~

FileSplit fileSplit =
(FileSplit)reporter.getInputSplit();

String fileName =
fileSplit.getPath().getName();

location.set(fileName);

String line = val.toString();
StringTokenizer itr = new
StringTokenizer(line.toLowerCase());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, location);
}
R
}

public static class LineIndexReducer
extends MapReduceBase
implements Reducer<Text, Text,
Text, Text> {
public void reduce(Text key,
Iterator<Text> values,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
boolean first = true;
StringBuilder toReturn =
new StringBuilder();
while (values.hasNext()) {
A\ (NN g o)
toReturn.append(", ");
first=false;
toReturn.append(
values.next().toString());
}
output.collect(key,
new Text(toReturn.toString()));
}
3 28
i
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The whole shebang (6pt. font) This would take a few hours to write, test, etc. assuming you already know the API and the idioms for using it.
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Let’s put all this into perspective, circa 2012...
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Dean Wampler

“Trolling the
Hadoop community
since 2012...”
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In which | claimed that:

Hadoop is the
Enterprise Java Beans
of our time.




Salvation!

Scalding
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Twitter wrote a Scala API, https://github.com/twitter/scalding, to hide the mess. Actually, Scalding sits on top of Cascading (http://cascading.org) a higher-level Java

API that exposes more sensible “combinators” of operations, but is still somewhat verbose due to the pre-Java 8 conventions it must use. Scalding gives us the full
benefits of Scala syntax and functional operations, “combinators”.




Scalding (Scala)

Cascading (Java)

MapReduce (Java)
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Twitter wrote a Scala API, https://github.com/twitter/scalding, to hide the mess. Actually, Scalding sits on top of Cascading (http://cascading.org) a higher-level Java

API that exposes more sensible “combinators” of operations, but is still somewhat verbose due to the pre-Java 8 conventions it must use. Scalding gives us the full
benefits of Scala syntax and functional operations, “combinators”.




import com.twitter.scalding._

class InvertedIndex(args: Args)
extends Job(args) {

val texts = Tsv("texts.tsv", ('id, 'text))

val wordTolds = texts
EE e R ke o e - T E e o £ P R b of o R Fo PRI
i Eeke NG e T p e PR et R e e s e
val (1d2, text) =
Nk erE e RN T e A ) =R
word => (word, 1i1d2)

35
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Dramatically smaller, succinct code! (https://github.com/echen/rosetta-scone/blob/master/inverted-index/Invertedindex.scala) Note that this
example assumes a slightly different input data format (more than one document per file, with each document id followed by the text all on a
single line, tab separated.




LU Lliuap\ \ ) a5 FHFEE T . T IR
fields: (Long, String) =>
val (id2, text) =
text.split("\\s+").map {
word => (word, 1d2)

¥

val invertedIndex =
wordToTweets.groupBy ('word) {
EEEE e A TN o ot e AR Er e e e Ee =l
}

invertedIndex.write(Tsv("output.tsv'))

That’s it! §
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Dramatically smaller, succinct code! (https://github.com/echen/rosetta-scone/blob/master/inverted-index/Invertedindex.scala) Note that this
example assumes a slightly different input data format (more than one document per file, with each document id followed by the text all on a
single line, tab separated.




Problems

You can’t do event-stream processing (a.k.a. “real-time”) with MapReduce, only batch mode processing.




¢ J

aﬁtually 20{
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Storm is a popular framework for scalable, resilient, event-stream processing.
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Storm is a popular framework for scalable, resilient, event-stream processing.

Twitter wrote a Scalding-like API called Summingbird (https://github.com/twitter/summingbird) that abstracts over Storm and Scalding, so you can write one program that can run in batch mode or process
events.
(For time’s sake, | won’t show an example.)



Problems

ol .
\| B

disk,

e \'

(e

While your algorithm may be implemented using a sequence of MR jobs (which takes specialized skills to write...), the runtime system doesn’t understand this, so the output of each job is flushed to disk
(HDFS), even if it’s TBs of data. Then it is read back into memory as soon as the next job in the sequence starts!

This problem plagues Scalding (and Cascading), too, since they run on top of MapReduce (although Cascading is being ported to Spark, which we’ll discuss next). However, as of mid-2014, Cascading is being
ported to a new, faster runtime called Apache Tez, and it might be ported to Spark, which we’ll discuss. Twitter is working on its own optimizations within Scalding. So the perf. issues should go away by the
end of 2014.
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Let’s put all this into perspective, circa 2013...
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Salvation v2.0!

Use Spark
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The Hadoop community has realized over the last several years that a replacement for MapReduce is needed. While MR has served the community well, it’s a
decade old and shows clear limitations and problems, as we’ve seen. In late 2013, Cloudera, the largest Hadoop vendor officially embraced Spark as the
replacement. Most of the other Hadoop vendors followed.




import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

¥

. TlatMap {
case (path, text) => e

ahe o S oot DTS BE S/ EY BB A\ wik s g o)l Gillmlig o S PR R C
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This implementation is more sophisticated than the Scalding example. It also computes the count/document of each word. Hence, there are
more steps (some of which could be merged).

It starts with imports, then declares a singleton object (a first-class concept in Scala), with a main routine (as in Java).

The methods are colored yellow again. Note this time how dense with meaning they are this time.



import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

¥

. TlatMap {
case (path, text) => "

ahe o S oot DTS BE S/ EY BB A\ wik s g o)l Gillmlig o S PR R C

Saturday, January 10, 15
This implementation is more sophisticated than the Scalding example. It also computes the count/document of each word. Hence, there are
more steps (some of which could be merged).

It starts with imports, then declares a singleton object (a first-class concept in Scala), with a main routine (as in Java).

The methods are colored yellow again. Note this time how dense with meaning they are this time.



import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

'

. TlatMap {
case (path, text) => as
FEFERNONTS —poca Pl BE S/EEY RE B e\ wils g of ds el o R T L L .
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You being the workflow by declaring a SparkContext (in “local” mode, in this case). The rest of the program is a sequence of function calls,
analogous to “pipes” we connect together to perform the data flow.



import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

map—t—tine—=>
val array = line.split("\t", 2)
(array(0), array(l))

¥

. TlatMap {
case (path, text) => 46

ahe o S oot DTS BE S/ EY BB A\ wik s g o)l Gillmlig o S PR R C
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Next we read one or more text files. If “data/crawl” has 1 or more Hadoop-style “part-NNNNN” files, Spark will process all of them (in parallel if
running a distributed configuration; they will be processed synchronously in local mode).



sc.textFile('"data/crawl")

.map { line =>
V2o EEE vt = B Eete st e S R R A R
(array(0), array(l))

¥
. TlatMap {

case (path, text) =>
= SpET o R R M AN o e RN
word => (word, path)

}
¥
.map 1
b= A e PR BT e PN
}
.reduceByKey {
NSNS AP oA T A DRt 3% 47
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Now we begin a sequence of transformations on the input data.

First, we map over each line, a string, to extract the original document id (i.e., file name, UUID), followed by the text in the document, all on one
line. We assume tab is the separator. “(array(0), array(1))” returns a two-element “tuple”. Think of the output RDD has having a schema “String

fileName, String text”.
flatMap maps over each of these 2-element tuples. We split the text into words on non-alphanumeric characters, then output collections of word
(our ultimate, final “key”) and the path. Each line is converted to a collection of (word,path) pairs, so flatMap converts the collection of collections

into one long “flat” collection of (word,path) pairs.




sc.textFile("data/crawl")

.map { line =>
V2o EEE vt = B Eete st e S R R A R
(array(0), array(l))

I
. TlatMap {

case (path, text) =>
= SpET o R R M AN o e RN
word => (word, path)

}
¥
.map 1
b= A e PR BT e PN
}
.reduceByKey {
NSNS AP oA T A DRt 3% 4
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Next, flatMap maps over each of these 2-element tuples. We split the text into words on non-alphanumeric characters, then output collections of

word (our ultimate, final “key”) and the path. Each line is converted to a collection of (word,path) pairs, so flatMap converts the collection of
collections into one long “flat” collection of (word,path) pairs.




sc.textFile("data/crawl")

.map { line =>
V2o EEE vt = B Eete st e S R R A R
(array(0), array(l))

¥
. TlatMap {

case (path, text) =>
= SpET o R R M AN o e RN
word => (word, path)

}
¥
.map 1
b= A e PR BT e PN
}
.reduceByKey {
NSNS AP oA T A DRt 3% 49

3
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Then we map over these pairs and add a single “seed” count of 1.




J
. reduceByKey {

FREEER ) =S H R,

:

.groupBy { | ((word1, path1), n1)
} case ((W, P), N) => W  word2 path2), n2)
.map {

case (w, seq) =>
val seq2 = seq map 1
P st e NG A B E NS P EEEE
}.sortBy {
case (path, n) => (-n, path)
¥
e e R =R S R R (e Pa a8

b
.saveAsTextFile(argz.outpath) »
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reduceByKey does an implicit “group by” to bring together all occurrences of the same (word, path) and then sums up their counts.




J
. reduceByKey {

FREEER ) =S H R,
i
. groupBy 1
case ((w, p), n) => w
i
map, *
C,(Word, Seq((word, (pathl, n1)), (word, (path2, n2)), ...))

(el Sy S B ' e R v L
= s R R e B R NG e R Al
}.sortBy {

case (path, n) => (-n, path)

}
ST T A R e R f R e R

¥
.saveAsTextFile(argz.outpath) s1
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Now we do an explicit group by to bring all the same words together. The output will be (word, Seq((word, (pathl, n1)), (word, (path2, n2)), ...)),
where Seq is a Scala abstraction for sequences, e.g., Lists, Vectors, etc.




case ((w, p), n) => w

I
.map 1
case (w, seq) =>
val seqg2 = seq map 1
o S N IS oy ey
}.sortBy {
case (path, n) => (-n, path)
¥
CUEERE Fetavahu e s 1 1 e NGB R

¥

.SaveAs |

(word, “(path4, n4), (péth3; n3), (path2, n2), ...”)

SiE s fEers (e

¥
i
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Back to the code, the last map step looks complicated, but all it does is sort the sequence by the count descending (because you would want the
first elements in the list to be the documents that mention the word most frequently), then it converts the sequence into a string.




case ((w, p), n) => w

¥
.map 1
case (w, seq) =>
val seq2 = seq map 1
o S N IS oy ey
}.sortBy {
case (path, n) => (-n, path)
¥
CUEERE Fetavahu e s 1 1 e NGB R

-
.SsaveAsTextFile(argz.outpath)

sc.stop()

¥
i
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We finish by saving the output as text file(s) and stopping the workflow.




import org.apache.spark.SparkContext
import org.apache.spark.SparkContext. _

object InvertedIndex {
def main(args: Array[String]) = {

val sc = new SparkContext(
"local", "Inverted Index")

sc.textFile("data/crawl")

.map { line =>
val array = line.split("\t", 2)
(array(0), array(l))

}
.flatMap {

case (path, text) =>
text.split("""\W+""") map {
word => (word, path)

it Altogether

case (w, p) => ((w, p), 1)
}

.reduceByKey {
(e = ‘2 m=0wery] s @
}
.groupBy {
case (w, (p, n))

I
\4

w

}
.map {
case (w, seq) =>
val seq2 = seq map {
£ i s 0 W 010 U W Y W=D , g w8 i)
}
(w, seq2.mkString(", "))

¥
.saveAsTextFile(argz.outpath)

sc.stop() 54
fi
I
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The whole shebang (14pt. font, this time)




pESDG e LR G REEAT y B R YO ] P PR
word => (word, path)

}
}
.map 1
S EEc LIRS ESRIRSER E2E (ECARE) SOpIRee - Rls)

J Powerful,

. reduceByKey {

) »men beautiful

.groupBy { combinators

case (w, (p, n)) =>
}
.map {1
case (w, seq) =>
val seqg2 = seq map 1
P R e S FEE NG T g

=
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Stop for a second and admire the simplicity and elegance of this code, even if you don’t understand the details. This is what coding should be,

IMHO, very concise, to the point, elegant to read. Hence, a highly-productive way to work!!




T
||
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Another example of a beautiful and profound DSL, in this case from the world of my first profession, Physics: Maxwell’s equations that unified
Electricity and Magnetism: http:




Spark also has a streaming
mode for "mini-batch”
event handling.

(We'll come back to it...)




;' e b ‘m | 5 ", N 4 L ¥ 1 N ,
’ sialleo ‘]h . PR | — mmmuu TETET
| ‘ i 1' ‘ ‘ | \ l | " " | ‘ ‘\\-/’ :

Wlﬂu @mugimﬂ“’"‘lllﬂlll'i'llllll!lllllllllmll'l*lﬂ“l

(A"w G ,( L

y .
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Let’s recap why is Scala taking over the big data
world.



Elegant DSLs

.map 1

CISE-SCURRESSSSIaRe R (CENIE, SSpRRaE - SlE)
}
.reduceByKey {

(nl, n2) => nl1 + n2

}
.map 1
e 3Rl O NSO A RS B NG B R s N e I
}
. groupBy 1
case {(wy - Cp;ith) i=>ciw
}
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You would be hard pressed to find a more concise DSL for big data!!




.
eclipse

IntellijIDEA
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Functional Combinators

CREATE TABLE inverted index (

word  CHARACTER(64) .
SQL idl  INTEGER,

countl INTEGER,
Analogs id2  INTEGER.

count2 INTEGER);

val inverted index:
Stream[ (String,Int,Int,Int,Int)]

61
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You have functional “combinators”, side-effect free functions that combine/compose together to create complex algorithms with minimal effort.

For simplicity, assume we only keep the two documents where the word appears most frequently, along with the counts in each doc and we’ll assume integer ids for the documents..
We’ll model the same data set in Scala with a Stream, because we’re going to process it in “batch”.




Functional Combinators

SELECT * FROM inverted index
WHERE word LIKE 'sc%';

Restrict

inverted -index:fitter
case (word, ) =>
word startsWith "sc®
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The equivalent of a SELECT ... WHERE q




Functional Combinators

SELECT word FROM inverted index;

Projection

inverted index.map {
case (word, ', , ., ) =>
word
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Functional Combinators

SELECT countl, COUNT(*) AS size
FROM inverted index

GROUP BY countl

ORDER BY size DESC;

Group By and Order By

inverted index.groupBy {

case ( , , countl, , ) => countl
} map {

case (countl, words) =>(countl,words.size)
} sortBy {

case (count, size) => -size

Saturday, January 10, 15




Unification? _
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Can we unify SQL and Spark?




Spark Core +
Spark SQL +
Spark Streaming




val sparkContext =

new SparkContext("local[*]", "Much Wow!")
val streamingContext =

new StreamingContext(

sparkContext, Seconds(60))

val sglContext =

new SQLContext(sparkContext)
import sqglContext._

case class Flight(

number : HaEes
carrier: SISHTRTES
origin: SR EET e

destination: String,

67
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Adapted from Typesafe's Spark Workshop exercises. Copyright (c) 2014, Typesafe. All Rights Reserved.




val sparkContext =

new SparkContext("local", "connections")
val streamingContext =

new StreamingContext(

sparkContext, Seconds(60))

val sglContext =

new SQLContext(sparkContext)
Tmport—sgtContext

case class Flight(
number : HaEes
carrier: SISHTRTES
origin: SR EET e
destination: String,
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Create the SparkContext that manages for the driver program, followed by context object for streaming and another for the SQL extensions.
Note that the latter two take the SparkContext as an argument. The StreamingContext is constructed with an argument for the size of each batch of events to capture, every 60 seconds here.




val sparkContext =

new SparkContext("local", "connections")
val streamingContext =

new StreamingContext(

sparkContext, Seconds(60))

val sglContext =

new SQLContext(sparkContext)
import sqglContext._

case class Flight(

number : HaEes
carrier: SISHTRTES
origin: SR EET e

destination: String,
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For some APIs, Spark uses the idiom of importing the members of an instance.




HIPOTr L S LLCOlNLeEX L. _

case class Flight(
number : Int,
carrier: String,
origin: String,
destination: String,

25255

object Flight {
def parse(str: String): Option[Flight]=
e u

Ao g muErEyeeaS EOL RS SE R R
vz AN §1a 7 et EEE T
val dStream = X

s wan B, Jo o m mla I o RE G e (U A R s /s

f“'l—lf'f\f\m-l lf\ﬂpf\lf\'l—f\\l"l—
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Define a case class to represent a schema, and a companion object to define a parse method for parsing a string into an instance of the class. Return an option in case a string can’t be parsed.
In this case, we’ll simulate a data stream of data about airline flights, where the records contain only the flight number, carrier, and the origin and destination airports, and other data we’ll ignore for this

example, like times.




val server = ... // IP address or name
o= e e // 1nteger
val dStream =

streamingContext.socketTextStream(
server, port)

Vet dzsk e DEREG S EnEn= s CREEREE

line <- dStream

flight <- Flight.parse(line)
} yield flight

flights.foreachRDD { (rdd, time) =>
ae Lot £ o Bk ST el e Tl E SN U T e m s
SO-L(S""”
S NNIQ RO TP Pe g el A T P e B n

3 O




val server = ... // IP address or name
o= e e // 1nteger
val dStream =

streamingContext.socketTextStream(
server, port)

Vet dzsk e DEREG S EnEn= s CREEREE

line <- dStream

flight <- Flight.parse(line)
} yield flight

flights.foreachRDD { (rdd, time) =>
ae Lot £ o Bk ST el e Tl E SN U T e m s
SO-L(S""”
S NNIQ RO TP Pe g el A T P e B 72

3 O




flights.foreachRDD { (rdd, time) =>
rdd.registerTempTable("flights")
Sq-L(S"""
SEEECTE s e e e e SR s O O
destination, COUNT (*)
FROM flights
GROUP BY carrier, origin, destination
ORDER BY c4 DESC
h =T s P S R e e R R e e S PR e S E )

streamingContext.start()
streamingContext.awaitTermination()
streamingContext.stop()

73
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A DStream is a collection of RDDs, so for each RDD (effectively, during each batch interval), invoke the anonymous function, which takes as arguments the RDD and current timestamp (epoch milliseconds),

then we register the RDD as a “SQL” table named “flights” and run a query over it that groups by the carrier, origin, and destination, selects for those fields, plus the hard-coded timestamp (i.e., “hardcoded”
for each batch interval), and the count of records in the group. Also order by the count descending, and return only the first 20 records.




flights.foreachRDD { (rdd, time) =>
rdd.registerTempTable("flights")
Sq-L(S"""

SEEECTE s e e e e SR s O O

destination, COUNT (*)

FROM flights

GROUP BY carrier, origin, destination

ORDER BY c4 DESC

h =T s P S R e e R R e e S PR e S E )

E

streamingContext.start()
streamingContext.awaitTermination()
streamingContext.stop()
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We Won!

By

\\\\ \\\\

"""m\\\\\ T
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The title of this talk is in the present tense (present participle to be precise?), but has Scala already won? |s the game
over?




dean.wampler@typesafe.com
polyglotprogramming.com/talks
@deanwampler
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See also the bonus slides that follow.


http://twitter.com/deanwampler
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
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Scala for Mathematics

- —
———
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.
)
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Spire and Algebird. ScalaZ also has some of these data structures and
algorithms.




Algebird

L arge-scale
Analytics




Algebraic types like Monoids,
which generalize addition.

—A set of elements.
—An associative binary operation.
—An identity element.
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Efficient approximation
algorithmes.

— "Add All the Things’,

infog.com/presentations/
abstract-algebra-analytics

81



http://www.infoq.com/presentations/abstract-algebra-analytics
http://www.infoq.com/presentations/abstract-algebra-analytics
http://www.infoq.com/presentations/abstract-algebra-analytics
http://www.infoq.com/presentations/abstract-algebra-analytics

Hash, don’t Sample!

-- Twitter
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Sampling was a common way to deal with excessive amounts of data. The new mantra, exemplified by this catch phrase from Twitter’s data teams is to use approximation algorithms where the data is
usually hashed into space-efficient data structures. You make a space vs. accuracy trade off. Often, approximate answers are good enough.




Spire

Fast Numerics




*Types: Complex, Quaternion,
Rational, Real, Interval, ...

* Algebraic types: Semigroups,
Monoids, Groups, Rings, Fields,
Vector Spaces, ...

* Trigonometric Functions.
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What could be improved?




Schema
Management

Spark and other tools use Tuples or Case classes to define schemas. In 2.11, case classes are no longer limited to 22 fields, but it’s not always convenient to define a case class when a tuple would do.



Schema
. Management
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“object for each

Do we want to create an instance of an object for each record? We already have support for data formats like Parquet that implement columnar storage. Can our Scala APIs transparently use arrays of
primitives for columns, for better performance? Spark has a support for Parquet which does this. Can we do it and should we do it for all data sets?



Schema
Management

-

specialization

-

Speaking of primitives, we need to solve the remaining issues with specialization of collections for primitives. Miniboxing??



iPython
Notebooks

‘equivalent for

iPython Notebooks are very popular with data scientists, because they integrate data visualization, etc. with code.

github.com/Bridgewater/scala-notebook is a start.



