
Why Big Data Needs
to Be Functional

1

NE Scala Symposium
@deanwampler
March 9, 2012

Friday, March 16, 12

All pictures © Dean Wampler, 2011-2012.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

What is
Big Data?

Data so big that
traditional solutions are
too slow, too small, or
too expensive to use.

2 Hat tip: Bob Korbus

Friday, March 16, 12

It’s a buzz word, but generally associated with the problem of data sets too big to manage
with traditional SQL databases. A parallel development has been the NoSQL movement that is
good at handling semistructured data, scaling, etc.

3

3 Trends

Friday, March 16, 12
Three trends influence my thinking...

4

Data Size ⬆

Friday, March 16, 12
Data volumes are obviously growing… rapidly.

5

Formal Schemas ⬇

Friday, March 16, 12
There is less emphasis on “formal” schemas and domain models, because data changes rapidly, there are disparate data sources being joined,
using relatively-agnostic software (e.g., collections of things where the software is agnostic about the contents) tends to be faster to develop and
run.

6

Data-Driven Programs ⬆

Friday, March 16, 12
Machine learning is growing in importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather
than encoding a model of the world in the software itself.

7

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

vs.

Friday, March 16, 12
Traditionally, (on the left) we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in
big data systems. Rather, (on the right) we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and
classes representing some domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning
algorithms…)

8

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Process 1 Process 2 Process 3vs.

Friday, March 16, 12
In a broader view, object models (on the left) tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code
makes it easier to write smaller, focused services (on the right) that we compose and deploy as appropriate.

9

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Process 1 Process 2 Process 3

• Data Size ⬆

• Formal
Schema ⬇

• Data-Driven
Programs ⬆

Friday, March 16, 12
Smaller, focused services scale better, especially horitzontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling
ML and related algorithms.

10

Using Scala
for MapReduce

Friday, March 16, 12
Back to Scala, let’s look at the mess that Java has introduced into Hadoop MapReduce, and get a glimpse of a better way.
As an example, I’ll walk you through the “Hello World” of MapReduce; the Word Count algorithm...

There is a
Map phase

Hadoop uses
MapReduce

Input

(doc1, "…")

(doc2, "…")

(doc3, "")

Mappers

There is a
Reduce phase (doc4, "…")

Consider
Word Count

Friday, March 16, 12

Each document gets a mapper. I’m showing the document contents in the boxes for this
example. Actually, large documents might get split to several mappers (as we’ll see). It is also
possible to concatenate many small documents into a single, larger document for input to a
mapper.
Each mapper will receive a key-value pair, where the key is the document path and the value
is the contents of the document. It will ignore the key, tokenize the content, convert all words
to lower case and count them...

There is a
Map phase

Hadoop uses
MapReduce

Input

(doc1, "…")

(doc2, "…")

(doc3, "")

Mappers Sort,
Shuffle

Reducers

There is a
Reduce phase (doc4, "…")

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

Friday, March 16, 12

The mappers emit key-value pairs, where each key is one of the words, and the value is the
count. In the most naive (but also most memory efficient) implementation, each mapper
simply emits (word, 1) each time “word” is seen.
The mappers themselves don’t decide to which reducer each pair should be sent. Rather, the
job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle
phase, where the key-value pairs in each mapper are sorted by key (that is locally, not
globally or “totally”) and then the pairs are routed to the correct reducer, on the current
machine or other machines.
Note how we partitioned the reducers (by first letter of the keys). Also, note that the mapper
for the empty doc. emits no pairs, as you would expect.

There is a
Map phase

Hadoop uses
MapReduce

Input

(doc1, "…")

(doc2, "…")

(doc3, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (doc4, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

Friday, March 16, 12

The mappers emit key-value pairs, where each key is one of the words, and the value is the
count. In the most naive (but also most memory efficient) implementation, each mapper
simply emits (word, 1) each time “word” is seen.
The mappers themselves don’t decide to which reducer each pair should be sent. Rather, the
job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle
phase, where the key-value pairs in each mapper are sorted by key (that is locally, not
globally or “totally”) and then the pairs are routed to the correct reducer, on the current
machine or other machines.
Note how we partitioned the reducers (by first letter of the keys). Also, note that the mapper
for the empty doc. emits no pairs, as you would expect.

There is a
Map phase

Hadoop uses
MapReduce

Input

(doc1, "…")

(doc2, "…")

(doc3, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

Output

There is a
Reduce phase (doc4, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

reduce 1
there 2
uses 1

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

Friday, March 16, 12

The final view of the WordCount process flow for our example.
We’ll see in more detail shortly how the key-value pairs are passed to the reducers, which add up the
counts for each word (key) and then writes the results to the output files.
The the output files contain one line for each key (the word) and value (the count), assuming we’re
using text output. The choice of delimiter between key and value is up to you. (We’ll discuss options as
we go.)

15

The MapReduce Java API

Friday, March 16, 12
A Java API, but I’ll show you Scala code; see my GitHub scala-hadoop project.

16

import org.apache.hadoop.io._
import org.apache.hadoop.mapred._
import java.util.StringTokenizer

object SimpleWordCount {

 val one = new IntWritable(1)
 val word = new Text // Value will be set in a non-thread-safe way!

 class WCMapper extends MapReduceBase with Mapper[LongWritable, Text, Text, IntWritable] {

 def map(key: LongWritable, valueDocContents: Text,
 output: OutputCollector[Text, IntWritable], reporter: Reporter): Unit = {
 val tokens = valueDocContents.toString.split("\\s+")
 for (wordString <- tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase)
 output.collect(word, one)
 }
 }
 }

 class Reduce extends MapReduceBase with Reducer[Text, IntWritable, Text, IntWritable] {

 def reduce(keyWord: Text, valuesCounts: java.util.Iterator[IntWritable],
 output: OutputCollector[Text, IntWritable], reporter: Reporter): Unit = {
 var totalCount = 0
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get
 }
 output.collect(keyWord, new IntWritable(totalCount))
 }
}

Friday, March 16, 12
This is intentionally too small to read. The algorithm is simple, but the framework is in your face. Note all the green types floating around and relatively few yellow methods implementing
actual operations. Still, I’ve omitted many boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not too bad, but when you get
to more complex algorithms, even conceptually simple things like relational-style joins, code in this API gets complex and tedious very fast.

17

Using Crunch (Java)

Friday, March 16, 12
Crunch is a Java library that provides a higher-level abstraction for data computations and flows on top of MapReduce, inspired by a paper from
Google researchers on an internal project called FlumeJava.
See https://github.com/cloudera/crunch.

18

• Pipeline<T>: Abstraction for data processing flow.

• PCollection<T>: Distributed, unordered collection
of elements T.

• parallelDo(): Apply operation across collection.

Crunch Concepts

Friday, March 16, 12
A quick overview of Crunch concepts. Note that it’s necessary for Crunch to provide features missing in Java: parallel data structures and operations over them. (Even non-parallel data
structures are poor, missing the “power tools” of functional programming, operations like map, flatMap, fold, etc.)

19

• PTable<K, V>: Distributed multimap.

• groupByKey(): group together all values with the
same key.

• parallelDo(): apply operation across collection.

Crunch Concepts

Friday, March 16, 12

20

• PGroupedTable<K, V>: Output of groupByKey().

• combineValues(): associative and commutative .

• groupByKey(): group together all values with the
same key.

• parallelDo(): apply operation across collection.

Crunch Concepts

Friday, March 16, 12

21

import com.cloudera.crunch.*;
import org.apache.hadoop.*;
...

public class WordCount extends Configured implements Tool, Serializable {

 public int run(String[] args) throws Exception {
 Pipeline pipeline = new MRPipeline(WordCount.class, getConf());
 PCollection<String> lines = pipeline.readTextFile(args[0]);

 PCollection<String> words = lines.parallelDo(new DoFn<String, String>() {
 public void process(String line, Emitter<String> emitter) {
 for (String word : line.split("\\s+")) {
 emitter.emit(word);
 }
 }
 }, Writables.strings());

 PTable<String, Long> counts = Aggregate.count(words);
 pipeline.writeTextFile(counts, args[1]);
 pipeline.done();
 return 0;
 }
}

Friday, March 16, 12
This is back to Java (rather than Scala calling a Java API). I omitted the setup and “main” again, but that code is a lot smaller than for generic MapReduce.
It’s a definite improvement, especially for more sophisticated algorithms. Crunch (and FlumeJava), as well as similar toolkits like Cascading, are steps in the right direction, but there is still 1)
lots of boilerplate, 2) functional ideas crying to escape the Java world view, and poor support in the MapReduce API (like no Tuple type) that harms Crunch, etc. Still, note that relatively
heavy amount of type information compared to methods (operations). It would improve some if I wrote this code in Scala, thereby exploiting type inference, but not by a lot.

22

Using Scrunch (Scala)

Friday, March 16, 12
Scrunch is a scala DSL around Crunch writing by the same developers at Cloudera and also included in the Crunch distro. It uses type classes and
similar constructs to provide wrap the Crunch classes and MR classes with REAL map, flatMap, etc. functionality.

23

import com.cloudera.crunch._
import com.cloudera.scrunch._
...

class ScrunchWordCount {
 def wordCount(inputFile: String,
 outputFile: String) = {

 val pipeline = new Pipeline[ScrunchWordCount]
 pipeline.read(from.textFile(inputFile))
 .flatMap(_.toLowerCase.split("\\W+"))
 .filter(!_.isEmpty())
 .count
 .write(to.textFile(outputFile)) // Word counts
 .map((w, c) => (w.slice(0, 1), c))
 .groupByKey.combine(v => v.sum).materialize
 pipeline.done
 }
}

object ScrunchWordCount {
 def main(args: Array[String]) = {
 new ScrunchWordCount.wordCount(args(0), args(1))
 }
}

Friday, March 16, 12
(Back to Scala) I cheated; I’m showing you the WHOLE program, “main” and all. Not only is the size significantly smaller and more concise still, but note the “builder” style notation, which
intuitive lays out the data flow required. There is must less green - fewer types are explicitly tossed about, and not just because Scala does implicit typing. In contrast, there is more yellow -
function calls showing the sequence of operations that more naturally represent the real “business logic”, i.e., the data flow that is Word Count!
Also, fewer comments are required to help you sort out what’s going on. Once you understand the meaning of the individual, high-reusable operations like flatMap and filter, you can
construct arbitrarily-complex transformations and calculations with relative ease.

24

• Cascading (Java) vs.
• Cascalog (Clojure)
• Scalding (Scala)

You Also See this
Functional Improvement

with...

Friday, March 16, 12
Similarly, for the better-known Cascading Java API on top of Hadoop, similar “improvements” occur when you use Cascalog or Scalding.

25

Scala (and FP) give
us natural tools

for big data!
Friday, March 16, 12
This is obvious for this crowd, but it’s under-appreciated by most people in the big data world. Functional programming is ideal for data
transformations, filtering, etc. Ad-hoc object models are not “the simplest thing that could possible work” (an Agile catch phrase), at least for
data-oriented problems. There’s a reason that SQL has been successful all these years; the relational model is very functional and fits data very
well.

26

A Manifesto...

Friday, March 16, 12
So, I think we have an opportunity...

Hadoop is the
Enterprise Java Beans

 of our time.
Friday, March 16, 12
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count).
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…)
The fact is, Hadoop reminds me of EJBs in almost every way. It works okay and people do get stuff done, but just as the Spring Framework brought
an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to happen in Big Data. The Scala community is well
positioned to create it.

Scala Collections.
Friday, March 16, 12
We already have the write model in Scala’s collections and the parallel versions already support multi-core horizontal scaling. With an extension to
distributed horizontal scaling, they will be the ideal platform for diverse services, including those poorly served by Hadoop...

Akka for
distributed

computation.

Friday, March 16, 12
Akka is the right platform for distributed services. It exposes clean, low-level primitives for robust, distributed services (e.g., Actors), upon which
we can build flexible big data systems that can handle soft real time and batch processing efficiently and scalably.
(No, this isn’t Akka Mountain in Sweden. So sue me… ;)

FP for Java Devs
1/2 off today!!

30

Dean Wampler

Functional
Programming

for Java Developers

Friday, March 16, 12
That’s it. Today only (3/9), you can get my ebook 1/2 off!

