
The Challenges of Writing Reusable and Portable Aspects
in AspectJ: Lessons from Contract4J

 Dean Wampler
Aspect Research Associates and New

Aspects of Software
33 W. Ontario St., #29F

Chicago, IL 60610
dean@aspectprogramming.com

ABSTRACT

Contract4J is a developer tool written in AspectJ and Java that
supports Design by Contract programming in these two
languages. It is designed to be general purpose and to require
minimal effort for adoption by users. For example, adoption
requires little customization and prior experience with AspectJ.
Writing Contract4J demonstrated several issues that exist when
writing truly generic and reusable aspects using today's
technologies. This paper discusses those experiences and
comments on ways our understanding and tooling could improve
to make it easier to write such aspects. In particular, I discuss the
importance of migrating from syntax-based pointcut definitions to
semantically-rich metaphors, similar to design patterns.

Categories and Subject Descriptors

D.1.5 [Programming Techniques]: Object-oriented
Programming. Aspect-oriented Programming

General Terms

Design, Standardization, Languages, Theory.

Keywords

Aspect-oriented software development, object-oriented software
development, design, AspectJ, Java, Contract4J, Design by
Contract.

1. Introduction
Writing generic, reusable library software is difficult. This is no
less true for aspect libraries, partly because of the relative
immaturity of aspect design and programming techniques, but it
also reflects the inherent nature of aspects themselves.

This paper discusses the lessons learned and challenges
encountered while implementing Contract4J [3], a generic,
reusable framework for Design by Contract (DbC) [6] in Java and
AspectJ, which is written in AspectJ.

1.1 Design by Contract
All components have a “contract” for use, whether it is stated
explicitly or not, DbC is an explicit formalism for describing the
contract of a component and for automating contract enforcement
during the test process. It is a tool for locating logic errors (as
opposed to runtime errors like heap exhaustion). To remove the
testing overhead, tests are turned off for production deployments.

A component’s contract includes the input requirements that must
be satisfied by clients who use the component, called the
preconditions, and the constraints on the component’s behavior
(assuming the preconditions are satisfied), including invariant

conditions and postconditions on the work done by the
component (e.g., method return values).

DbC also prescribes the rules for contract inheritance, based on
the Liskov Substitution Principle (LSP [9]), which says that a
class B is considered a subclass of class A if objects of B can be
substituted for objects of A without program-breaking side effects.
For DbC, this means that subclasses can only change the contract
for their parents in particular ways. Invariants cannot be changed.
Overridden preconditions can relax the constraints, because the
client program will always meet a stricter subset of input
constraints, namely the subset specified by the parent class. This
is contravariant behavior, because while subclassing is a
“narrowing” of sorts, the preconditions are “widened”. In
contrast, the postconditions can be narrowed, a covariant change,
because the reduced subset of results will always satisfy the wider
set of results expected by the client program, as stipulated by the
parent class contract.

DbC was invented by Bertrand Meyer for the Eiffel language [6],
which supports it natively. In addition to Contract4J, various
toolkits have been invented that provide Java support through
libraries or external tools. These include the XDoclet-based
Barter package [2] and jContract [4].

Design by Contract complements Test Driven Development
(TDD). Even if a developer relies exclusively on TDD,
understanding the contractual nature of interfaces helps clarify
design decisions.

2. Overview of Contract4J

2.1 Design Goals for Contract4J
Contract4J provides support for DbC in Java in an intuitive way
and with minimal adoption effort. Intuitive means that users can
specify component contracts using familiar Java features and they
can do this efficiently and conveniently without obscuring the
component’s abstractions. Contract4J allows developers to embed
contract information in the classes, aspects, and interfaces
adjacent to the points where the contracts apply. This is a practical
convenience for the developer and also keeps the contract portion
of the component together with the component’s methods and
attributes, so clients have access to the full interface specification,
of which the contract is an important part. The developer specifies
the contract details in an intuitive format using familiar Java
syntax, annotations or a JavaBeans-like convention that I call
“ContractBeans”.

Adoption includes straightforward build or load-time
modifications and writing contracts as part of the usual
development process. Hence, even developers without prior
AspectJ experience can adopt Contract4J quickly.

2.2 How Contract4J Is Used
I illustrate using Contract4J with a simplistic bank account
example. Figure 1 shows the basic interface.

interface BankAccount {

 float getBalance();

 float deposit(float amount);

 float withdraw(float amount);

 …

}

Figure 1: Simplified BankAccount Interface

There are methods for retrieving the current balance, depositing
funds, and withdrawing funds. The balance-changing methods
return the new balance. The interface is simple enough, but it
leaves unanswered questions. What if the user tries to withdraw
more money than the account currently has? What happens if the
amount parameter in either the deposit or withdraw

method is negative. Specifying answers to questions like these
makes the full contract explicit. Consider Figure 2.

@Contract
interface BankAccount {

 @Post(“$return >= 0”)
 float getBalance();

 @Pre(“amount >= 0”)

 @Post(“$this.balance ==

 $old($this.balance)+amount

 && $return == $this.balance”)
 float deposit(float amount);

 @Pre(“amount >= 0 &&

 $this.balance – amount >= 0”)

 @Post(“$this.balance ==

 $old($this.balance)-amount

 && $return == $this.balance”)
 float withdraw(float amount);

 …

}

Figure 2: BankAccount with Contract Details

The @Contract annotation signals that this class has a contract

specification defined. The @Pre annotation indicates a

precondition test, such as a requirement on the withdraw

method that the input amount must be greater than or equal to
zero and it must be less than or equal to the balance, so that no
overdrafts occur. Note that we can refer to the attribute balance

that is implied by the JavaBean’s accessor method getBalance,

where the $this keyword tells Contract4J that balance refers

to a field in the BankAccount instance being tested. The

@Post annotation indicates a postcondition test, for example that

the deposit or withdraw method must return the correct new

balance and the new balance must be equal to the “old” balance
(captured with the $old(…) expression) plus or minus the

amount, respectively. Not shown is an example @Invar

annotation for invariant conditions, which can be applied to
fields, methods, or classes. The field and class invariants are
tested before and after every non-private method, except for field
accessor methods and constructors, where the invariants are
evaluated after execution (to permit lazy evaluation, etc.). Method
invariants are tested before and after the method executes.

The original interface plus annotations specifies the behavior
more fully by explicitly stating the expected behavior.

This example shows the syntax supported by the latest version of
Contract4J. In this version, Contract4J uses Jakarta Jexl (Java
Expression Language) [5], a runtime expression evaluator, to
evaluate the test strings in the annotations. This happens in the
context of aspects that advice locations where the annotations are
used. Typically, before advice is used for preconditions, after
advice is used for postconditions, and around advice is used for
invariants1. If a test fails, an error is reported and program
execution halts.

A second experimental syntax uses a JavaBeans-style naming
convention, which I call “ContractBeans”. Using this format, the
BankAccount interface is shown in Figure 3.

abstract class BankAccount {

 abstract public float getBalance();

 boolean postGetBalance(float result) {

 return result >= 0;

 }

 abstract public

 float deposit(float amount);

 public boolean preDeposit(float amount) {

 return amount >= 0;

 }

 public boolean postDeposit(float result,

 float amount){

 return result >= 0 &&

 result == getBalance();

 }

 abstract public

 float withdraw(float amount);

 public boolean preWithdraw(

 float amount) {

 return amount >= 0 &&

 getBalance() – amount >= 0;

 }

 public boolean postWithdraw(

 float result,

 float amount) {

 return result >= 0 &&

 result == getBalance();

 }
 …

}

Figure 3: “ContractBeans” Format

This version does not support the “old” construct for
remembering a previous data value, so the contract tests shown
are slightly less precise than in the previous example (e.g.,
result >= 0, instead of the more accurate result =

$old(result) + amount). Also, I have switched to

declaring an abstract class so that the tests, which are now defined
as instance methods, can be defined “inline”. An alternative

1 Sometimes different types of advice are used in certain cases, for

technical implementation reasons, as discussed later.

would be to use an aspect and intertype declarations to supply
default implementations of the test methods for the original
interface.

Following a JavaBeans-like convention, the postcondition test for
the withdraw method is named postWithdraw. (Compare

with the JavaBeans convention for defining a getBalance

method for a balance instance field.) This method has the

same argument list as withdraw, except for a special argument

at the beginning of the list that holds the return value from
withdraw. The preWithdraw method is similar, except that

its argument list is identical to the withdraw argument list. All

the test methods return boolean, indicating pass or fail.

This version of Contract4J uses runtime reflection to discover and
invoke the tests. It was implemented as a way of eliminating
issues with the original version of the annotation-based approach.
However, the extensive reflection imposes significant runtime
overhead and writing the tests is a more verbose process with a
less “obvious” association between the tests and the elements they
are testing.

The original version of the annotation-based approach did not use
a runtime expression interpreter. Instead, it used a precompilation
step to generate very specific aspects for each test with the test
string converted to Java code. A custom plug-in for Sun’s
Annotation Processing Tool (APT) was used to find the
annotations in the source code and to generate AspectJ aspects for
each one, before compilation. This implementation is the simplest
of the three versions, with excellent performance, but the
precompilation step is a barrier to adoption. The expression
interpreter version eliminates this issue, but the implementation is
more complex internally, in part because it uses reflection, as I
will discuss in detail below. Hence, it has a higher runtime
overhead than the APT version. However, because Contract4J is a
development/test tool, the performance is acceptable.

The following summary compares the strengths and weaknesses of
the implementations. More details are provided in the subsequent
sections. For completeness, I also include pros and cons for two
alternative ways of doing DbC, simple Java assert statements

and ad hoc aspects, such as those used as examples in some of the
AspectJ literature.

“ContractBeans” Version

Pros

• Could be used with Java 1.4 and earlier code, since it
doesn’t use annotations.

• Tests are written as regular Java methods, which can be
reused outside of Contract4J.

• Because tests are normal methods, they are checked by
the compiler and IDE for typos and other bugs.

• If the tests are declared public, they are a visible part of
the interface for clients and subclasses to see.

• The JavaBeans-like convention follows a metaphor
familiar to developers.

Cons

• Significant runtime overhead for extensive reflection
calls.

• Tests are somewhat verbose, because of the method
“boilerplate”, compared to annotations.

• If the tests are not declared public, they are not a visible
part of the interface for clients.

• The JavaBeans-like convention has a few idiosyncrasies
that can result in the tests being ignored. There is no
mechanism to warn the user when this happens.

Annotations, Version 1 (APT Preprocessor)

Pros

• Most intuitive and succinct way of specifying contracts.

• Most flexible use of annotations, including tests on
method parameters.

• Test inheritance follows correct behavior for Design by
Contract, not the rules for Java 5 annotation inheritance,
i.e., method tests are inherited, even though method
annotations are not.

• Contracts are properly part of the public interface for
clients, including Javadocs.

• Fastest performance.

• Although tests are defined as strings, because they are
converted to compiled AspectJ code, test syntax errors
are caught by the compiler.

Cons

• Preprocessor step requires nontrivial build changes,
which may not work well with IDEs and other tools.

• Since tests are defined in annotations, they are not
easily reused in other ways.

• Although test syntax errors are caught by the compiler,
the error messages point to the generated aspects, not
the original annotations. The user must manually “map”
the errors back to the original annotations.

Annotations, Version 2 (Jexl Interpreter)

Pros

• Most intuitive and succinct way of specifying contracts.

• Contracts are properly part of the public interface for
clients, including Javadocs.

• Easiest adoption process; only minor build
modifications required.

• Good performance.

Cons

• Can’t use annotations on method parameters (not
supported by AspectJ; but there are workarounds).

• Because test annotations are evaluated at runtime, tests
defined on methods are not inherited automatically,
following the inheritance and runtime-visibility rules for
Java annotations. Subclass method overrides must
include the same annotations manually. Class invariant
annotations are inherited, although putting them on
subclasses, for consistency, is harmless.

• Idiosyncrasies of Jexl expression interpreter complicate
test writing slightly. (Read the examples and Contract4J
unit tests!)

• A minor build change still required, i.e., compiling or at
least weaving with AspectJ.

• Since tests are defined in annotations, they are not
easily reused in other ways.

• Since tests are defined as strings, they are not checked
by the compiler or IDE for obvious test bugs. Buggy
tests show up at runtime as Jexl expression failures with
unintuitive error messages.

Ad Hoc Aspects (Aspects hand written to test specific cases)

Pros

• Straightforward with no need to adopt a third-party
toolkit, like Contract4J, if you are already using
AspectJ.

• Complete flexibility to define arbitrarily complex tests
and to define them in separate files, if desired.

• Tests are checked by the compiler and IDE.

• Optimal performance.

Cons

• Extensive, repetitive boilerplate code required that is
handled automatically by Contract4J.

• Harder to present the complete interface specification to
clients.

• Can clutter code being advised. Putting test aspects in
separate files is possible, but that approach decouples
the test “specifications” from the code, making the full
interface specification obscure.

• Requires active use of and expertise in AspectJ.

Java Asserts

Pros

• Simplest way of specifying contracts.

• No AspectJ or other 3rd-party toolkits required.

Cons

• Slightly more invasive in the code.

• No coherent view of the contract.

• Not part of the client-visible interface.

• Not visible to other tools.

All three implementations of Contract4J share a common
limitation; they only partially enforce the rules for contract
inheritance discussed previously. Both the ContractBeans and
APT annotation versions will invoke parent-class tests, unless
overridden in subclasses. Because Java annotations on methods
are not inherited, the Jexl annotation version cannot apply the
tests for a parent-class method to a subclass override unless the
override has the same annotations2. (However, the override can
omit the test string; Contract4J will locate the parent’s test string.)
In contrast the Jexl/Annotation form does better at ensuring that
invariant tests are not changed by subclasses. None of the three
versions ensures that subclass preconditions are contravariant and
postconditions are covariant.

Overall, the Jexl annotation version offers the best compromise of
features and ease of use.

AspectJ is used in all three versions, but the aspects, while
conceptually similar, are very different in the two versions. In the
annotation-based version, since a precompilation step is used, all
the aspects involved are generated during that step. They have
very specific pointcuts, with no wildcards, that pick out just the
join points for which a particular test is defined. These aspects are
simple, although there can be a lot of them in a system with many

2 This is a possible future extension. It could be implemented

using reflection, but with significant overhead.

DbC tests defined. However, because they are so specific and
because they use no reflection, they have low runtime overhead3.

For example, here is a simplified version of the generated
precondition test aspect for the withdraw method.

public aspect BankAccount_pre_withdraw {

 before (BankAccount ba, float amount):

 execution (float BankAccount(float))

 && this(ba) && args(amount) {

 if (amount >= 0 &&

 ba.getBalance() – amount >= 0) {

 handleFailure(“…”);

 }

}

Figure 4: Example Aspect 1

In contrast, because the ContractBeans version eliminates the
precompilation step, all logic has to be embedded in the runtime
engine. This means that more complicated and comprehensive
aspects are required to advise all possible join points for which a
test might exist. The corresponding advice then uses runtime
reflection to discover the tests, if any, and to invoke those that are
found. Even if no tests are present for a particular join point, the
overhead still exists.

All the pointcut definitions (PCDs) in this version are scoped by a
marker interface (no annotations are used to permit use with pre-
Java 5 source code). No class will be advised unless it implements
this interface. Rather than explicitly adding this interface to all
class and interface declarations, it is usually easier to write a
custom aspect that uses intertype declaration (ITD) to add this
interface into the classes of interest, as shown in the example in
Figure 5.

 public aspect EnableContracts {

 declare parents: com.foo.bar..*

 implements ContractMarker;

 }

Figure 5: Aspect ITD of a Marker Interface

I discuss the two Annotation implementations and the
ContractBeans implementation because each exposes different
challenges for writing generic, reusable aspects that involve non-
trivial interactions with the advised classes. However, for practical
use, the ContractBeans implementation is considered
experimental and is not recommended for normal use. I will
explore the details and issues of these implementations in greater
detail below.

3. Challenges in Aspect-Oriented Software

Development with AspectJ
Most example AspectJ aspects you see are either very specific,
using pointcuts that reference particular classes, methods, and
fields (e.g., Figure 4), or they are very general, using pointcuts
that reference package hierarchies and/or class and method names
with wildcards. Examples of the former tend to be tightly coupled
to the advised classes, such as policy enforcement aspects to
ensure proper usage of libraries, etc. The latter aspects usually
implement orthogonal concerns, which means they have loose or

3 Because DbC is primarily a development tool and the tests are

(usually) removed from production builds, performance is not a
serious concern anyway, as long as it is “reasonable”.

no coupling to the classes they advise. Examples include tracing
and authentication wrappers.

The main issue this paper addresses is the difficulty of writing
closely-coupled aspects in a generic and portable way, e.g.,

without embedding target-specific details in the pointcuts.

Let us delve into the issues in more detail, starting with a
discussion of some general issues with Aspect-Oriented Software
Development itself, which is still a young discipline, where many
details of good design and coding practice need further
development.

3.1 Conceptual Issues with Aspects
One of the interesting differences between aspects and objects is
the scope of a “component” in each approach. Well-designed
objects have a limited scope with minimal coupling to objects
outside of their “namespace” or package. They also have high
cohesion, a well defined and focused purpose and conformance to
appropriate global and local conventions that contribute to
system-wide “coherence” and consistency.

Well defined aspects should also have these properties internally,
but because they are explicitly designed to support cross-cutting
behavior, their coupling to other components is more complicated.
Aspects that cause nontrivial changes of state and behavior to
these components require new thinking about the nature of
“interfaces” between the aspects and the components they advise.

When attempting to design generic, reusable aspects, this issue
leads to a conundrum. For an aspect to offer fine-grained and
powerful functionality, it needs some detailed information about
the components it will advise. However, these details increase
coupling to those components and reduce general applicability
and reusability. Typical pointcut definitions written today rely on
naming conventions and other syntax constructs used in the
advised components, rather than relying on higher-level
abstractions.

This leads to what I call a concern semantics mismatch.
Component field, method, and class names reflect the primary
concern of the component, the dominant decomposition [7], and
they are likely to change as the problem domain understanding
and/or the scope of the solution evolve. Pointcuts are part of a
different domain, that of the cross-cutting concern, yet they are
relying on the unrelated names and conventions in the
components they advise, whose evolution will be “unexpected”,
from the concern’s perspective, leading to fragile
interdependencies.

The long-term solution is the development of higher-level design
abstractions. The aspect-component relationship should be more
of a “peer” relationship like the one that exists between objects
today, rather than the approach commonly used where the aspect
is “doing something” to another component. The noun “advice”
and the concept of obliviousness reflect this bias, unfortunately.

Much of the research on aspect-oriented design (AOD) occurring
now is moving away from this emphasis on oblivious insertion of
advice and moving towards interface-based design approaches,
e.g., Aspect-Aware Interfaces [7] and Crosscutting Programming
Interfaces (XPI) [8]. A compromise design strategy is emerging,
where components will need to be “aspect aware”, in the sense
that they will need to expose state and behavior of potential
interest to “clients“, aspects as well as objects, without actually

assuming particular details about those clients. The art of aspect-
aware interface design will be to expose abstractions that are
easily adapted by concerns that are different from the
component’s primary domain. I expect that most aspects will
implement the Bridge pattern [10], connecting exposed interfaces
with concern libraries. In fact, most aspects today follow this
model, just in a more ad hoc fashion and with coupling to the
fragile details of the advised classes, rather than coupling to more
abstract and therefore stable interfaces. In other words, AOD is
now expanding the established principles of object interfaces to
support the new and unique needs of aspects.

3.1.1 Contract4J as a “Design Pattern”
You can view the annotation and the ContractBeans forms of
Contract4J as syntactically different, yet semantically equivalent
forms of an ad hoc “protocol”, essentially a design pattern, which
is used by a class to provide a design-pattern protocol for
specifying the module’s contract in a way that makes minimal
assumptions about interested “clients” [6]. While invented for
Contract4J, this protocol could be supported by a variety of other
compile-time and run-time tools, including documentation tools
and testing tools that generate unit tests from the annotations. The
protocol is a mini domain-specific language (DSL) for DbC and it
is conceptually consistent with the work on interface-based design
in aspect systems [7-8]. In fact, a fruitful exercise would be to
recast Contract4J in XPI formalism, for example.

3.2 Practical Challenges with AspectJ
Returning to AspectJ, its pointcut language is very powerful, but
until recently, it has relied exclusively on concrete naming
conventions, leading to the concern semantics mismatch.
However, Java 5 annotations are a useful first step towards
defining “interfaces” that support other concerns. Well-chosen
annotations provide meaningful metadata about the element that
tends to be more stable than naming idiosyncrasies of the element
itself. Also, useful metadata will express information of interest to
other concerns, implemented as aspects, in a more decoupled
fashion. AspectJ 5 supports PCDs that match on annotations.
Using annotations in Contract4J makes it unnecessary for it to
know specific details about the classes it advises.

Put another way, most reusable aspects that have been
documented to date are really reusable aspect patterns. They
require customization of the PCDs to match on specific naming
conventions for the project in question. The advices may also
require modification. Truly generic PCDs that consist of almost
all wildcards are often too broad, needlessly affecting far more
join points than are really required.

However, having just made the argument that we need higher-
level abstractions, it must be said that the lower-level join-point
matching constructs currently available are still essential.
Contract4J would not be possible without them. While
annotations are used as “markers” for tests and for defining the
test expressions, all the PCDs used in Contract4j still do matching
on method and constructor calls or executions and field “gets” and
“sets”. This is in part an idiosyncrasy of Contract4J, since it
supports detailed assertions about the component logic and those
assertions have to be evaluated at very specific join points. Many
other aspect-based tools and components will continue to require
the lower-level constructs.

Let us consider the specific issues encountered in the three
versions of Contract4J.

3.2.1 Contract4J Using Annotations, Version 1
Ironically, the original annotation-based version of Contract4J did
not use any annotation-based PCDs. The precompilation step used
a plug-in for Sun’s Annotation Processing Tool (APT) to extract
the annotation information and generate AspectJ code with PCDs
that match on the specific classes, fields and methods with tests.
The actual annotations are ignored in the PCDs, as they are no
longer needed.

Figure 4 showed a simplified version of a typical aspect generated
by this implementation. It uses the lower-level join point
matching constructs, based on specific and explicit element
names, because one aspect is generated for every annotation found
(potentially creating a lot of aspects). This implementation proved
to be the most straightforward to develop, because it did not
require the more sophisticated PCDs needed in the subsequent
Jexl aannotation version of Contract4J nor the more sophisticated
introspection required in both the Jexl version and the
ContractBeans version.

In fact, using a preprocessor tool (APT) avoided all the problems
of the subsequent two versions of Contract4J, because using APT,
a tool specific to the “annotation domain”, if you will, handled all
the dirty work of finding annotations and their context
information.

3.2.2 Contract4J Using Annotations, Version 2
This is the most recent version of Contract4J and it is the one that
will be maintained going forward. It uses annotation-based
pointcuts to find the contracts and then uses the Jakarta Jexl
expression interpreter [5] within advice to evaluate the test
expressions at runtime.

Of the three implementations, this one has the most sophisticated
aspects, combining nontrivial PCDs and construction of test
context data that is passed to Jexl. The latter process uses Java’s
and AspectJ’s reflection libraries to fill in information that can’t
be “bound” by the PCDs. In fact, the bulk of the code exists to
support collecting context data and passing it to Jexl. The static
typing of Java and the lack of “native” support for scripting
(dynamic generation and evaluation of expressions) greatly
complicated the implementation.

Consider two example aspects from this version. The first aspect
implements method precondition tests and the second implements
field invariants for field reads and writes.

3.2.2.1 Aspect for Method Precondition Tests
The PCD for this aspect is shown in Figure 64

pointcut preMethod (// 1

 Pre pre, ContractMarker obj) : // 2

 if (isPreEnabled()) && // 3

 !within_c4j() && // 4

 execution (@Pre !static // 5

 * ContractMarker+.*(..)) && // 6
 @annotation(pre) && this(obj); // 7

Figure 6: PCD for Method Preconditions

4 Some details have been altered for clarity and simplicity.

Line 2 declares that two parameters will be bound, the annotation
object, pre, which contains the test expression, and an object that

implements the marker interface ContractMarker. This

binding actually happens in line 7. The marker interface is
injected into all types with the @Contract annotation (using a
separate aspect), to make inheritance of tests easier to support;
note the use of ContractMarker+ in lines #4 and #7, to make

sure that the join points in subclasses are matched. The
ContractMarker object is the object under test.

Line 3 checks that preconditions tests are actually enabled, which
can be configured globally through API calls and properties.
(Postcondition and invariant tests can also be controlled this way.)
Note that the preferred alternative for production deployments is
to exclude the Contract4J aspects from the build, so that no DbC
overhead is incurred at all. The referenced PCD in line 4 (not
shown) is a typical PCD for excluding advising of the Contract4J
code itself, to prevent infinite recursions, etc.

The key section of the PCD is in lines 5 and 6, highlighted in
bold, where matching is done on execution join points of methods
in ContractMarker and its subclasses. This PCD excludes

constructors (handled separately) and only matches on nonstatic
methods that have the @Pre annotation. Static methods are

excluded because contracts focus on tests of instance state5. Note
that since method annotations are not inherited in Java, we must
require that the annotation appear on all method overrides6. If a
subclass override does not have the same annotation, but the
superclass implementation is invoked using super…(), the

superclass method with the annotation will still be tested.
However, even in this case Contract4J can’t detect possible
violations of the contract in the subclass method without the
annotation and Contract4J can not currently detect that the
annotation is missing.

Requiring the user to annotate all method overrides consistently is
a design constraint reflecting a Java annotation limitation.
However, even if method annotations where inherited, there is no
way to write a pointcut that says “match a method in the class
hierarchy if one of its ancestor methods has annotation A”.
Reflection could be used to handle this case (a possible
enhancement), but it would be somewhat expensive to do.

An alternative would be to inject the missing annotation, if
AspectJ’s declare parents facility were generalized to

support declare method annotations, for example,

which could add an annotation to a method7, assuming this is
technically feasible. For this to be useful in the particular case
discussed here, it would also be necessary for the declare
statements to support a wider range of predicates, such as the
pseudocode example suggested in Figure 7:

declare annotations:

 @Pre * ContractMarker+.method // 1

5 However, you could argue that global (static) state could also be

subject to testing. This may be supported in a future release.
6 This was not a requirement for the original APT-based

implementation, because the generated aspects no longer needed
the annotations and would match on subclass overrides.

7 Class annotations are already supported. Field annotation
support is not needed in this case.

 if (!@Pre * ContractMarker+.method // 2

 && @Pre *ContractMarker.method) // 3

Figure 7: “declare annotations” Extension

Here, the @Pre annotation is added to method in any subclass of

ContractMarker (line 1) if it isn’t already present (line 2), but

it is present on the method in the top-level class or interface that
defines the contract (line 3). How method is determined is

intentionally left vague, but it would be the same method in all
three lines. Note that Contract4J will locate the parent’s test
expression or generate a default expression, if no test expression
is defined in a particular annotation.

At the very least, if this automatic mechanism can’t be
implemented (or the effort isn’t otherwise justified), it would be
useful if a mechanism exists to catch the user error of not
annotating method overrides in subclasses.

In general, Contract4J’s reliance on annotations points out some
of the idiosyncrasies of Java 5 annotations, especially when used
to represent a concept like DbC where expectations for
inheritance behavior are different than for annotations.

3.2.2.2 Aspect for Field Invariant Tests When Fields

Are Read or Written
Only invariant tests are supported for field reads and writes8. The
lack of annotation inheritance that plagues method contract tests
is not an issue here, since the field only “exists” in the class in
which it is defined. Hence, if a field is annotated, all direct
accesses will be correctly advised. However, field advice does
have its own nuances.

3.2.2.2.1 Field “Gets”
 Figure 8 shows the PCD for field “gets”.

pointcut invarFieldGet (// 1

 Invar invar, ContractMarker obj): // 2

 if (isInvarEnabled()) && // 3

 !within_c4j() && // 4

 !cflowbelow (execution // 5

 (ContractMarker+.new(..))) && // 6

 get(@Invar * ContractMarker+.*) && // 7
 @annotation(invar) && target(obj); // 8

Figure 8: PCD for Field Get Invariants

The first four lines are very similar to those for the method
precondition PCD in Figure 6, with Invar substituted for Pre.

In lines 5 and 6, I exclude field accesses that occur inside
constructors, since we shouldn’t expect the field to be initialized
properly until the end of constructor execution. A separate aspect
handles this special case. It uses the percflow instantiation

model and matches on the initialization join points. Another
aspect records accesses of any annotated fields and then after
advice on the constructor evaluates the corresponding field tests
after construction completes.

Because the field invariant test is evaluated at the end of
construction, such a contract specification is not appropriate for a
field that will be initialized on demand. In this case, a @Post test

on the corresponding get method should be used.

8 In principle, field pre- and postconditions could also be

supported, but these tests are best added to bean property get

and set methods, instead.

Back to Figure 8; note that the pointcut does not declare an Object
argument for the returned field value, which could then be bound
in an after returning advice, as shown in Figure 9.

after (// 1

 Invar invar, ContractMarker obj) // 2

 returning (Object result): // 3

 invarFieldGet(invar, obj, result){ // 4

 …

}

Figure 9: Possible After Returning Advice

In fact, around advice is used for this and most other @Post

test cases because of a special test feature supported by
Contract4J, namely the ability to capture “old” values of context
data, such as the value of the field before it is changed, so that the
old and new values can be compared in some way9. I used this
feature in the Figure 2 example to check that a withdrawal or
deposit changed the account balance appropriately.

If the test expression specifies any “old” data, it is captured first in
the around advice. Then, proceed is called to execute the join

point and the value it returns is saved as the new field value.

3.2.2.2.2 Field “Sets”
 Figure 10 shows the PCD for field “sets”.

pointcut invarFieldSet (// 1

 Invar invar, ContractMarker obj,

 Object arg): // 2

 if (isInvarEnabled()) && // 3

 !within_c4j() && // 4

 !cflowbelow (execution // 5

 (ContractMarker+.new(..))) && // 6

 set(@Invar * ContractMarker+.*) && // 7
 @annotation(invar) && target(obj) // 8

 && args(arg); // 9

Figure 10: PCD for Field Get Invariants

The structure is very similar to the PCD in Figure 8 for field
“gets”, but now there is an extra Object parameter for the value

being assigned to the field and of course set(…) join points

replace get(…) join points.

Note that there is no way to actually bind an object to the field
itself! Only the object being assigned to the field can be bound.
Since Java variables are either references to objects or primitive
values, this distinction is not important for Contract4j purposes,
but it is possible that other applications using generic aspects may
need to make this distinction. Perhaps AspectJ should support
explicit binding to the field itself.

3.2.2.3 Advice
The advices used with these PCDs are all very similar. They use
Java and AspectJ reflection APIs to fill in missing context
information needed by the test expressions. They call support
classes to create “default” test expressions when none is specified
in the annotation. For invariant tests, they examine corresponding
parent-class tests, if any, to ensure that the invariant tests are the
same10. Finally, the advices call other support classes to package

9 Only supported for primitives, Strings, and a few other classes.
10 Only simple string comparison, ignoring white space, is

currently supported, not true “semantic” equivalence. Hence
“a==b” appears different from “b==a”.

the information into the context structures required by Jexl and
finally Jexl is invoked to execute the test. On failure, an error
message is reported and program execution is stopped abruptly.

3.2.3 Contract4J “ContractBeans” Version
For completeness, I discuss the experimental ContractBeans
(JavaBeans-like) version of Contract4J. The (PCDs) for this
version are relatively simple, because most of the work must be
done using reflection. Suppose I am testing the following class
that uses the ContractBeans test approach.

class Foo (

 public int method(int i) {…}

 public boolean preMethod(int i) {…}

 public boolean

 postMethod(int result, int i) {…}

}

Figure 11: Foo Class Using ContractBeans Tests

Consider the precondition test case, where I could write a pointcut
like the following.

pointcut pre(Foo foo, int i):

 call(int Foo.method(int)) &&

 hasMethod(boolean Foo.preMethod(int))
 && target(foo) && args(i);

Figure 12: Desired Pointcut for Precondition

The hasMethod pointcut specifier is a new undocumented

experimental feature in AspectJ5 which tests for the existence of a
method.

However, it is not possible to generalize this pointcut to arbitrary
target classes and method signatures. It would require extending
AspectJ to support a regular-expression syntax for matching
strings, e.g.:

pointcut<T> pre(T t, Object[] args):

 call(* \(\T\)+.\(\M\)(\(\A\))) &&

 hasMethod(boolean $1.pre(cap($2)($3))

 && target(t) && args($3.values());

Figure 12: Possible Pointcut Regular Expression Syntax

In this contrived example, “\(…\)” indicates a capturing group,
“\T” matches a type, “\M” matches a method name, “\A” matches
the argument list, “$N” substitutes the value of the Nth capturing
group, and “$3.values()” returns the list of values corresponding
to the argument list captured by “$3”11. The made-up method
“cap” handles capitalization of the method name, i.e., conversion
of the the first letter in the method name to upper case.

However, this syntax is hard to read and would therefore be error
prone to use. Also, the merits of implementing regular expression
support may not outweigh the effort required to implement it.

Instead, the ContractBeans version of Contract4J uses relatively
simple, wide-reaching pointcuts and extensive runtime reflection
to locate the test methods. First, end user is required to declare a
“scoping” aspect that uses ITD to insert a marker interface into all
classes where tests exist (or might exist), e.g.,

11 I said this was contrived!

aspect scope (

 declare parents: (com.foo.bar..*)

 implements ContractMarker;

}

Figure 13: “Scoping” Aspect

Straightforward pointcuts are used to locate all possible join
points where tests might be evaluated, within the defined scope.
For example, the method precondition pointcut is shown in Figure
14.

pointcut preMethod (ContractMarker obj):

 if (isPreEnabled()) && // 3

 !within_c4j() && // 4

 execution (!static // 5

 * ContractMarker+.*(..)) && // 6
 this(obj); // 7

Figure 13: ContractBeans Pointcut for Method Preconditions

The key section of the PCD is lines 5 and 6, shown in bold. The
rest of the PCD is similar to the boilerplate seen before. In fact,
the whole PCD looks very similar to the annotation-based PCD
for method preconditions shown in Figure 6, except that there are
no annotations involved here. The annotation-based PCD will
match only those join points where tests are actually defined,
whereas the PCD in Figure 13 will match on every non-static
method in the com.foo.bar hierarchy, adding significant

overhead.

The corresponding advice uses reflection to determine if there is a
preMethod test method to go with every method method

found. The logic must look for methods with the appropriate
name, that return boolean and that have a matching argument list,
as discussed previously. The reflection adds a significant amount
of overhead. Found methods are cached, but there is a non-trivial
amount of setup effort required to determine the “key” for such a
cache, so only modest performance gains are realized. In this case,
it would help if AspectJ had a way of programmatically removing
advice at the current join point, when a test method is not found
by reflection, so all futile searches are never repeated.

3.2.4 User Adoption Issues
Because aspects can potentially affect the entire system, almost all
aspect libraries include some mechanism for scoping the PCDs to
only those packages and classes of interest. The following
approaches are the most common.

• Define an abstract scoping pointcut in the library aspect and
require the user to implement a concrete version of it that
defines the packages and specific classes of interest. This
minimizes, but does not eliminate the knowledge of AspectJ
required by the user and the customization required to adopt
a library.

• Define a marker interface that all library pointcuts use as a
scoping construct, then require the user to “implement” or
“extend” this interface in all classes or interfaces,
respectively, where the user wants the aspect to apply. This is
invasive if done manually. Instead, the user can write an
aspect that uses intertype declaration to apply the interface
where desired. (See, e.g., Figure 13) This approach imposes
about the same adoption effort and skill on the user as the
scoping aspect option.

• Define an annotation that can be used instead of a marker
interface (for Java 5 projects). Annotations can also be

introduced with ITD. Contract4J defines a @Contract

annotation for this purpose. The curious thing about
Contract4J usage is that the user will typically add this
annotation manually, because the user will also need to add
the other test annotations anyway in order to define tests.
Hence, in practice, the user of Contract4J never needs to
write any AspectJ code, although it will be necessary to
introduce AspectJ into the build process.

• Define abstract base aspects and require the user to
implement a derived aspect that implements abstract
methods, supplies required callbacks, etc. A variation of this
approach is to have concrete aspects use regular Java
interfaces that the user must implement and “wire” to the
aspect. This approach requires some user effort, but uses
only familiar Java techniques.

The annotation form of Contract4J uses all these techniques
internally. For example, classes with class-level “@Invar” tests
get the marker interface ContractMarker through ITD, even

though the annotations themselves are inherited. This apparent
redundancy makes it easier to write PCDs that pick out the same
join points on subclasses, even when they don’t have the same
“@Invar” annotation.

4. Conclusions
AspectJ’s pointcut language enables succinct, yet powerful
aspects when advice is needed at specific join points in known
packages and classes. However, it is hard to write generic aspects
that don’t assume specific signature conventions, yet need details
of the join points where they match in order to interact with the
join points in non-trivial ways. Such aspects must use reflection to
determine the additional information that they need.

Contract4J demonstrates the issues encountered when
implementing a generic, reusable aspect library. In fact, it uses
many of the “types” of PCDs you might expect to write, at least
those focused on a single class, including field accesses, method
calls, and instantiation, where specific coupling and computations
are required for each case. Hence, developers of other generic
library aspects are likely to encounter one or more of the same
issues encountered in Contract4J. These issues will be a barrier to
widespread development of rich AspectJ libraries unless some
enhancements are made that simplify the issues involved.

Note that AspectJ 5 configuration files can be used to define some
explicit name dependencies, thereby removing them from aspect
code. However, this mechanism is insufficient for the needs of
tools like Contract4J.

One possible solution is to extend the join point model with
regular expression-like constructs, so that more sophisticated join
point matching can be done on signature conventions without
requiring explicit knowledge of “irrelevant” naming details. The
aspect developer would then be able to bind more information
through the PCD arguments for use in the advice bodies, thereby
reducing the amount of reflection code required12.

12 For most users, the relative runtime efficiencies of reflection vs.

PCD binding, which may be similar, will be less important than
the ease of development using either approach.

However, focusing on low-level constructs is probably the wrong
enhancement strategy. Efforts to develop the theory and practice
of aspect interfaces [7-8] are more important for the long-term
evolution of AspectJ and AOSD in general. Components and
aspects should be joined through interfaces that use the semantics
of the concern, rather than being expressed through lower-level
points of code execution, leading to the concern semantics

mismatch.

Annotations that express meta-information about components are
a first practical step in this direction. The Contract4J annotations
form a design pattern that exposes key usage information about
the component, in this case constraints on usage. Clients,
including Contract4J aspects, IDEs, test generators, etc. interested
in the “usage constaints concern” can work with the components
in nontrivial ways through this “interface”. However, even when
matching on annotated join points in the Contract4J PCDs, the
advice bodies still contain lots of low-level “plumbing”, including
calls to reflection APIs. Hence, annotations alone are not
generally sufficient as an “aspect interface” to easily write
powerful, yet generic aspects.

5. REFERENCES
[1] http://www.aspectj.org/

[2] http://barter.sourceforge.net/

[3] http://www.contract4j.org

[4] http://www.jcontract.org/

[5] http://jakarta.apache.org/commons/jexl/

[6] B. Meyer, Object-Oriented Software Construction, 2nd
edition. Prentice Hall, Saddle River, NJ, 1997.

[7] G. Kiczales and M. Mezini, “Aspect-Oriented Programming
and Modular Reasoning,” Proc. 27th Int’l Conf. Software

Eng. (ICSE 05), ACM Press, 2005, pp. 49-58.

[8] W. G. Griswold, et al., “Modular Software Design with
Crosscutting Interfaces”, IEEE Software, vol. 23, no. 1,
2006, 51-60.

[9] Barbara Liskov, “Data Abstraction and Hierarchy,”
SIGPLAN Notices, vol. 23, no. 5, May, 1988.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design

Patterns; Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

