o i -, 3

@deanwampler.com

~

-

)deanwampler

-
L

O'REILLY

Fast Data
Architectures for

Free as in l) Streaming Applications

go.lightbend.com/fast-data-
architectures-for-streaming- o T
applications-oreilly-2nd-edition Dean Wampler

https://go.lightbend.com/fast-data-architectures-for-streaming-applications-oreilly-2nd-edition
https://go.lightbend.com/fast-data-architectures-for-streaming-applications-oreilly-2nd-edition
https://go.lightbend.com/fast-data-architectures-for-streaming-applications-oreilly-2nd-edition

e F oy

- ‘l!k&‘.‘

o T

b

4
o

>

¥y e
Y %

b ¢ =
wihs Wy

-

Y g I

v

.-

- '.f.r

- 5
g
.T-‘A..
o R -
T -
.
-

% ’
B
L
.
" >
.%\ >
’
.)
he)
_
. "
P
L N
3t
»
B .
"
5

Q_- o
m\-“\‘i
o8
.d
R |
YA
:

-
.-. -
A

MapReduce jobs

Spark jobs

Master Node

Resource
Manager

Name Node

Worker Node #1

Node
Manager

Data Node

[L C C Disk

Master Node Worker Node #1

MapReduce jobs

Resource Node
Manager Manager

Spark jobs

Name Node Data Node

[L C C Disk

Storage

MapReduce jobs

Spark jobs

Master Node

Resource
Manager

Name Node

Worker Node #1

Node
Manager

Data Node

[L C C Disk

Resource
Management

MapReduce jobs

S

Spark jobs

ubmit fo..

Master Node Worker Node #1

- Resource Node

Manager ! Manager

Name Node Data Node

[L C C Disk

h_——————_——————_——————_————___——————_——————

Database
Deconstructed!

MapReduce jobs Master Node Worker Node #1

Resource Node

>park jobs Manager Manager

Name Node Data Node
L C C C Disk ‘ ‘

Optimized for storing lots of data at rest, with subsequent
processing, but not optimized for data in motion.

* Characteristics
* Batch and interactive queries

* Massive storage - HDFS is the data
"backplane”

* Integrate jobs
through HDFS

* Multiuser jobs

e Use Cases

* Data warehouse replacement

* Interactive explcration

S New Streaming,
' “Fast Data” ItectL
_“Fast Data” Architecture

—— 8

v\
4 _ﬁq‘:\ . 3
P il Ll o
- oo s Ml

R

[2

Kubernetes, Mesos, YARN, ...
Cloud or on-premise

Reactive Platform

Go Node.js

Microservices

- Kubernetes, Mesos, YARN, ...
] Cloud or on-premise

Kubernetes and Mesos
provide the job and

resource management While YARN can ~ Deploy in the
needed for dynamic, be used, it’s not cloud oron
heterogenous work loads flexible enough - premise

= for today’s
' dynamic

o Clictor = rdl—— =~ | [At - ST—
““““““““ : workloads

_ gl

Broker

Spark

~
=P Fvents !l Mini-batch
=3 Streams HDES
3P Storage

sQL/

Persistence

r ~ Ul CAUILI o

—JP Storage

Reactive Platform

Go Node.js

Microservices

Persistence

~\

Kubernetes, Mesos, YARN, ...
Cloud or on-premise

“Events” - e.g., REST
messages, sessions,
alerts, ...

Akka Streams

Kafka Streams

Low Latency

V

=g Streams

~\

Kubernetes, Mesos, YARN, ...
Cloud or on-premise

“Events” - e.g., REST
messages, sessions,
alerts, ...

Reactive Platform

Go

Microservices

Node.js

. “Streams” - one-way
S data flows, e.g., sockets

or files, including logs,
metrics, other

—~—— telemetry, click
E{ “ o E‘ streams, etc.

HDFS

sQL/
NoSQL

Persistence

[2

Kubernetes, Mesos, YARN, ...
Cloud or on-premise
Go Node.js ‘¢ Events,, = e.g., REST

Microservices ™ messages, sessions,
' alerts, ...

Reactive Platform

. “Streams” - one-way

S data flows, e.g., sockets

B orfiles, including logs,
metrics, other

e — telemetry, click
— Events E[“ e l E‘ streams, etc.

HDFS

“Storage” - JDBC, async
SR reads/writes to storage

Search

Each has different volumes, velocities, latency
characteristics, protocols, etc. Bl AR '

Kubernetes, Mesos, YARN, ...

Cloud or on-premise
Reactive Platform

Go Node.js

Microservices

Kafka deployed as a Fjink
cluster of “Brokers”
for sc.a.lablllty, - Streams
resiliency. ow Latency

3 Streams

Reactive Platform

Go Node.js

Microservices

Kubernetes, Mesos, YARN, ...
Cloud or on-premise

Data backplane - like Fjink
Enterprise Service

Bus (ESB), but
without the flaws...

3 Streams

a Streams
ow Latency

~\

Why Kafka?

Organized into

replicated, and
distributed

Why Kafka?

Producer

|

Logs, not queues!

Producer

M Producers

1
writes

earliest

N Consumers,

F‘ o who start
Conszumer Consumer reading Where
Consumer 1

Unllke queues, consumers 3 ffset 10)
don’t delete entries; Kafka Ll

they want

(at offset 14)

manages their lifecycles

Using Katka

Before: After:

-

Internet

N
Services ‘\

SR
Services \é

-l

;

gt

=

. Pray

~

A

Services

4

Log &

Log &

Other Files Other Files

Producers N * M links Consumers Producers N + M links Consumers

Messy and fragile;

Simpler and more

robust! Loss of Service
1 means no data loss.

what if “Service 1”
goes down?

[2

Kubernetes, Mesos, YARN, ...

Cloud or on-premise
Reactive Platform

Go Node.js

Microservices

Akka Streams
Kafka Streams

Low Latency

Lots of streaming engine options... too many.

The streaming analog of a deconstructed database!

Reactive Platform

Go Node.js

Microservices

Kafka Cluster

Kubernetes, Mesos, YARN, ...

Cloud or on-premise

Akka Streams
Kafka Streams

Low Latency

0
0
0
0
0
0
0
0
0
0
0
0
]
S

~\

Standard APlIs
allow almost any
storage you want

Kubernetes, Mesos, YARN, ...

Cloud or on-premise
Reactive Platform

Go Node.js

Microservices

E Spark
Flink
Akka Streams
Kafka Streams

Low Latency

oA
f

Persistence

Batch

~\

Reactive Platform

Go Node.js

Microservices

Use your regular
microservice
tools...

bernetes, Mesos, YARN, ...
Cloud or on-premise

Akka Streams
Kafka Streams

Low Latency

~\

» v

. N A e .‘ | ‘ : |
>) 5) ¥ ¥

L) L 'v ’ A é '.n . . h“’ t 3 " . "

. . ’ “ :

: oy AL T A / Bal " 1 “‘ 3 '
~ (\;.,’f\.?": ﬂ 2 ‘ﬁ.,-\-s
’%S*t‘,v :

* Low latency? How low?

* High Volume: How high?

* Which kinds of data processing?

* Process data individually or in bulk?

* Preferred application architecture and
DevOps processes?

* Integration with other services

* Low latency? How low?
e Picoseconds to a few microseconds?

~ True “Real Time”

-
e 2. it
= =~http://www.Spacex.com/news

* Low latency? How low?
* Picoseconds to a few microseconds?

* Custom hardware (FPGAS).
*"Kernel bypass” network HW/SW.

e Custom C+ + code.

* Low latency? How low?

http://tradinghub.co/watch-list-for-mag-26th-2015/ — o B\ http://www.usa.philips.com/

* Low latency? How low?
* < 100 microseconds?
* Fast JVM message handlers.
* Akka Actors
* LMAX Disruptor

https://lmax-exchange.github.io/disruptor/

* Low latency? How low?
* < 10 milliseconds?

udl . =
[. - o N
ed

http://money.cnn.com/2017/05/12/pf/credit-card-mistakes/index.html

* Low latency? How low?
* < 10 milliseconds?

* Fast data streaming tools like Flink
and more recently Spark, Akka
(and Akka Streams), and Kafka
Streames.

* Low latency? How low?

* < hundreds of milliseconds?

0O 4 | '| Dashboard Starter Ul, by - % _

= C' [} keen.github.io/dashboards/examples/starter-kit/

€ Dashboard Starter Ul Home Team Source Chat Support

Pageviews by browser (past 24 hours) Pageviews by browser (past 5 days)

100 B Mobile Il Chrome

Safari B Firefox

IE IE
B Firefox B Mobile Safari

B Chrome

N\

8:00 PM 12:00 AM : 8:00 AM

it sarpe e egn o doctn i https://www.coursera.org/learn/machine-learning

Impressions by advertiser Impressions by device Impressions by country

200

M Initech 200 B iPhone 200 B New Caledonia
Acme, Inc. I Other [Chile

B Bluth Company B Luxembourg
B Dunder Mifflin ! Belgium

B Norway

M Iraq

¥ Dominican R...
" Nigeria

B Indonesia

A 4
8:00 PM 4:00 AM 12:00 PM 8:00 PM 4:00 AM 12:00 PM 8:00 PM 4:00 AM 12:00 PM
12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM

https://github.com/keen/dashboards

* Low latency? How low?
* < hundreds of milliseconds?
*"micro-batches”

* Processing records in bulk, e.q.,
Spark’s micro-batch model and
"streaming SQL" over windows.

* Low latency? How low?
* < 1second to minutes?

Model Training

* Low latency? How low?
* > 1 minute’?
* Consider periodic batch jobs!

* High Volume: How high?
* < 10,000 events/second?

* REST
One at a time... L

Database

REST Service C
http://www.drdobbs.com/web- development/
soa-web-services-and-restful-systems/199902676

* High Volume: How high?
* < 100,000 per second?
* Nonblocking REST!
* Parallelism - Akka worker actors
* Switch to bulk processing?

* High Volume: How high?
*1,000,000S per second?
* Flink or Spark Streaming

" nest
I

/2

ps://store.nest.com/ product/thermo/si/ét/

* Process in bulk

* Which kinds of data processing?

* Which kinds of data processing?
* Extract, transform, and load (ETL)?

Kafka

Raw Logs Topic Kafka
Streams

Parsed Logs Topic ele

* Which kinds of data processing?
*"Dataflow” pipelines

val sc = new SparkContext("local[*x]", "Inverted Idx")
sc.textFile("data/crawl")

.map { line => val Array(path, text) = line.split("\t",2);
(path, text)

} flatMap {

case (path, text) => text.splat("""\W+""") map((_, path))

} map {

case (W, p) => ((wW, PG A

} reduceByKey {

cace (N1 n?2) => n1 + n?

* Which kinds of data processing?
*SQL?

val Input = spark.read.
format(“parquet”).

t ((_‘ t_d t))
SELECT COUNTI®): aaiisiie It

FROM my-iot-data

: ' L. Bv(“zip-code”).
GROUP BY zip-code INPUL.Sroup y(“zip-code”)

count()

* Which kinds of data processing?
*Train and serve ML models?

Model Other
Serving Logic
~

Model

Training

* Process data individually or in bulk?

Event-driven p-services “Record-centric” U-services
crose SELECT COUNT(™)

FROM my-iot-data
GROUP BY zip-code

Events Records

* Preferred application

architecture?

oW Latency

*Streaming library in an app:

* Or, distributed services
running your job?

Already have a microservices-based, DevOps CI/CD

workflow? Stream processing with microservices may fit
better into your environment!

* Integration with other tools.

* Akka, Flink, & Spark integrate with
Databases, Kafka, file systems,
RESH, ... g

* Kafka Streams only e S

HDFS

read & write Kafka o

topics_ -

Search
Persistence

Akka Streams

Kafka Streams

Low Latency

.......................

Run as
distributed
services

The streaming engines

form two groups:
Akka Streams

You submit jobs, Kafka Streams
they are) Low Latency
partitioned into

tasks

The streaming engines
form two groups:

Libraries you
embed in your
microservices

* Apache Beam e
» (Google Dataflow)

Low Latency

*ReqigESa. rUNREH -
* Most sophisticated :
' a : ini-batch .
streaming semantics N

I See these blog posts: https://www.oreilly.com/peor e P L

https://www.oreilly.com/people/09f01-tyler-akidau

Key

Server 2
accumulate >
Server 1 Collect data,
Then process
Analysis accumulate N

Event at Server n
propagated to

0 1 2 3 Analysis
Time (minutes)

* Spark Structured

Streamin 5
/
*"Dataset” - SQL SR

G & & 6% . TRASEY SRS s RN T AR S SRR SO b o

* Millisecond latency

Mini-batch

* |deal for Rich SQL, ML. ----------------
P

Spa

* Spark Streaming -
* Mini-batch model

-“RDD” (dataflow) based ~ “""

G & & 6% . TRASEY SRS s RN T AR S SRR SO b o

» ~0.5 sec latency

»Original model - obsolete

xS

Spa

* Spark Batch =
»Same Datasetand RDD

features as streaming. e PR
* Massive scalability ! .. ‘
*Excellent'performance

xS

Spa

* Apache Flink
* High volume, low Iatency

Low Latency

*Sophisticated streaming |

G & & 6% . TRASEY SRS s RN T AR S SRR SO b o

(Beam) semantics

Mini-batch

*SQL, evolving ML su pport e

e Akka Streams

* Low latency
*Complex Event Processing "
» Efficient, per event
' Mini-batch

.......................

* Mid-volume pipelines

A

e Katka Streams

. Lovy overheaq Kafka E
tOpIC processing S sl i
» |deal for ETL and ,
aggregations ... Minibatch

%

e Akka and Kafka Streams

*"Exactly once” with
transactions

Kafka
; ------------------- -: : Spark
Raw Logs Topic E

QR Mini-batch .
App (RN B o 5

Parsed Logs Topic

e Akka and Kafka Streams

* Neither have built-in
support for state

checkpointing -
E Spark

.......................

* Process data individually or in bulk?

Each grew out of one
end of this spectrum...

Event-driven p-services *“Record-centric” J-services
crose SELECT COUNT(")

FROM my-iot-data
GROUP BY zip-code

Events Records

* Akka Streams vs. Kafka
St rea m S ta I |< Akka Streams

Kafka Streams

* Also at polyglotprogramming.com/talks/

. v . A
: } SO T s ZCTPY
. ' :' ,." “ 5’: < :

o~ ",i;

G H
AT s

ﬁ'ﬂ? ot Y R D i 2 .

F g Fp " 4 SRR T Foe . A

- 2 '.“-‘-. ‘ﬁ'r. ;‘5"\,1% : Q "'* ’)"' R ; .' :) 4" ‘.‘? > <
}”'\r '- Fle & _‘n i > Pys g . o . $ ﬁ—. g ¥ -

pagB L ow
: +

Viini-batch

- —

T WYY PRIV SN L R

Streaming Microservices
With Akka Streams and Kafka Streams i
Dean Wampler, Ph.D.

». TN, e I " dean@lightbend.com
. 2T S e 0) R : it A
-Lnghtbend p e S W O @deanwampler
e 16 L e piLs <Ny '.'_‘ ' m~\“ ‘.';‘im :'- e > - .

()

A bernetes, Mesos, YARN, ...
Cloud or on-premise
Reactive Platform Q
Go Node.js
Wy, Go Nodejs .

Microservices

Use your regular
microservice
tools...

Akka Streams
sroker__but why are

' PO Low Lat
&« Mmicroservices in R
this diagram?? O

Beam

« .
—3 Events !l s <_| Mini-batch
—fP- Streams

HDFS

Recall this diagram? D Fate

How Is this...

Sockets

Kubernetes, Mesos, YARN, ...1
Cloud or on-premise

Rescrve ptorm 1
Go o .)

Microservices /00Keeper Cluster
| L

"

Akka Streams
Kafka Cluster 4@ 0

Kaﬂ<a Streams

Low Latency

£
«.
Il “ 4—' Mini-batch
HDFS

sQL/

Persistence

u

Microservice

Router Microservice

Microservice Service . Microservice
Actor 1 Service
— Actor 2

S

S

. SA1l11)

* A data app / microservice:

* A single responsibility.

Reactive Platform

@
) o | Nodeis |.. ESi1

Microservices ° ZooKeeper Cluster

g Spark
4—* — (6) Flink
_>

Akka Streams
- Broker Kafka Streams
P
Low Latency

——p Fvents
=3 Streams
=3 Storage

Kafka Cluster e
_>
.
_>

Mini-batch
=

Persistence Batch

Beam

Microservice

Router Microservice

Microservice -
Service Service Microservice
Actor 1
— Actor2

SA21

) o | Nodeis |.. ESi1

Microservices ZooKeeper Cluster
° i 2 Spark
4—* — (6) Flink
—
Akka Streams
Low Latency
Kafka Cluster G
e
i
‘ =3 Fvents “ . :
B =1 Streams
~al—
- =

* A data app / microservice: g

* A single responsibility.

Beam

Mini-batch
——Jp Storage °
—

Persistence Batch

Microservice

Router Microservice

Microservice -
Service Service Microservice
Actor 1
— Actor2

SA21

* A data app/microservice:
* A single responsibility.
* The input never ends.

* SO, both must be
available, responsive,
resilient, & scalable. l.e.,
reactive

http://www.reactivemanifesto.org/

g

Sockets

* Going the other way,
small” microservice
architectures become
data-centric, as the data
grows.

A\

Reactive Platform

0 o wocess . £

g

Microservices ° ZooKeeper Cluster

e o
—

——p Fvents
=3 Streams
=3 Storage

Kafka Cluster

<
<
ﬂﬂ
——
-—
—
€S
4—@
- =

— -

Persistence

Spark
Flink

Akka Streams

Kafka Streams

Low Latency

.

Mini-batch

Beam

Batch

Microservice

Router
Actor

Microservice Service :
Actor 1 Service
clor Actor2
SA23
SA13

SA21

Microservice

-)

Microservice

SA22

The Recent Past

Services Big Data

Some Overlap: Concerns, Architecture

The Present

Microservices

& Fast Data

Much More Overlap

Why? Since streams
process data
iIncrementally, there is
less need for large-scale
tools like Spark, Flink

... and using
microservices for
everything simplifies
development,
deployment, and
operations

The Future?

Microservices

for Fast Data

Unclear if this helps
bridge the divide

between data science
and data engineering

Much more microservice focused?

m | Streaming Engines Microservices Machine Learning
él N Aakka streams A akka 2

| ; o Spark® ML

m | Sp Q)p[qy Intelligent
; | . Management
T <o\ @ Flink & Monitoring

{ / \ , ‘
-\ | = % kafkqa (kafka Streams) “ lagom and Secu rity

Fast Data
m - | Platform Manager

] | S ,} - Lightbend_ .
B o S % kafka = Enterprise Suite
\ Sockets

kubernetes

| ’ o
; B £35 OPENSHIFT & D0c/os “jiBMcloud Google A\ Vicrosoft - AWS

9]

lightbend.com/fast-data-platform

Streaming Engines Microservices Machine Learning

A akka streams A akka

py spaik ML
\Yolol[&) play Intelligent

. Management
@ Flink & Monitoring

~
§€ kafka (Kafka Streams) “ lagom and Security

Fast Data
Platform Manager

Data Backplane

Lightbend
% kafka S Epiorprise Suite

What we
discussed

- kubernetes

/ .
£30PENSHIFT 2 DC/0S jiBMcloud Google /4 Micosoft AWS

lightbend.com/fast-data-platform

ﬁ | Streaming Engines Microservices Machine Learning

i N Aakka streams A akka e

? | SEaEks spark ML

| | ")play Intelligent

i — ” . Management

W & Flink -

B vRa Lo ® & Monitoring

! §o [\ j)

E : §3 kafkqa (kafka Streams) “ lagom and Secu rity

ﬁ : Fast Data

: | Platform Manager

i ; Data Backplane

{; i % kafka — LEi%rt}teﬁ;ﬁse Suite

| kubernetes Plus

| i . management &
; B £3oPENSHIFT €pDC/OS ! SiBMcloud Google /4 N S

m monitoring tools

- X 3 N e M e . — o ~ -

ightbend.com/fast-data-platform

