
Radical Simplification
through

Polyglot and Poly-paradigm
Programming

Dean Wampler
dean@objectmentor.com

Object Mentor, Inc.

1Thursday, November 20, 2008

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://www.objectmentor.com/
http://www.objectmentor.com/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Polyglot:

many languages

Poly-paradigm:

many modularity
paradigms

2Thursday, November 20, 2008

Why a talk on PPP?

• It reflects some industry trends,

• which reflect some real problems,

• where our monocultures are letting us
down.

3Thursday, November 20, 2008

twitter.com/photos/jerryjohn

• ... and must do all that by next Friday.

• Are networked,

• Have graphical and “service” interfaces,

• Persist information,

• Must be resilient and secure,

• Must scale,

Today’s applications:

4Thursday, November 20, 2008

twitter.com/photos/deanwampler

Mono-
paradigm:

Object-Oriented
Programming:

right for all
problems?

5Thursday, November 20, 2008

twitter.com/photos/watchsmart

Is one language

best for all domains?

Monolingual

6Thursday, November 20, 2008

Symptoms of
Monocultures

• Why is there so much XML in my Java?

• Why do I have similar persistence code scattered
all over my code base?

• I can’t scale my application by a factor of 1000!

• My application isn’t extensible enough!

• I can’t respond quickly enough when requirements
change!

7Thursday, November 20, 2008

switch (elementItem)
{
 case "header1:SearchBox" :
 {
 __doPostBack('header1:goSearch','');
 break;
 }
 case "Text1":
 {
 window.event.returnValue=false;
 window.event.cancel = true;
 document.forms[0].elements[n+1].focus();
 break;
 } ...

thedailywtf.com

Pervasive IT problem:
Too much code!

8Thursday, November 20, 2008

Solutions
The symptoms reflect
common root problems
with similar solutions.

9Thursday, November 20, 2008

I need
extensibility and agility.

Specific problem #1

twitter.com/photos/arrrika
10Thursday, November 20, 2008

Symptoms

• Features take too long to implement.

• We can’t react fast enough to change.

• Uses want to customize the system
themselves.

11Thursday, November 20, 2008

Solution
Application

Kernel of Components

User Scripts Built-in Scripts

(C Components) + (Lisp scripts) = Emacs

12Thursday, November 20, 2008

Components + Scripts
=

Applications

see John Ousterhout, IEEE Computer, March ’98

13Thursday, November 20, 2008

Kernel Components

• Written in a statically-typed language.

• C, C++, Java, C#, ...

• Compiled for speed, efficiency.

• Access OS services, 3rd-party libraries.

• Lower developer productivity.

14Thursday, November 20, 2008

Scripts

• Written in a dynamically-typed language.

• Ruby, Python, JavaScript, Lua, Perl, Tcl, ...

• Interpreted for extensibility and agility.

• Runtime performance is less important.

• Glue together components.

• Higher developer productivity.

15Thursday, November 20, 2008

In practice, the divide between components and scripts is not so distinct.

To be clear about typing,

• Static typing ➔ checking at compile time.

• Dynamic typing ➔ checking at run time.

16Thursday, November 20, 2008

In practice,
the boundaries between
components and scripts

are not so distinct...

17Thursday, November 20, 2008

Ola Bini’s Three Layers

• Domain layer

• Internal and External DSLs.

• Dynamic layer

• e.g., JRuby and most application code

• Stable layer

• JVM + generic libraries

18Thursday, November 20, 2008

Other Examples

• UNIX/Linux + shells.

• Also find, make, grep, ...

• Have their own DSL’s.

• Tektronix Oscilloscopes: C + Smalltalk.

19Thursday, November 20, 2008

Other Examples

• Adobe Lightroom: C++ + Lua.

• 40-50% written in Lua.

• NRAO Telescopes: C + Python.

• Google Android: Linux+libraries (C) + Java.

20Thursday, November 20, 2008

Lightroom: Lua API used for 3rd-party plugins.
Lots of games combine C++ and Lua, too.

<view-state id="displayResults" view="/searchResults.jsp">

 <render-actions>

 <bean-action bean="phonebook" method="search">

 <method-arguments>

 <argument expression="searchCriteria"/>

 </method-arguments>

 <method-result name="results" scope="flash"/>

 </bean-action>

 </render-actions>

 <transition on="select" to="browseDetails"/>

 <transition on="newSearch" to="enterCriteria"/>

 </view-state>
</flow>

XML in Java

Why not replace XML
with JavaScript , Groovy

or JRuby??

21Thursday, November 20, 2008

De facto “scripting language” in Java.
Not an optimal choice:
- All data.
- No behavior (to speak of...).
- Verbose.

<view-state id="displayResults" view="/searchResults.jsp">

 <render-actions>

 <bean-action bean="phonebook" method="search">

 <method-arguments>

 <argument expression="searchCriteria"/>

 </method-arguments>

 <method-result name="results" scope="flash"/>

 </bean-action>

 </render-actions>

 <transition on="select" to="browseDetails"/>

 <transition on="newSearch" to="enterCriteria"/>

 </view-state>
</flow>

SpringSource just
acquired G2One

(Groovy and Grails).
Will they switch to

Groovy for configuration?

22Thursday, November 20, 2008

Hopefully, SpringSource will de-emphasize XML and emphasize Groovy for configuration “wiring”.

/* Prototype JavaScript framework, version 1.6.0.1
 * (c) 2005-2007 Sam Stephenson
 *
 * Prototype is freely distributable under the terms of an MIT-style license.
 * For details, see the Prototype web site: http://www.prototypejs.org/
 *
 --/

var Prototype = {
 Version: '1.6.0.1',

 Browser: {
 IE: !!(window.attachEvent && !window.opera),
 Opera: !!window.opera,
 WebKit: navigator.userAgent.indexOf('AppleWebKit/') > -1,
 Gecko: navigator.userAgent.indexOf('Gecko') > -1 && navigator.userAgent.indexOf('KHTML') == -1,
 MobileSafari: !!navigator.userAgent.match(/Apple.*Mobile.*Safari/)
 },

 BrowserFeatures: {
 XPath: !!document.evaluate,
 ElementExtensions: !!window.HTMLElement,
 SpecificElementExtensions:
 document.createElement('div').__proto__ &&
 document.createElement('div').__proto__ !==

Property-based
Programming

• Excellent for malleable objects.

• See Steve Yegge’s blog

• http://steve-yegge.blogspot.com/2008/10/
universal-design-pattern.html

• JavaScript, Lua, Self, ...

23Thursday, November 20, 2008

“Malleable” objects are those whose properties and behaviors may not be so clear cut. They may need to change over the life of
the object.

Multilingual VM’s

• Jython, JRuby, Groovy, Scala.

• On the JVM.

• Ruby on Rails on JRuby (Oracle Mix).

• Dynamic Language Runtime (DLR).

• Ruby, Python, ... on the .NET CLR.

24Thursday, November 20, 2008

Another realization of C+S=A is to put several languages on the same VM, rather than using the OS as the component layer.

Benefits

• Optimize performance where it matters.

• Optimize productivity, extensibility and agility
everywhere else.

Application

Kernel of Components

User Scripts Built-in Scripts

25Thursday, November 20, 2008

This is an underutilized architecture.

Benefits

An underutilized
architecture!

Application

Kernel of Components

User Scripts Built-in Scripts

26Thursday, November 20, 2008

Parting Thought...

Cell phone makers are
drowning in C++.

(Why IPhone and Android
are interesting.)

27Thursday, November 20, 2008

I don’t know what
my code is doing.

Specific problem #2

twitter.com/photos/dominic99
28Thursday, November 20, 2008

The intent
 of our code

is lost in the noise.

29Thursday, November 20, 2008

Symptoms

•The Business logic doesn’t jump out at
me when I read the code.

•The system breaks when we change it.

•Translating requirements to code is error
prone.

30Thursday, November 20, 2008

Solution #1

Write
less code.

Profound statement.

31Thursday, November 20, 2008

Less Code

• Means problems are smaller:

• Maintenance

• Duplication (DRY)

• Testing

• Performance

• etc.

32Thursday, November 20, 2008

How to Write
Less Code

• Root out duplication.

• Use economical designs.

• Functional vs. Object-Oriented?

• Use economical languages.

33Thursday, November 20, 2008

Solution #2

Separate
implementation details
from business logic.

34Thursday, November 20, 2008

Domain Specific
Languages

Make the code read like
“structured” domain prose.

35Thursday, November 20, 2008

Example DSLinternal {
 case extension
 when 100...200
 callee = User.find_by_extension extension
 unless callee.busy? then dial callee
 else
 voicemail extension

 when 111 then join 111

 when 888
 play weather_report('Dallas, Texas')

 when 999
 play %w(a-connect-charge-of 22
 cents-per-minute will-apply)
 sleep 2.seconds
 play 'just-kidding-not-upset'
 check_voicemail
 end
}

Adhearsion
=

Ruby DSL
+

Asterisk
+

Jabber/XMPP
+
...

36Thursday, November 20, 2008

DSL Advantages

• When code looks like domain prose,

• It is easier to understand by everyone,

• It is easier to align with the requirements,

• It is more succinct.

37Thursday, November 20, 2008

DSL Disadvantages

• DSL’s are hard to design, test and debug.

• Some people are bad API designers,

• They will be even worse DSL designers!

38Thursday, November 20, 2008

Brueghel the Elder

A DSL Tower of Babel?

39Thursday, November 20, 2008

Parting Thought...

Perfection is achieved,
not when there is nothing left to add,

but when there is nothing left to remove.

-- Antoine de Saint-Exupery

40Thursday, November 20, 2008

Parting Thought #2...

Everything should be made as simple
as possible, but not simpler.

-- Albert Einstein

41Thursday, November 20, 2008

Corollary:

Entia non sunt multiplicanda
praeter necessitatem.

(Entities must not be
multiplied beyond necessity.)

-- Occam’s Razor

42Thursday, November 20, 2008

a.k.a. “Law of Parsimony” or “Law of Succinctness”.

Corollary:

Entia non sunt multiplicanda
praeter necessitatem.

(All other things being equal,
the simplest solution is the best.)

-- Occam’s Razor

43Thursday, November 20, 2008

a.k.a. “Law of Parsimony” or “Law of Succinctness”. Paraphrased translation.

We have
code duplication
everywhere.

Specific problem #3

twitter.com/photos/maxblack
44Thursday, November 20, 2008

Symptoms

• Persistence logic is embedded in every
“domain” class.

• Error handling and logging is inconsistent.

Cross-Cutting Concerns.

45Thursday, November 20, 2008

Solution
Aspect-Oriented Programming

46Thursday, November 20, 2008

Removing Duplication

• In order, use:

• Object or functional decomposition.

• DSL’s.

• Aspects.

47Thursday, November 20, 2008

Make sure your object and functional decomposition is right first, then use DSL’s appropriately. Finally, use aspects.

An Example...

48Thursday, November 20, 2008

class BankAccount
	 attr_reader :balance

	 def credit(amount)
 @balance += amount
 end
	 def debit(amount)
 @balance -= amount
 end
 …
end

Clean Code

49Thursday, November 20, 2008

But, real applications need:
def BankAccount
	 attr_reader :balance
	 def credit(amount)
 ...
 end
	 def debit(amount)
 ...
 end
end

Transactions

Persistence

Security

50Thursday, November 20, 2008

def credit(amount)
 raise “…” if unauthorized()
 save_balance = @balance
 begin
 begin_transaction()
 @balance += amount
 persist_balance(@balance)
 …

So credit becomes…

51Thursday, November 20, 2008

 …
 rescue => error
 log(error)
 @balance = saved_balance
 ensure
 end_transaction()
 end
end

52Thursday, November 20, 2008

We’re mixing multiple domains,

Transactions

Persistence

Security

with fine-grained intersections.

“Problem Domain”

“tangled” code

“scattered” logic
53Thursday, November 20, 2008

In principle, I can reason about transactions, etc. in isolation, but in reality, the code for transactions is scattered over the whole
system. Similarly, the once-clean domain model code is tangled with code from the other concerns.
Objects don’t prevent this problem (in most cases).

Objects alone don’t
prevent tangling.

54Thursday, November 20, 2008

Aspect-Oriented
Programming:

restore modularity for
cross-cutting concerns.

55Thursday, November 20, 2008

Aspects restore modularity by
encapsulating the intersections.

Transactions

Persistence

Security

Transaction
Aspect

Persistence
Aspect

Security
Aspect

56Thursday, November 20, 2008

If you have used
Spring, you have
probably used

aspects.

57Thursday, November 20, 2008

• Ruby

• Aquarium

• Facets

• AspectR

Aspect-Oriented Tools

• Java

• AspectJ

• Spring AOP

• JBoss AOP

shameless plug

58Thursday, November 20, 2008

Options for Java and Ruby. Some other languages have AOP toolkits.

I would like to write…

Before returning the balance, read the
current value from the database.

Before accessing the BankAccount,
authenticate and authorize the user.

After setting the balance, write the
current value to the database.

59Thursday, November 20, 2008

I would like to write…

Before returning the balance, read the
current value from the database.

Before accessing the BankAccount,
authenticate and authorize the user.

After setting the balance, write the
current value to the database.

60Thursday, November 20, 2008

require ‘aquarium’
class BankAccount
 …
 after :writing => :balance \
 do |context, account, *args|
 persist_balance account
 end
 …

reopen class

add new behavior

Aquarium

aquarium.rubyforge.org
61Thursday, November 20, 2008

def credit(amount)
 @balance += amount
end

Back to clean code

62Thursday, November 20, 2008

Parting Thought...

Metaprogramming can be used
for some aspect-like functionality.

DSL’s can solve some CCC.
(We’ll come back to that.)

63Thursday, November 20, 2008

Our application must be
available 24 x 7 and
highly concurrent.

Specific problem #4

twitter.com/photos/wolfro54
64Thursday, November 20, 2008

Symptoms

• Only one of our developers really knows
how to write thread-safe code.

• The system freezes every few weeks or so.

65Thursday, November 20, 2008

Solution
Functional Programming

66Thursday, November 20, 2008

(At least, it’s one solution...)

Functional Programming

• Works like mathematical functions.

 Fibonacci Numbers:

F(n) = F(n-1) + F(n-2)
where: F(1) = 1 and F(2) = 1

67Thursday, November 20, 2008

Functional Programming

• Variables are assigned once.

• Functions are side-effect free.

• They don’t alter state.

y = sin(x)

68Thursday, November 20, 2008

Functional Programming
Makes Concurrency Easier

• Nothing to synchronize.

• Hence no locks, semaphores, mutexes...

69Thursday, November 20, 2008

Account

deposit(...)

withdraw(...)

CheckingAccount

deposit(...)

withdraw(...)

SavingsAccount

deposit(...)

withdraw(...)

??

deposit(...)

withdraw(...)

Which fits your needs?

Object Oriented

70Thursday, November 20, 2008

list map

fold/

reduce

filter

Which fits your needs?

Functional

71Thursday, November 20, 2008

twitter.com/photos/deanwampler

What if you’re doing
cloud computing?

72Thursday, November 20, 2008

Declarative
rather than
imperative.

F(n) = F(n-1) + F(n-2)
where: F(1) = 1 and F(2) = 1

73Thursday, November 20, 2008

I tell the system what I want (e.g., what are the relationships between data, the constraints, etc.) and let the system figure out
how to do it.

… and so are DSL’s.

class Customer < ActiveRecord::Base
has_many :accounts

 validates_uniqueness_of :name,
 :on => create,
 :message => ‘Evil twin!’
end

74Thursday, November 20, 2008

By hiding the implementation details, we have much more leeway in implementing aspect behavior, etc.

A Few
Functional Languages

75Thursday, November 20, 2008

Haskell

module Main where
-- Function f returns the n'th Fibonacci number.
-- It uses binary recursion.
f n | n <= 2 = 1
 | n > 2 = f (n-1) + f (n-2)
-- Print the Fibonacci number F(8)
main = print(show (f 8))

76Thursday, November 20, 2008

Note how closely the definition reads compared to the mathematical definition I presented earlier.

Erlang

• Ericsson Functional Language.

• For distributed, reliable, soft real-time, highly
concurrent systems.

• Used in telecom switches.

• 9-9’s reliability for AXD301 switch.

77Thursday, November 20, 2008

Erlang

• No mutable variables and side effects.

• All IPC is optimized message passing.

• Very lightweight and fast processes.

• Lighter than most OS threads.

78Thursday, November 20, 2008

Scala

• Hybrid: object and functional.

• Targets the JVM.

• Interoperates with Java.

• “Endorsed” by James Gosling at JavaOne.

• Could be a popular replacement for Java.

shameless plug
79Thursday, November 20, 2008

I’m co-writing a book on Scala with Alex Payne of Twitter.

Functional Languages in
Production

• Erlang

• Jabber/XMPP server ejabberd.

• Amazon’s Simple DB.

• Yahoo’s del.icio.us.

80Thursday, November 20, 2008

Functional Languages in
Production

• OCaml

• Jane Street Capital

• Scala

• Twitter

81Thursday, November 20, 2008

Parting Thought...

Is a hybrid object-functional language
better than using an object language

with a functional language??

e.g., Scala vs. Java + Erlang??

82Thursday, November 20, 2008

Scala is more complex than “mono-paradigm” languages, so it’s harder to master. However, using multiple languages has it’s
own challenges.

Simplification through
Polyglot and Poly-paradigm

Programming (PPP)

Recap:

83Thursday, November 20, 2008

Disadvantages of PPP

• N tool chains, languages, libraries,
“ecosystems”, ...

• Impedance mismatch between tools.

• Different meta-models.

• Overhead of calls between languages.

84Thursday, November 20, 2008

Advantages of PPP

• Can use the best tool for a particular job.

• Can minimize the amount of code required.

• Can keep code closer to the domain.

• Encourages thinking about architectures.

• E.g., decoupling between “components”.

85Thursday, November 20, 2008

Everything old
is new again.

• Functional Programming Comes of Age.

• Dr. Dobbs, 1994

• Scripting: Higher Level Programming for the 21st
Century.

• IEEE Computer, 1998

• In Praise of Scripting: Real Programming
Pragmatism.

• IEEE Computer, 2008

86Thursday, November 20, 2008

Why go mainstream now?

• Rapidly increasing pace of development,

➔ Scripting with dynamic languages?

• Pervasive concurrency (e.g., Multicore CPUs)

➔ Functional programming?

• Cross-cutting concerns

➔ Aspect-oriented programming?

87Thursday, November 20, 2008

Common Threads

• Less code is more.

• Keep the code close to the domain: DSL’s.

• Be declarative rather than imperative.

• Minimize side effects and mutable data.

88Thursday, November 20, 2008

Thank You!

• dean@objectmentor.com

• Watch for my Scala book.

• http://blog.objectmentor.com

• http://polyglotprogramming.com/papers

89Thursday, November 20, 2008

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

