
The Seductions of
Scala

1

Dean Wampler
dean.wampler@typesafe.com
@deanwampler
polyglotprogramming.com/talks

July 23, 2015

Thursday, July 23, 15

The online version contains more material. You can also find this talk and the code used for
many of the examples at github.com/deanwampler/Presentations/tree/master/
SeductionsOfScala.
Copyright © 2010-2015, Dean Wampler. Some Rights Reserved - All use of the photographs
and image backgrounds are by written permission only. The content is free to reuse, but
attribution is requested.
http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2

<shameless-plug/>

Dean Wampler

Functional
Programming

for Java Developers

Thursday, July 23, 15
My books.

Why did we
need a new
language?

3

Thursday, July 23, 15
I picked Scala to learn in 2007 because I wanted to learn a functional language. Scala appealed because it runs on the JVM and interoperates with
Java. In the end, I was seduced by its power and flexibility.

#1
We need
Functional

Programming
…

4

Thursday, July 23, 15
First reason, we need the benefits of FP.

… for concurrency.
… for concise code.
… for correctness.

5

Thursday, July 23, 15

#2
We need a better

Object Model
…

6

Thursday, July 23, 15

… for composability.
… for scalable designs.

7

Thursday, July 23, 15
Java’s object model (and to a lesser extent, C#‘s) has significant limitations.

Scala’s Thesis:
Functional Prog.

complements
Object-Oriented

Prog.
Despite surface contradictions...

8

Thursday, July 23, 15

We think of objects as mutable and methods as state-modifying, while FP emphasizes immutability, which reduces bugs and often simplifies
code. Objects don’t have to be mutable!

But we need
to keep

our investment
in Java.

9

Thursday, July 23, 15
We rarely have the luxury of starting from scratch...

Scala is...

• A JVM language.

• Functional and object oriented.

• Statically typed.

• An improved Java.

10

Thursday, July 23, 15

There has also been work on a .NET version of Scala, but it seems to be moving slowly.

Martin Odersky

• Helped design java generics.

• Co-wrote GJ that became
javac (v1.3+).

• Understands CS theory and
industry’s needs.

11

Thursday, July 23, 15
Odersky is the creator of Scala. He’s a prof. at EPFL in Switzerland. Many others have contributed to it, mostly his grad. students.
GJ had generics, but they were disabled in javac until v1.5.

Big Data is the
Killer App for

Functional Programming
12

Thursday, July 23, 15
This talk has evolved a lot in the ~6 years I’ve been giving it. Right now, the most compelling argument for Scala is that it’s the best language we have for writing
Big Data applications (e.g., for Hadoop clusters), as exemplified by several tools...
So for motivation, here’s a teaser of where we’re headed.

13

inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Inverted Index

Thursday, July 23, 15

What we want to do, read a corpus, in this case Wikipedia pages, where we use the URL as the
doc Id as the key and the contents as the value. We will tokenize into words, and “invert” the
index so the words are keys and the values are a list of “tuples”, “(id1, count1), (id2,
count2), ...”, for the corresponding word.

14

...
sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Spark: Inverted Index

Thursday, July 23, 15
The inverted index algorithm in Spark, which ingests an identifier for a document (e.g., web page) and the contents of it, then “inverts” that data outputting each word in the texts globally and
all the documents where it’s found, plus its count in each document.

I won’t explain the details now, but they should be easier to understand once we’re through. The gist of the algorithm is this: Using the entry point, a SparkContext instance, we load some
text files, then map over each line of text to split it on the first comma, returning a two-element “tuple” with the first and second elements from the Java array that results from splitting. They
are the document id and the text. Next we “flat map” over those tuples. While map is transforms one input to one output (1-to-1), flatMap transforms one input to 0-to-many outputs. Here we
use it tokenize text into worlds and outputs a new 2-tuple, where the first element is itself a 2-tuple (word, id) and a “seed” count of 1 is the second element in the outer tuple. reduceByKey is
an optimized groupBy, using the (word,id) keys, when we just need to “reduce” the rest of the outer tuples. In this case, we add the “1”s. Now we have a total count of (word,id) pairs. The
next step converts those tuples to (word, (id,n)) tuples, after which we group over the words, and now we have the final result, which we write out.

Objects
can be

Functions
15

Thursday, July 23, 15
Let’s go back and build up to understanding what we just saw. First, objects can behave like “functions”, (although not all objects do this).

16

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

Thursday, July 23, 15
A simple wrapper around your favorite logging library (e.g., Log4J).

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

17

makes level an immutable field

class body is the
“primary” constructor

method

Thursday, July 23, 15
Note how variables are declared, “name: Type”.

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

18

returns and semicolons inferred

Thursday, July 23, 15
No need for return keywords or semicolons (in most cases).

val error = new Logger(ERROR)

19

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

…
error("Network error.")

Thursday, July 23, 15
After creating an instance of Logger, in this case for Error logging, we can “pretend” the object is a function!

20

class Logger(val level:Level) {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(level, message)
 }
}

…
error("Network error.")

apply is called

Thursday, July 23, 15
Adding a parameterized arg. list after an object causes the compiler to invoke the object’s “apply” method.

21

…
error("Network error.")

“function object”

When you put
an argument list
after any object,
apply is called.

Thursday, July 23, 15
This is how any object can be a function, if it has an apply method. Note that the signature of the argument list must match the arguments specified. Remember, this is a statically-typed
language!

More on
Methods

22

Thursday, July 23, 15

23

object Error {

 def apply(message: String) = {
 // pass to Log4J...
 Log4J.log(ERROR, message)
 }
}

…
Error("Network error.")

apply is called

A singleton object

Like a static method

Thursday, July 23, 15
Adding a parameterized arg. list after an object causes the compiler to invoke the object’s “apply” method.

"hello" + "world"

is actually just

24

Infix Operator Notation

"hello".+("world")

Thursday, July 23, 15
Note the “infix operator notation”; x.m(y) ==> x m y. Why? Scala lets you use more characters for method names, like math symbols, so this syntax looks more natural.

Java
Primitives?

25

Thursday, July 23, 15
A side note on Java primitives

 Int, Double, etc.
are true objects, but
Scala compiles them

to primitives.

26

Thursday, July 23, 15
If you know Java, you might wonder if these integer lists were actually List<Integer>, the boxed type. No. At the syntax level, Scala only has object (reference) types, but it compiles these
special cases to primitives automatically.

27

val l = List.empty[Int]

An empty list of Ints.

This means that
generics just work.

Java? ... List<Int>

Thursday, July 23, 15
You don’t have to explicitly box primitives; the compiler will optimize these objects to primitives (with some issues involving collections...)
Note the syntax for parameterizing the type of List, [...] instead of <...>.

Functions are
Objects

28

Thursday, July 23, 15
While an object can be a function, every “bare” function is actually an object, both because this is part of the “theme” of scala’s unification of OOP and FP, but practically, because the JVM
requires everything to be an object!

Classic Operations on
Container Types

29

List, Map, ... map

fold/
reduce

filter

Thursday, July 23, 15
Collections like List and Map are containers. So are specialized containers like Option (Scala) or Maybe (Haskell) and other “monads”.

30

val seq2 = seq1.map {
 s => s.toUpperCase
}
// seq2: List[String] = List(A,B)

val seq1 = Seq("a", "b")
// seq1: List[String] = List(a,b)

Seq.apply

Thursday, July 23, 15
The comment is what the Scala intepreter shell would echo back to you.
Let’s map a list of strings with lower-case letters to a corresponding list of uppercase strings.

31

seq1 map {
 s => s.toUpperCase
}

map called on seq1
(dropping the “.”)

function
argument list

function body

argument to map: can
use “{...}” or “(...)”

“function literal”

Thursday, July 23, 15
Note that the function literal is just the “s => s.toUpperCase”. The {…} are used like parentheses around the argument to map, so we get a block-like syntax.

32

seq1 map {
 s => s.toUpperCase
}

seq1 map {
 (s:String) => s.toUpperCase
}

Typed Arguments

Explicit type

inferred type

Thursday, July 23, 15
We’ve used type inference, but here’s how we could be more explicit about the argument list to the function literal. (You’ll find some contexts where you have to specify these types.)

33

list map {
 s => s.toUpperCase
}

list map (_.toUpperCase)

But wait! There’s more!

Placeholder

Thursday, July 23, 15
We have this “dummy” variable “s”. Can we just eliminate that boilerplate?
I used an informal convention here; if it all fits on one line, just use () instead of {}. In fact, you can use () across lines instead of {}. (There are two special cases where using () vs. {} matters:
1) using case classes, the literal syntax for a special kind of function called a PartialFunction - {} are required, and 2) for comprehensions, - as we’ll see.)

34

list foreach (s => println(s))

list foreach (println)
// the same as:
list foreach println

“Point-free” style

Watch this...

Thursday, July 23, 15
Scala doesn’t consistently support point-free style like some languages, but there are cases like this where it’s handy; if you have a function that takes a single argument, you can simply
pass the function as a value with no reference to explicit variables at all!

So far,
we have used
type inference

 a lot...

35

Thursday, July 23, 15

How the Sausage Is Made

class List[A] {
 …
 def map[B](f: A => B): List[B]
 …
}

36

Declaration of map

The function
argument

Parameterized type

map’s return type

Thursday, July 23, 15
Here’s the declaration of List’s map method (lots of details omitted…). Scala uses [...] for parameterized types, so you can use “<“ and “>” for method names!
Note that explicitly show the return type from map (List[B]). In our previous examples, we inferred the return type. However, Scala requires types to be specified on all method arguments!

How the Sausage Is Made

trait Function1[-A,+R] {

 def apply(a:A): R
 …
}

37

No method body,
therefore it is abstract

like a Java 8 interface
“contravariant”,

“covariant” typing

Thursday, July 23, 15
We look at the actual implementation of Function1 (or any FunctionN). Note that the scaladocs have links to the actual source listings.
(We’re omitting some details…) The trait declares an abstract method “apply” (i.e., it doesn’t also define the method.)
Traits are a special kind of abstract class/interface definition, that promote “mixin composition”. (We won’t have time to discuss…)

s => s.toUpperCase

38

What you write.

new Function1[String,String] {
 def apply(s:String) = {
 s.toUpperCase
 }
}

What the compiler
generates

An anonymous class

What the Compiler Does

Thursday, July 23, 15
You use the function literal syntax and the compiler instantiates an anonymous class using the corresponding FunctionN trait, with a concrete definition of apply provided by your function
literal.

val seq2 = seq1.map {
 s => s.toUpperCase
}
// seq2: List[String] = List(A,B)

Functions are Objects

39

Function “object”

val seq1 = Seq("a", "b")
// seq1: List[String] = List(a,b)

Thursday, July 23, 15
Back to where we started. Note again that we can use “{…}” instead of “(…)” for the argument list (i.e., the single function) to map. Why, to get a nice block-like syntax.

Big Data DSLs

40

Thursday, July 23, 15
FP is going mainstream because it is the best way to write robust data-centric software, such as for “Big Data” systems like Hadoop. Here’s an example...

Spark: Replacing
MapReduce in Hadoop

• Written In Scala

• API based on Scala collections API

• http://spark.apache.org

41

Thursday, July 23, 15
I found MapReduce incredibly frustrating when I started doing Hadoop. It’s a very limited programming model, with poor performance, and a terrible API in Hadoop, specifically.

http://spark.apache.org
http://spark.apache.org

Let’s revisit the
Inverted Index

algorithm.

42

Thursday, July 23, 15

43

inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Inverted Index

Thursday, July 23, 15

What we want to do, read a corpus, in this case Wikipedia pages, where we use the URL as the
doc Id as the key and the contents as the value. We will tokenize into words, and “invert” the
index so the words are keys and the values are a list of “tuples”, “(id1, count1), (id2,
count2), ...”, for the corresponding word.

44

import org.apache.spark.SparkContext

object InvertedIndex {
 def main(args: Array[String]) = {
 val sparkContext = new SparkContext(...)
 sparkContext.textFile("/path/to/input")
 ...
 sparkContext.stop()
 }
} What we had before...

Thursday, July 23, 15
Now a full program for the Inverted Index. Note that the stuff in “main” could also be run interactively or as a script in a version of the Scala console called the Spark Shell, even on a cluster!!

45

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Thursday, July 23, 15
This is a SINGLE expression, although you could break up the steps and assign them to variables. Let’s walk through it.

46

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Load data from files,
e.g., in HDFS

Each step returns a
new RDD: Resilient
Distributed Dataset

Thursday, July 23, 15
RDDs are distributed data sets. Your data is partitioned and each partition is computed over in a separate JVM process, giving you parallelism.

47

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Split each line on the
1st “,”. Return a 2-tuple

holding the resulting
“id” and “text”

Thursday, July 23, 15
Note the elegant (a,b,c,d) tuple syntax.

48

(1, “two”, 3.14)

new Tuple3[Int,String,Double] {
 private val first = 1
 private val second = “two”
 private val third = 3.14
 def _1:Int = first
 def _2:String = second
 def _3:Double = third
}

What you write.

What the compiler
generates (sort of)

Thursday, July 23, 15
Note the elegant (a,b,c,d) tuple syntax.

49

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Tokenize the text into
words, return a 2-tuple
with another 2-tuple
(word, id) and a seed

count of 1

Thursday, July 23, 15
Note the elegant (a,b,c,d) tuple syntax.

50

val string = value match {
 case 1 => “one”
 case “two” => “two”
 case d: Double => “double”
 case ((a,b),c) =>
 s“3-tuple: $a,$b,$c”
 case unknown => “unknown”
}

Pattern Matching

Thursday, July 23, 15
Power tool for determining the type, matching on specific values or general positions and for the latter, assigning a variable to the matched elements, so it’s also very convenient for “de-
structuring” values. Note that the s”...” is an interpolated string where the variables referenced with “$a” etc will be filled in.

51

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Thursday, July 23, 15
Note the elegant (a,b,c,d) tuple syntax.

52

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Like group by followed
but the function is

applied to add the 1s.

Thursday, July 23, 15
0-to-many output. Pattern matching is used to extract the tuple elements into named variables...

53

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Now make the “word” the
key and group over words.

Thursday, July 23, 15
0-to-many output. Pattern matching is used to extract the tuple elements into named variables...

54

sparkContext.textFile("/path/to/input")
.map { line =>
 val array = line.split(",", 2)
 (array(0), array(1)) // (id, text)
}.flatMap {
 case (id, text) => tokenize(text).map(
 word => ((word, id), 1))
}.reduceByKey {
 (count1, count2) => count1 + count2
}.map {
 case ((word, id), n) => (word, (id, n))
}.groupByKey
// (w1, list((id11,n11), (id12,n12), ...))
.saveAsTextFile("/path/to/output")

Save to the file system

Thursday, July 23, 15
0-to-many output. Pattern matching is used to extract the tuple elements into named variables...

For more on Spark
see my workshop:

github.com/deanwampler/spark-workshop

55

Thursday, July 23, 15
https://github.com/deanwampler/spark-workshop

https://github.com/deanwampler/spark-workshop
https://github.com/deanwampler/spark-workshop

More
Functional

Hotness
56

Thursday, July 23, 15
FP is also going mainstream because it is the best way to write robust concurrent software. Here’s an example...

sealed abstract class Option[+T]
{…}

case class Some[+T](value: T)
 extends Option[T] {…}

case object None
 extends Option[Nothing] {…}

Avoiding Nulls

57

Thursday, July 23, 15
I am omitting MANY details. You can’t instantiate Option, which is an abstraction for a container/collection with 0 or 1 item. If you have one, it is in a Some, which must be a class, since it has
an instance field, the item. However, None, used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type
system, Nothing is a subclass of all other types, so it substitutes for instances of all other types. This combined with a property called covariant subtyping means that you could write “val x:
Option[String] = None” and it would type correctly, as None (and Option[Nothing]) is a subtype of Option[String]. Note that Options[+T] is only covariant in T because of the “+” in front of the
T.

Also, Option is an algebraic data type, and now you know the scala idiom for defining one.

// Java style (schematic)
class Map[K, V] {
 def get(key: K): V = {
 return value | null;
 }}

58
Which is the better API?

// Scala style
class Map[K, V] {
 def get(key: K): Option[V] = {
 return Some(value) | None;
 }}

Thursday, July 23, 15
Returning Option tells the user that “there may not be a value” and forces proper handling, thereby drastically reducing sloppy code leading to NullPointerExceptions.

val m =
 Map(("one",1), ("two",2))
…
val n = m.get("four") match {
 case Some(i) => i
 case None => 0 // default
}

59

Use pattern matching to extract the value (or not)

In Use:

Thursday, July 23, 15
Here’s idiomatic scala for how to use Options. Our map if of type Map[String,Int]. We match on the Option[V] returned by map.get. If Some(i), we use the integer value I. If there is no value for
the key, we use 0 as the default. Note: Option has a short-hand method for this idiom: m.getOrElse(“four”, 0).

sealed abstract class Option[+T]
{…}

Option Details: sealed

60

All children must be defined
in the same file

Thursday, July 23, 15
I am omitting MANY details. You can’t instantiate Option, which is an abstraction for a container/collection with 0 or 1 item. If you have one, it is in a Some, which must be a class, since it has
an instance field, the item. However, None, used when there are 0 items, can be a singleton object, because it has no state! Note that type parameter for the parent Option. In the type
system, Nothing is a subclass of all other types, so it substitutes for instances of all other types. This combined with a proper called covariant subtyping means that you could write “val x:
Option[String = None” it would type correctly, as None (and Option[Nothing]) is a subtype of Option[String].

case class Some[+T](value: T)

Case Classes

61

• case keyword makes the
value argument a field (val
keyword not required).

• equals, hashCode, toString.

Thursday, July 23, 15

case class Some[+T](value: T)

Case Classes

62

• singleton object with a factory
apply method

• pattern matching support.

• ...
Thursday, July 23, 15

Scala’s Object
Model: Traits

63

Composable Units of Behavior

Thursday, July 23, 15
Fixes limitations of Java’s object model.

We would like to
compose objects

from mixins.

64

Thursday, July 23, 15

Java: What to Do?
class Server
 extends Logger { … }

65

class Server
 implements Logger { … }

“Server is a Logger”?

Better conceptually...

Thursday, July 23, 15
Made-up example Java type. The “is a” relationship makes no sense, but the Logger we implemented earlier isn’t an interface either.

Java’s object model

• Good

• Promotes abstractions.

• Bad

• No composition through
reusable mixins.

66

Thursday, July 23, 15
Chances are, the “logging” and “filtering” behaviors are reusable, yet Java provides no built-in way to “mix-in” reusable implementations. Ad hoc mechanisms must be used.

Inspired Java 8
interfaces;

 add method
implementations

and state...
67

Traits

Thursday, July 23, 15
Java 8 interfaces don’t support state (i.e., what will become fields in a class that mixes in the trait).

68

trait Logger {
 val level: Level // abstract

 def log(message: String) = {
 Log4J.log(level, message)
 }
}

Logger as a Mixin:

Traits don’t have
constructors, but you
can still define fields.

Thursday, July 23, 15
I changed some details compared to our original Logger example. Traits don’t have constructor argument lists (for various technical reasons), but we can define fields for them, as shown.
Here, I make the field abstract, which means that any class that mixes in the trait will have to define “level”.

val server =
 new Server(…) with Logger {
 val level = ERROR
 }
server.log("Internet down!!")

69

Logger as a Mixin:

mixed in Logging

abstract
member defined

trait Logger {
 val level: Level // abstract
 ...
}

Thursday, July 23, 15
Note that could have declared a type, say “class ServerWithLogger(…) extends Server(...) with Logger {…}, but if you only need one instance, we can just do it “on the fly!” Note that the level
is defined as a body for this object, much the same way you define an anonymous inner class and define its abstract members.

Like Java 8 Interfaces

✓ Default methods

• Can define method bodies.

X Fields

• J8 fields remain static final,
not instance fields.

70

Thursday, July 23, 15
Java 8 interfaces aren’t quite the same as traits. Fields remain static final, for backwards compatibility, but now you can define method bodies, which will be the defaults used if a class
doesn’t override the definition.

Recap

71

Thursday, July 23, 15

Scala is...

72

Thursday, July 23, 15

a better Java,

73

Thursday, July 23, 15

object-oriented
and

functional,
74

Thursday, July 23, 15

succinct,
elegant,

and
powerful.

75

Thursday, July 23, 15

Questions?

76

July 23, 2015

Dean Wampler
dean.wampler@typesafe.com
@deanwampler
polyglotprogramming.com/talks

Thursday, July 23, 15

The online version contains more material. You can also find this talk and the code used for
many of the examples at github.com/deanwampler/Presentations/tree/master/
SeductionsOfScala.
Copyright © 2010-2013, Dean Wampler. Some Rights Reserved - All use of the photographs
and image backgrounds are by written permission only. The content is free to reuse, but
attribution is requested.
http://creativecommons.org/licenses/by-nc-sa/2.0/legalcode

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Extra Slides
77

Thursday, July 23, 15

Lists and Maps

78

Thursday, July 23, 15

Lists

The same as this “list literal” syntax:

79

val list = List(1, 2, 3, 4, 5)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

List.apply()

Thursday, July 23, 15
Why is there no “new”? You can guess what’s going on based on what we’ve already said. There must be some object named “List” with an apply method.
In fact, there is a “singleton” object named List that is a “companion” of the List class. This companion object has an apply method that functions as a factory for creating lists.

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

empty list

80

“cons”

tailhead

Thursday, July 23, 15
We build up a literal list with the “::” cons operator to prepend elements, starting with an empty list, the Nil “object”.

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

No, just method calls!

81

Baked into the
Grammar?

Thursday, July 23, 15
But this isn’t something backed into the grammar; we’re just making method calls on the List type!

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

82

Method names can contain almost any
character.

Thursday, July 23, 15
There are some restrictions, like square brackets [and], which are reserved for other uses.

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

83

Any method ending in “:” binds to the right!

Thursday, July 23, 15
“::” binds to the right, so the second form shown is equivalent to the first.

val list = Nil.::(5).::(4).::(
 3).::(2).::(1)

val list =
 1 :: 2 :: 3 :: 4 :: 5 :: Nil

84

If a method takes one argument, you can drop
the “.” and the parentheses, “(” and “)”.

Thursday, July 23, 15
Infix operator notation.

"hello" + "world"

is actually just

85

Infix Operator Notation

"hello".+("world")

Thursday, July 23, 15
Note the “infix operator notation”; x.m(y) ==> x m y. It’s not just a special case backed into the language grammar (like Java’s special case for string addition). Rather, it’s a general feature of
the language you can use for your classes.

Note:
 Int, Double, etc.

are true objects, but
Scala compiles them

to primitives.
86

Thursday, July 23, 15
If you know Java, you might wonder if these integer lists were actually List<Integer>, the boxed type. No. At the syntax level, Scala only has object (reference) types, but it compiles these
special cases to primitives automatically.

87

val l = List.empty[Int]

An empty list of Ints.

This means that
generics just work.

Java: ... List<Int>

Thursday, July 23, 15
You don’t have to explicitly box primitives; the compiler will optimize these objects to primitives (with some issues involving collections...)
Note the syntax for parameterizing the type of List, [...] instead of <...>.

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

Thursday, July 23, 15
Maps also have a literal syntax, which should look familiar to you Ruby programmers ;) Is this a special case in the language grammar?

(Why is there no “new” again? There is a companion object named “Map”, like the one for List, with an apply method that functions as a factory.)

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

No! Just method calls...
89

“baked” into the
language grammar?

Thursday, July 23, 15
Scala provides mechanisms to define convenient “operators” as methods, without special exceptions baked into the grammer (e.g., strings and “+” in Java).

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

90

val map = Map(
 Tuple2("name", "Dean"),
 Tuple2("age", 39))

What we like
to write:

What Map.apply()
actually wants:

Thursday, July 23, 15

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Maps

91

val map = Map(
 ("name", "Dean"),
 ("age", 39)) More succinct

syntax for Tuples

What we like
to write:

What Map.apply()
actually wants:

Thursday, July 23, 15
We won’t discuss implicit conversions here, due to time....

"name" -> "Dean"

92

We need to get from this,

to this,

Tuple2("name", "Dean")

There is no String.-> method!

Thursday, July 23, 15
We’ve got two problems:
1. People want to pretend that String has a -> method.
2. Map really wants tuple arguments...

Implicit Conversions

93

implicit class ArrowAssoc[T1](
 t:T1) {
 def -> [T2](t2:T2) =
 new Tuple2(t1, t2)
}

Thursday, July 23, 15
String doesn’t have ->, but ArrowAssoc does! Also, it’s -> returns a Tuple2. So we need to somehow convert our strings used as keys, i.e., on the left-hand side of the ->, to ArrowAssoc
object, then call -> with the value on the right-hand side of the -> in the Map literals, and then we’ll get the Tuple2 objects we need for the Map factory method.

The trick is to declare the class as “implicit”. The compiler will look for any implicits in scope and then call them to convert the object without a desired method (a string and -> in our case) to
an object with that method (ArrowAssoc). Then the call to -> can proceed, which returns the tuple we need!

val map = Map(
 "name" -> "Dean",
 "age" -> 39)

Back to Maps

94

val map = Map(
 Tuple2("name", "Dean"),
 Tuple2("age", 39))

An ArrowAssoc is created for each left-
hand string, then -> called.

Thursday, July 23, 15
We won’t discuss implicit conversions here, due to time....

Similar internal DSLs
have been defined
for other types,
and in 3rd-party

libraries.
95

Thursday, July 23, 15
This demonstrates a powerful feature of Scala for constructing embedded/internal DSLs.

Actor
Concurrency

96

Thursday, July 23, 15
FP is going mainstream because it is the best way to write robust concurrent software. Here’s an example…

NOTE: The full source for this example is at https://github.com/deanwampler/Presentations/tree/master/SeductionsOfScala/code-examples/actor.

When you
share mutable

state...

Hic sunt dracones
(Here be dragons)

97

Thursday, July 23, 15
It’s very hard to do multithreaded programming robustly. We need higher levels of abstraction, like Actors.

Actor Model

• Message passing between
autonomous actors.

• No shared (mutable) state.

98

Thursday, July 23, 15
Each actor might mutate state itself, but the goal is to limit mutations to just a single actor, which is thread safe. All other actors send messages to this actor to invoke a mutation or read the
state.

Actor Model

• First developed in the 70’s by
Hewitt, Agha, Hoare, etc.

• Made “famous” by Erlang.

99

Thursday, July 23, 15
The actor model is not new!!

Akka

• Scala’s Actor library.

• Supports supervision for
resilience.

• Supports distribution and
clustering.

• akka.io
100

Thursday, July 23, 15
The Distributed Programming framework for Scala, which also support Java!

http://akka.io/
http://akka.io/

Akka

• Also has a complete Java API.

• akka.io

101

Thursday, July 23, 15
The Distributed Programming framework for Scala, which also support Java!

http://akka.io/
http://akka.io/

“self” Display

draw

draw

??? error!

exit“exit”

2 Actors:

102

Thursday, July 23, 15
Our example. An actor for drawing geometric shapes and another actor that drives it.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

package shapes

case class Point(
 x: Double, y: Double)

abstract class Shape {
 def draw()
}

abstract draw method

Hierarchy of geometric shapes
103

Thursday, July 23, 15
“Case” classes for 2-dim. points and a hierarchy of shapes. Note the abstract draw method in Shape. The “case” keyword makes the arguments “vals” by default, adds factory, equals, etc.
methods. Great for “structural” objects.
(Case classes automatically get generated equals, hashCode, toString, so-called “apply” factory methods - so you don’t need “new” - and so-called “unapply” methods used for pattern
matching.)

NOTE: The full source for this example is at https://github.com/deanwampler/Presentations/tree/master/SeductionsOfScala/code-examples/actor.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

case class Circle(
 center:Point, radius:Double)
 extends Shape {
 def draw() = …
}

case class Rectangle(
 ll:Point, h:Double, w:Double)
 extends Shape {
 def draw() = …
}

concrete draw
methods

104

Thursday, July 23, 15
Case classes for 2-dim. points and a hierarchy of shapes. Note the abstract draw method in Shape.
For our example, the draw methods will just do “println(“drawing: “+this.toString)”.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

package shapes
import akka.actor.Actor

class Drawer extends Actor {
 def receive = {
 …
 }
}

105

Use the Akka
Actor library

Actor

receive and handle
each message

Actor for drawing shapes
Thursday, July 23, 15
An actor that waits for messages containing shapes to draw. Imagine this is the window manager on your computer. It loops indefinitely, blocking until a new message is received...

Note: This example uses the Akka Frameworks Actor library (see http://akka.io), which has now replaced Scala’s original actors library. So, some of the basic actor classes are part of Scala’s
library, but we’ll use the full Akka distibution.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
}

106

receive
method

Thursday, July 23, 15
“Receive” blocks until a message is received. Then it does a pattern match on the message. In this case, looking for a Shape object, the “exit” message, or an unexpected object, handled
with the last case, the default.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
}

107

pattern
matching

Thursday, July 23, 15
Each pattern is tested and the first match “wins”. The messages we expect are a Shape object, the “exit” string or anything else. Hence, the last “case” is a “default” that catches anything,
we we treat as an unexpected error.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
}

done

unrecognized message

draw shape
& send reply

108
sender ! sends a reply

Thursday, July 23, 15
After handling each message, a reply is sent to the sender, using “self” to get the handle to our actor “nature”.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

Altogether
109

package shapes
import akka.actor.Actor
class Drawer extends Actor {
 receive = {
 case s:Shape =>
 print("-> "); s.draw()
 sender ! ("Shape drawn.")
 case "exit" =>
 println("-> exiting...")
 sender ! ("good bye!")
 case x => // default
 println("-> Error: " + x)
 sender ! ("Unknown: " + x)
 }
}

Thursday, July 23, 15
Even compressed on a presentation slide, there isn’t a lot of code!

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

import shapes._
import akka.actor._
import com.typesafe.config._

object Driver {
 def main(args:Array[String])={
 val sys = ActorSystem(…)
 val driver=sys.actorOf[Driver]
 val drawer=sys.actorOf[Drawer]
 driver ! Start(drawer)
 }
}
…

Application driver
110

Thursday, July 23, 15
Here’s the driver actor. It is declared as an “object” not a class, making it a singleton.
When we start, we send the “go!” message to the Driver actor that is defined on the next slide. This starts the asynchronous message passing.
The “!” is the message send method (stolen from Erlang).

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

import shapes._
import akka.actor._
import com.typesafe.config._

object Driver {
 def main(args:Array[String])={
 val sys = ActorSystem(…)
 val driver=sys.actorOf[Driver]
 val drawer=sys.actorOf[Drawer]
 driver ! Start(drawer)
 }
}
…

111

Singleton for main

Instantiate
actorsSend a message to

start the actors

Thursday, July 23, 15
Here’s the driver actor. It is declared as an “object” not a class, making it a singleton.
When we start, we send the “go!” message to the Driver actor that is defined on the next slide. This starts the asynchronous message passing.
The “!” is the message send method (stolen from Erlang).

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

…
class Driver extends Actor {
 var drawer: Option[Drawer] =
 None

 def receive = {
 …
 }
}

112

Companion class

Thursday, July 23, 15
Here’s the driver actor “companion class” for the object on the previous slide that held main.
Normally, you would not do such synchronous call and response coding, if avoidable, as it defeats the purpose of using actors for concurrency.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

def receive = {
 case Start(d) =>
 drawer = Some(d)
 d ! Circle(Point(…),…)
 d ! Rectangle(…)
 d ! 3.14159
 d ! "exit"
 case "good bye!" =>
 println("<- cleaning up…")
 context.system.shutdown()
 case other =>
 println("<- " + other)
}

113

sent by
drawer

sent by
driver

Thursday, July 23, 15
Here’s the driver actor, a scala script (precompilation not required) to drive the drawing actor.
Normally, you would not do such synchronous call and response coding, if avoidable, as it defeats the purpose of using actors for concurrency.

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

-> drawing: Circle(Point(0.0,0.0),1.0)
-> drawing: Rectangle(Point(0.0,0.0),
2.0,5.0)
-> Error: 3.14159
-> exiting...
<- Shape drawn.
<- Shape drawn.
<- Unknown: 3.14159
<- cleaning up...

114

“<-” and “->” messages
may be interleaved.

 d ! Circle(Point(…),…)
 d ! Rectangle(…)
 d ! 3.14159
 d ! "exit"

Thursday, July 23, 15
Note that the -> messages will always be in the same order and the <- will always be in the same order, but the two groups may be interleaved!!

Copyright	 ©	 2009-‐2013,	 Dean	 Wampler,	 All	 Rights	 Reserved

…
// Drawing.receive
receive = {
 case s:Shape =>
 s.draw()
 self.reply("…")

 case …
 case …
}

Functional-style
pattern matching

“Switch” statements are
not (necessarily) evil

Object-
oriented-style
polymorphism

115

Thursday, July 23, 15
The power of combining the best features of FP (pattern matching and “destructuring”) and OOP (polymorphic behavior).

Modifying
Existing
Behavior
with Traits

116

Thursday, July 23, 15

Example

trait Queue[T] {
 def get(): T
 def put(t: T)
}

A pure abstraction (in this case...)
117

Thursday, July 23, 15
A very simple abstraction for a Queue.

Log put
trait QueueLogging[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 println("put("+t+")")
 super.put(t)
 }
}

118

Thursday, July 23, 15
(We’re ignoring “get”…) “Super” is not yet bound, because the “super.put(t)” so far could only call the abstract method in Logging, which is not allowed. Therefore, “super” will be bound
“later”, as we’ll so. So, this method is STILL abstract and it’s going to override a concrete “put” “real soon now”.

Log put
trait QueueLogging[T]
 extends Queue[T] {
 abstract override def put(
 t: T) = {
 println("put("+t+")")
 super.put(t)
 }
}

What is super bound to??

119

Thursday, July 23, 15
(We’re ignoring “get”…) “Super” is not yet bound, because the “super.put(t)” so far could only call the abstract method in Logging, which is not allowed. Therefore, “super” will be bound
“later”, as we’ll so. So, this method is STILL abstract and it’s going to override a concrete “put” “real soon now”.

class StandardQueue[T]
 extends Queue[T] {
 import ...ArrayBuffer
 private val ab =
 new ArrayBuffer[T]
 def put(t: T) = ab += t
 def get() = ab.remove(0)
 …
}

Concrete (boring) implementation
120

Thursday, July 23, 15
Our concrete class. We import scala.collection.mutable.ArrayBuffer wherever we want, in this case, right were it’s used. This is boring; it’s just a vehicle for the cool traits stuff...

val sq = new StandardQueue[Int]
 with QueueLogging[Int]

sq.put(10) // #1
println(sq.get()) // #2
// => put(10) (on #1)
// => 10 (on #2)

Example use
121

Thursday, July 23, 15
We instantiate StandardQueue AND mixin the trait. We could also declare a class that mixes in the trait.
The “put(10)” output comes from QueueLogging.put. So “super” is StandardQueue.

val sq = new StandardQueue[Int]
 with QueueLogging[Int]

sq.put(10) // #1
println(sq.get()) // #2
// => put(10) (on #1)
// => 10 (on #2)

Mixin composition;
no class required

122

Example use
Thursday, July 23, 15
We instantiate StandardQueue AND mixin the trait. We could also declare a class that mixes in the trait.
The “put(10)” output comes from QueueLogging.put. So “super” is StandardQueue.

Traits are a powerful
composition
mechanism!

123

Thursday, July 23, 15
Not shown, nesting of traits...

For
Comprehensions

124

Thursday, July 23, 15

val l = List(
 Some("a"), None, Some("b"),
 None, Some("c"))

for (Some(s) <- l) yield s
// List(a, b, c)

125

No if statement

Pattern match; only
take elements of l that

are Somes.

For “Comprehensions”

Thursday, July 23, 15
We’re using the type system and pattern matching built into case classes to discriminate elements in the list. No conditional statements required.
This is just the tip of the iceberg of what “for comprehensions” can do and not only with Options, but other containers, too.

val l = List(
 Some("a"), None, Some("b"),
 None, Some("c"))

for (o <- l; x <- o) yield x
// List(a, b, c)

126

Second clause extracts
from option; Nones

dropped

Equivalent to this:

Thursday, July 23, 15
We’re using the type system and pattern matching built into case classes to discriminate elements in the list. No conditional statements required.
This is just the tip of the iceberg of what “for comprehensions” can do and not only with Options, but other containers, too.

Building
Our Own
Controls

127

DSLs Using First-Class Functions

Thursday, July 23, 15

also the same as

"hello" + "world"
"hello".+("world")

Recall Infix Operator
Notation:

Why is using {...} useful??

"hello".+{"world"}

128

Thursday, July 23, 15
Syntactic sugar: obj.operation(arg) == obj operation arg

// Print with line numbers.

loop (new File("…")) {
 (n, line) =>

 format("%3d: %s\n", n, line)
}

Make your own
controls

129

Thursday, July 23, 15
If I put the “(n, line) =>” on the same line as the “{“, it would look like a Ruby block.

// Print with line numbers.

loop (new File("…")) {
 (n, line) =>

 format("%3d: %s\n", n, line)
}

Make your own
controls

control?

How do we do this?

File to loop through

what do for each line

Arguments passed to...

130

Thursday, July 23, 15

 1: // Print with line …
 2:
 3:
 4: loop(new File("…")) {
 5: (n, line) =>
 6:
 7: format("%3d: %s\n", …
 8: }

Output on itself:

131

Thursday, July 23, 15

import java.io._

object Loop {

 def loop(file: File,
 f: (Int,String) => Unit) =
 {…}
}

132

Thursday, July 23, 15
Here’s the code that implements loop...

import java.io._

object Loop {

 def loop(file: File,
 f: (Int,String) => Unit) =
 {…}
}

_ like * in Java

“singleton” class == 1 object

loop “control”

function taking line # and line

two parameters

like “void”

133

Thursday, July 23, 15
Singleton “objects” replace Java statics (or Ruby class methods and attributes). As written, “loop” takes two parameters, the file to “numberate” and a the function that takes the line number
and the corresponding line, does something, and returns Unit. User’s specify what to do through “f”.

object Loop {

 def loop(file: File,
 f: (Int,String) => Unit) =
 {…}
}

two parameters

134

loop (new File("…")) {
 (n, line) => …
}

Thursday, July 23, 15
The oval highlights the comma separating the two parameters in the list. Watch what we do on the next slide...

object Loop {

 def loop(file: File) (
 f: (Int,String) => Unit) =
 {…}
}

two parameters lists

135

loop (new File("…")) {
 (n, line) => …
}

Thursday, July 23, 15
We convert the single, two parameter list to two, single parameter lists, which is valid syntax.

// Print with line numbers.
import Loop.loop

loop (new File("…")) {
 (n, line) =>

 format("%3d: %s\n", n, line)
}

Why 2 Param. Lists?

2nd parameter: a function literal

import

1st param.:
a file

136

Thursday, July 23, 15
Having two, single-item parameter lists, rather than one, two-item list, is necessary to allow the syntax shown here. The first parameter list is (file), while the second is {function literal}.
Note that we have to import the loop method (like a static import in Java). Otherwise, we could write Loop.loop.

object Loop {
 def loop(file: File) (
 f: (Int,String) => Unit) =
 {
 val reader =
 new BufferedReader(
 new FileReader(file))
 def doLoop(i:Int) = {…}
 doLoop(1)
 }
}

Finishing Numberator...
137

nested method

Thursday, July 23, 15
Finishing the implementation, loop creates a buffered reader, then calls a recursive, nested method "doLoop".

object Loop {
 …
 def doLoop(n: Int):Unit ={
 val l = reader.readLine()
 if (l != null) {
 f(n, l)
 doLoop(n+1)
 }
 }
}

138

Finishing Numberator...

f and reader visible
from outer scope

recursive

Thursday, July 23, 15
Here is the nested method, doLoop.

doLoop is recursive.
There is no mutable

loop counter!

A goal of Functional Programming
139

Thursday, July 23, 15

def doLoop(n: Int):Unit ={
 …
 doLoop(n+1)
}

140

Scala optimizes tail
recursion into loops

It is Tail Recursive

Thursday, July 23, 15
A tail recursion - the recursive call is the last thing done in the function (or branch).

Functions
with

Mutable
State

141

Thursday, July 23, 15

Since functions
are objects,

 they could have
mutable state.

142

Thursday, July 23, 15

143

class Counter[A](val inc:Int =1)
 extends Function1[A,A] {
 var count = 0
 def apply(a:A) = {
 count += inc
 a // return input
 }
}
val f = new Counter[String](2)
val l1 = "a" :: "b" :: Nil
val l2 = l1 map {s => f(s)}
println(f.count) // 4
println(l2) // List("a","b")

Thursday, July 23, 15
Our functions can have state! Not the usual thing for FP-style functions, where functions are usually side-effect free, but you have this option. Note that this is like a normal closure in FP.

