
Dean Wampler
Data Data Texas, Jan. 28, 2023
dean@deanwampler.com
@deanwampler
@discuss.systems@deanwampler
deanwampler.com/talks
ray.io

Reinforcement Learning with Ray RLlib

© Dean Wampler, 2022-2023, except where noted. Photos from the Wind River Range, Grand Teton NP, and Yellowstone NP, Wyoming

mailto:dean@deanwampler.com
https://twitter.com/deanwampler
https://discuss.systems/@deanwampler
http://deanwampler.com/talks
https://ray.io

Engineering Director,
Accelerated Discovery Platform
dean.wampler@ibm.com

https://research.ibm.com/blog/what-is-
accelerated-discovery

https://time.com/6249784/quantum-
computing-revolution/

Dean Wampler

https://research.ibm.com/blog/what-is-accelerated-discovery

mailto:dean.wampler@ibm.com?subject=Tell%20me%20about%20IBM%20Research%20and%20the%20Accelerated%20Discovery%20Platform
https://research.ibm.com/blog/what-is-accelerated-discovery
https://research.ibm.com/blog/what-is-accelerated-discovery
https://time.com/6249784/quantum-computing-revolution/
https://time.com/6249784/quantum-computing-revolution/

● Why Reinforcement Learning?
● Ray RLlib
○ Aside: Why Ray?
● More Reinforcement Learning Concepts and Challenges
● Reinforcement Learning for Recommendations
● To Learn More…

Outline

Why Reinforcement Learning?

https://www.youtube.com/watch?v=Lu56xVlZ40M

https://www.youtube.com/watch?v=Lu56xVlZ40M

EnvironmentAgent

Actions

Observations

Rewards

The Agent choses an Action, then
Observes any changes to the
Environment and a Reward received, if
any.

Through repeated steps like this, the
Agent learns a Policy for maximizing the
cumulative Reward.

Each sequence is an Episode. It takes
many Episodes to learn a good Policy.

Labeled
Data
x = y

Training Model

New, Unlabeled
Data
x’ = ?

y’

Supervised Learning

EnvironmentAgent

Actions

Observations

Rewards

Compared to
Supervised Learning

EnvironmentAgent

Actions

Observations

Rewards

Unlabeled
Data

x

K-Means,
…

Structure

Unsupervised Learning

Compared to
Unsupervised Learning

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications AlphaGo, Atari, OpenAI Gym/
Gymnasium, …

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications Autonomous vehicles, N-pedal
robots, pick and place robots, …

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications Assembly lines, warehouse and
delivery routing, …

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications HVAC optimization, networks,
business processes, …

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications Better recommendations, ad
placements, …

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications Market trends, timing of trades,
…

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications ChatGPT!
https://openai.com/blog/chatgpt/

https://openai.com/blog/chatgpt/

EnvironmentAgent

Actions

Observations

Rewards

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles

RL Applications ChatGPT!
https://openai.com/blog/chatgpt/

Common Theme:

All involve sequential, evolving state in
the environment + agent.

Some systems have rewards at each step,
some only at the end!

https://openai.com/blog/chatgpt/

AlphaGo (Silver et al. 2016)
● Observations:
○ board state

● Actions:
○ where to place the stones

● Rewards:
○ 1 if you win
○ 0 otherwise

EnvironmentAgent

Actions

Observations

Rewards

AlphaGo example

Deep Reinforcement Learning

Ray RLlib

rllib.io

http://rllib.io

To Try It Out…

Install what we need:

$ pip install "ray[rllib]" tensorflow \

 tensorflow-probability pygame

Train CartPole using DQN, stop after 100 iterations:

At end, will print the next command to run:

$ rllib train --algo DQN --env 'CartPole-v1' \

 --stop '{"training_iteration": 100}'

Run CartPole and see how well it goes:

$ rllib evaluate /path/to/checkpoint --algo DQN

To Try It Out…

To Try It Out…

Example episode after
training.

To Try It Out…

Training n=50 episodes
with PPO. Max score is
500. Note that the

average actually dips
above 20 episodes.

Probably overfitting?

RLlib Takeaways

● Rich set of RL algorithms
○ … and features for building your own.
● Integrated with OpenAI Gym/Gymnasium
○ … and you can build your own environments.
● Integrated with PyTorch and TensorFlow.
● Excellent performance… from Ray!

Aside: Why Ray??

To Major Trends

U
sa

ge
 %

 2012 2014 2016 2018. 2020Time

 0

 5

10

15

Hence, there is a
pressing need for a
robust, easy to use

Python-centric
distributed

computing system

Model sizes and therefore
compute requirements

outstripping Moore’s Law

Moore’s Law/Denard Scaling

 (2x every two years)

35x every tw
o years!

GPU
CPU

Python growth driven by
ML/AI and other data

science workloads

2013 2014 2015 2016 2017 2018 2019

https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/

HPO Tuning

The Data & ML Landscape Today

27

Training Model
Serving

StreamingETL

All require distributed
implementations to scale

Simulation

HPO Tuning

The Ray Vision: Sharing a Common Framework

28

Training Model
Serving

StreamingETL Simulation

Domain-specific
libraries for each

subsystem

Ray
Tune

Ray
Train

Ray
Serve

Ray
RLlib

Ray
Data

Framework for
distributed Python (and

other languages…)

Plus a growing list of
3rd-party libraries

29

Diverse Compute Requirements Motivated Creation of Ray!

Neural network
“stuff”

And repeated play,
over and over again,
to train for achieving

the best reward

EnvironmentAgent

Actions

Observations

Rewards

Complex agent?

Simulator (game
engine, robot sim,

factory floor sim…)

More Reinforcement
Learning Concepts
and Challenges

Exploitation
vs.
Exploration

What if the agent finds an action with a
good short-term reward? Should it keep
exploiting it?

Or, should it explore other actions, in case
even better options exist?

EnvironmentAgent

Actions

Observations

Rewards

The “Exploitation vs.
Exploration Tradeoff”

What Makes a
Good Reward?

Games often only provide a reward at
the end of the episode - win or lose.

What about intermediate rewards?

EnvironmentAgent

Actions

Observations

Rewards

Crafting rewards is hard.
Intermediate rewards can lead

to greedy optimization and
local optima rather than the
desired global optima - the

cumulative reward.

Environments
and Offline RL

What if you want to train a system for optimizing a
chemical plant?

You can’t let a naïve policy drive your plant while it
learns!! The plant might be too complex to simulate, too.
The higher the stakes, the greater the fidelity required.

However, since the environment “generates” data in
normal RL, what about using historical data, instead?

EnvironmentAgent

Actions

Observations

Rewards

Offline RL works with
historical data instead of

interacting with the
environment.

Reinforcement Learning
for Recommendations
and Ad Placements

● You bought a toilet brush.
○ Do you want to keep seeing ads for toilet

brushes?
● You’ve watched five action movies in a row.
○ Do you want to watch a sixth action

movie or maybe something else for a
change?

Preferences Change…

EnvironmentAgent

Actions

Observations

Rewards

Preferences Change…

EnvironmentAgent

Actions

Observations

Rewards

● How have your interests changed
because of:
○ the weather
○ the economy
○ local, national, or world affairs
○ ???

RL for recommendations/ads
helps with evolving

preferences.

Considerations

EnvironmentAgent

Actions

Observations

Rewards

○ RL is less able to scale to large state
spaces (e.g., all available movies
catalog items).

○ Traditional supervised learning
methods are more scalable.

Real recommendation and ad
systems must combine

approaches; use RL once a subset
of the state space is identified

using a “classic” supervised
learning approach.

Considerations

EnvironmentAgent

Actions

Observations

Rewards

○ A simulator is used to model real
user behavior. (Training with real
users doesn’t scale well, etc.)

Or use offline RL with
historical data about user

behavior!

Considerations

EnvironmentAgent

Actions

Observations

Rewards

○ What is the reward? Some
combination of user happiness
measures?

○ Could be very specific to the sub-genre
of entertainment or product category.

Reward calculation balances
mixed preferences & tradeoffs
as they evolve in response to

use actions.

Dean Wampler
January 28, 2023
dean@deanwampler.com
@deanwampler
@discuss.systems@deanwampler
deanwampler.com/talks

To Learn More…

● rllib.io & ray.io
● Anyscale RL & RLlib course:
○ https://applied-rl-course.netlify.app/en
● More resources in the extra slides!

mailto:dean@deanwampler.com
https://twitter.com/deanwampler
https://discuss.systems/@deanwampler
http://deanwampler.com/talks
http://rllib.io
http://ray.io
https://applied-rl-course.netlify.app/en

Extra
Material

To Learn More…
● Courses
○ Hugging Face RL course https://huggingface.co/deep-rl-course/
○ Delta Academy https://delta-academy.xyz/
○ Fast Deep RL https://courses.dibya.online/p/fastdeeprl
○ Coursera RL Specialization from U of A https://www.coursera.org/specializations/reinforcement-learning
○ Udacity RL coursehttps://www.udacity.com/course/reinforcement-learning--ud600

● Video lectures
○ David Silver's lectures https://www.davidsilver.uk/teaching/
○ Sergey Levine's lectures http://rail.eecs.berkeley.edu/deeprlcourse/

● Books
○ Sutton & Barto http://incompleteideas.net/book/the-book-2nd.html (considered the definitive RL book)
○ Deep RL Hands-On https://www.packtpub.com/product/deep-reinforcement-learning-hands-on-second-

edition/9781838826994
● Other
○ Spinning Up https://spinningup.openai.com/en/latest/ (a well-known resource for RL)

https://huggingface.co/deep-rl-course/
https://delta-academy.xyz/
https://courses.dibya.online/p/fastdeeprl
https://www.coursera.org/specializations/reinforcement-learning
coursehttps://www.udacity.com/course/reinforcement-learning--ud600
https://www.davidsilver.uk/teaching/
http://rail.eecs.berkeley.edu/deeprlcourse/
http://incompleteideas.net/book/the-book-2nd.html
https://www.packtpub.com/product/deep-reinforcement-learning-hands-on-second-edition/9781838826994
https://www.packtpub.com/product/deep-reinforcement-learning-hands-on-second-edition/9781838826994
https://www.packtpub.com/product/deep-reinforcement-learning-hands-on-second-edition/9781838826994
https://spinningup.openai.com/en/latest/

https://twitter.com/hardmaru/status/1597950795361660928

Another example of why RL;
how else are you going to train your new puppy?

https://twitter.com/hardmaru/status/1597950795361660928

More about RLlib

Industrial

Processes

System
Optimization

Advertising,

Recommendations FinanceGames

Robotics,

Autonomous

Vehicles
RL applications

OpenAI

Gym

Multi-agent/
Hierarchical

Policy
Serving

Offline

Data (3) Application Support}

(2) Abstractions for RL}
Custom Algorithms RLlib Algorithms

RLlib Abstractions

Ray Tasks and Actors (1) Distributed Execution}

Architecture of RLlib

● gradient-free
○ Augmented Random Search (ARS)
○ Evolution Strategies

● Multi-agent specific
○ QMIX Monotonic Value Factorisation

(QMIX, VDN, IQN)

● Offline
○ Advantage Re-Weighted Imitation Learning

(MARWIL)

● High-throughput architectures
○ Distributed Prioritized Experience Replay (Ape-X)
○ Importance Weighted Actor-Learner Architecture (IMPALA)
○ Asynchronous Proximal Policy Optimization (APPO)

● Gradient-based
○ Soft Actor-Critic (SAC)
○ Advantage Actor-Critic (A2C, A3C)
○ Deep Deterministic Policy Gradients (DDPG, TD3)
○ Deep Q Networks (DQN, Rainbow, Parametric DQN)
○ Policy Gradients
○ Proximal Policy Optimization (PPO)

Some Algorithms in RLlib

https://ray.readthedocs.io/en/latest/rllib-algorithms.html#augmented-random-search-ars
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#evolution-strategies
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#distributed-prioritized-experience-replay-ape-x
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#importance-weighted-actor-learner-architecture-impala
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#asynchronous-proximal-policy-optimization-appo
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#soft-actor-critic-sac
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-actor-critic-a2c-a3c
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#policy-gradients
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#proximal-policy-optimization-ppo

Available in AWS and Azure

Distributed PPO

Evolution
Strategies

Ape-X Distributed
DQN, DDPG

Excellent Performance vs. “Hand-tuned” Implementations

Quick Intro to the Ray API

API - Designed to Be Intuitive and Concise

50

Functions -> Tasks

def make_array(…):

 a = … # Construct a NumPy array

 return a

def add_arrays(a, b):

 return np.add(a, b)
 The Python you

already know…

51

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

import ray

import numpy as np

ray.init()

API - Designed to Be Intuitive and Concise

Functions -> Tasks For completeness, add these first:

Now these functions
are remote “tasks"

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

52

API - Designed to Be Intuitive and Concise

make_array

ref1

Functions -> Tasks

53

API - Designed to Be Intuitive and Concise

make_array

ref1

make_array

ref2

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

Functions -> Tasks

54

API - Designed to Be Intuitive and Concise

make_array make_array

ref2

add_arrays

ref3

ref1

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

Functions -> Tasks

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

ray.get(ref3)

55

Ray handles sequencing
of async dependencies

Ray handles extracting the
arrays from the object refs

API - Designed to Be Intuitive and Concise

Functions -> Tasks

make_array make_array

ref2

add_arrays

ref3

ref1

56

API - Designed to Be Intuitive and Concise

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

ray.get(ref3)

Functions -> Tasks

What about
distributed

state?

57

API - Designed to Be Intuitive and Concise

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

ray.get(ref3)

Functions -> Tasks

class Counter(object):

 def __init__(self):

 self.value = 0

 def increment(self):

 self.value += 1

 return self.value

Classes -> Actors

The Python
classes you

love…

@ray.remote

class Counter(object):

 def __init__(self):

 self.value = 0

 def increment(self):

 self.value += 1

 return self.value

 def get_count(self):

 return self.value

58

API - Designed to Be Intuitive and Concise

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

ray.get(ref3)

Functions -> Tasks Classes -> Actors

You need a
“getter” method
to read the state.

… now a remote
“actor”

@ray.remote

class Counter(object):

 def __init__(self):

 self.value = 0

 def increment(self):

 self.value += 1

 return self.value

 def get_count(self):

 return self.value

c = Counter.remote()

ref4 = c.increment.remote()

ref5 = c.increment.remote()

ray.get([ref4, ref5]) # [1, 2]

Classes -> Actors

59

API - Designed to Be Intuitive and Concise

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

ray.get(ref3)

Functions -> Tasks

@ray.remote(num_gpus=1)

class Counter(object):

 def __init__(self):

 self.value = 0

 def increment(self):

 self.value += 1

 return self.value

 def get_count(self):

 return self.value

c = Counter.remote()

ref4 = c.increment.remote()

ref5 = c.increment.remote()

ray.get([ref4, ref5]) # [1, 2]

Classes -> Actors

60

API - Designed to Be Intuitive and Concise

@ray.remote

def make_array(…):

 a = … # Construct a NumPy array

 return a

@ray.remote

def add_arrays(a, b):

 return np.add(a, b)

ref1 = make_array.remote(…)

ref2 = make_array.remote(…)

ref3 = add_arrays.remote(ref1, ref2)

ray.get(ref3)

Functions -> Tasks

Optional
configuration
specifications

Other Uses of Ray: Microservices

What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

What we mostly care
about for today’s talk, the

“Ops in DevOps”

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Conway’s Law - Embraced

● “Any organization that designs a
system will produce a design whose
structure is a copy of the
organization's communication
structure”

● Let each team own and manage the
services for its part of the domain

en.wikipedia.org/wiki/Conway's_law

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

https://en.wikipedia.org/wiki/Conway's_law

Separate Responsibilities

● Each microservice does “one
thing”, a single responsibility
with minimal coupling to the
other microservices

● (Like, hopefully, the teams are
organized, too…)

wikipedia.org/wiki/Single-responsibility_principle

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

https://en.wikipedia.org/wiki/Single-responsibility_principle

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Separate Management

● Each team manages its own
instances

● Each microservice has a
different number of instances
for scalability and resiliency

● But they have to be managed
explicitly

µ-service 1µ-service 1 µ-service 2µ-service 2

µ-service 3

Management - Simplified

● With Ray, you have one
“logical” instance to manage
and Ray does the cluster-
wide scaling for you.

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

Node Node

Node

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

What about Kubernetes (and others…)?

● Ray scaling is very fine grained.
● It operates within the “nodes” of

coarse-grained managers
● Containers, pods, VMs, or

physical machines

Hyper Parameter Tuning with Ray Tune

Hyperparameter Tuning - Ray Tune

70

HPO Tuning Training Model
Serving

StreamingETL Simulation

Domain-specific
libraries for each

subsystem

Ray
Tune

Ray
Train

Ray
Serve

Ray
RLlib

Ray
Data

Framework for
distributed Python (and

other languages…)

What Is Hyperparameter Tuning?

Trivial example:
● What’s the best value for “k” in k-

means??
● k is a “hyperparameter”
● The resulting clusters are

defined by “parameters”

credit: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

Nontrivial Example - Neural Networks

Every number
shown is a

hyperparameter!

How many layers?

What kinds of layers?

Tune is Built with Deep Learning as a Priority
Resource Aware

Scheduling
Seamless

Distributed Execution

Simple API for
new algorithms

Framework Agnostic

tune.io

http://tune.io

Hyperparameters Are Important for Performance

Why We Need a Framework for Tuning Hyperparameters

Model training is time-
consuming

Resources are expensive

We want the best model

Tuning + Distributed Training

tune.run(PytorchTrainable,
 config={
 "model_creator": PretrainBERT,
 "data_creator": create_data_loader,
 "use_gpu": True,
 "num_replicas": 8,
 "lr": tune.uniform(0.001, 0.1)
 }, 
 num_samples=100,
 search_alg=BayesianOptimization()

)

Native Integration with TensorBoard HParams

