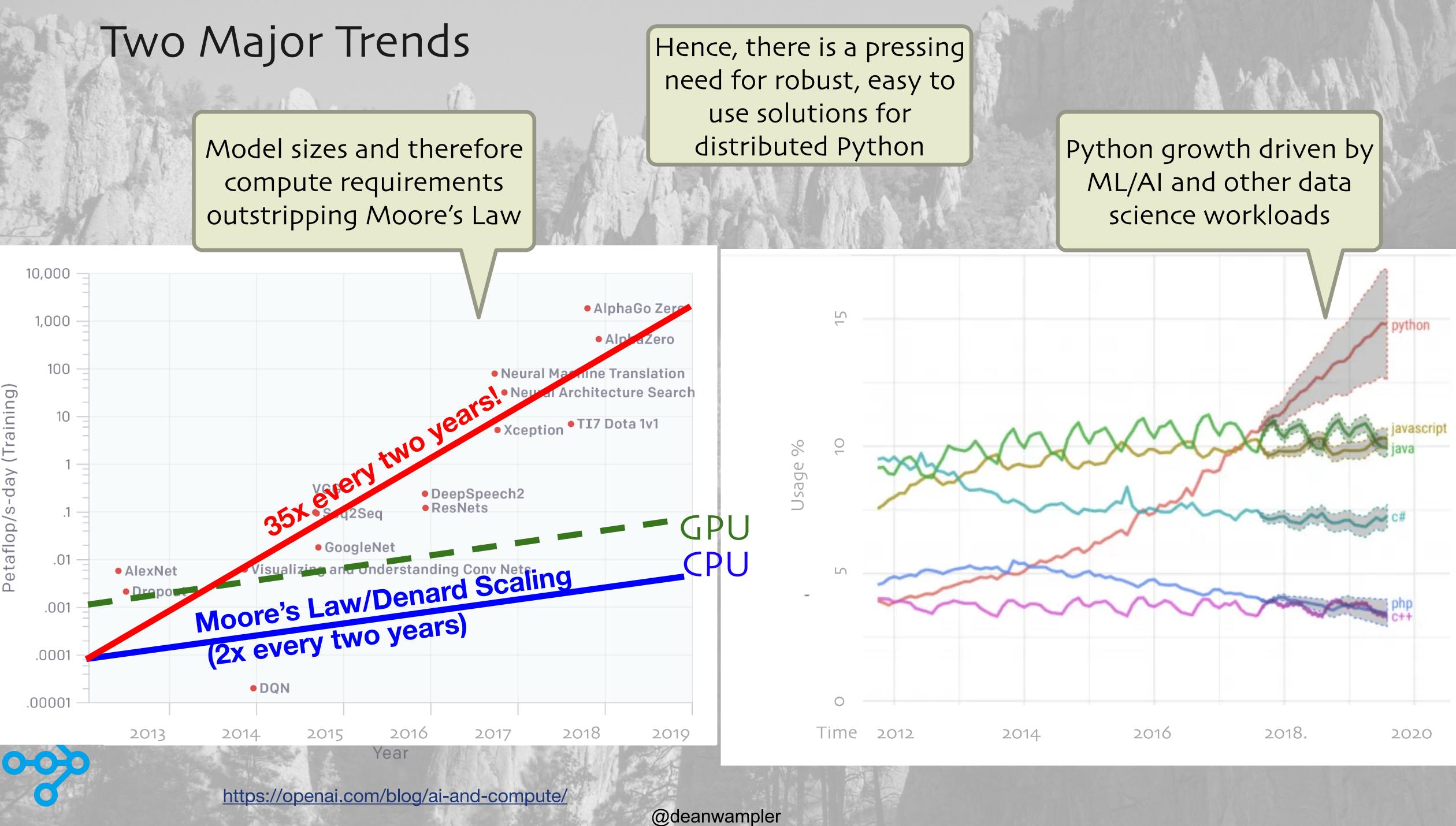
Reinforcement Learning with Ray and RLlib

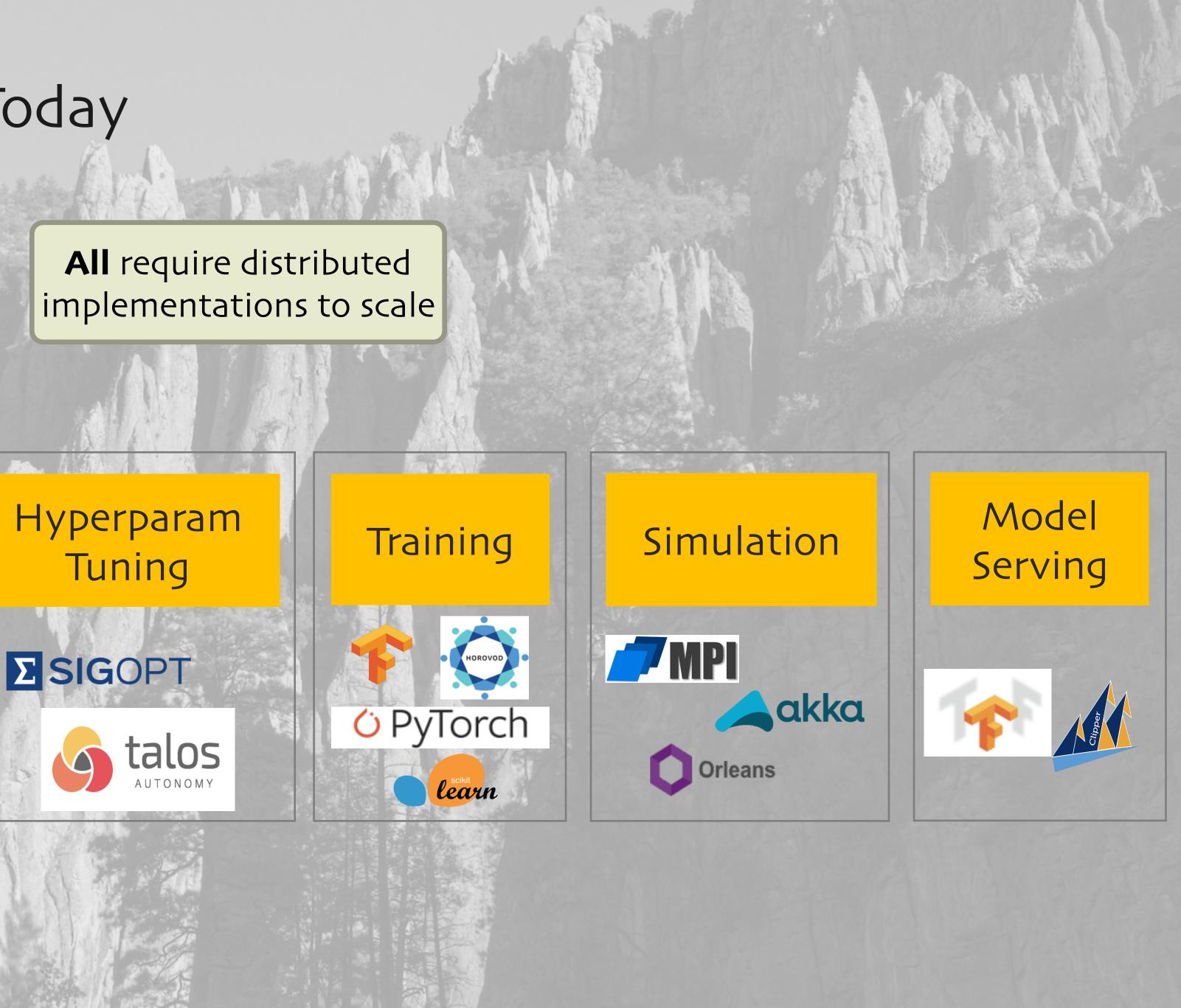
Dean Wampler December 15, 2021 <u>dean@deanwampler.com</u> @deanwampler ray.io <u>deanwampler.com/talks</u>

Why Ray? Why Reinforcement Learning? Ray RLIIb Other Uses of Ray Next steps

Model sizes and therefore compute requirements outstripping Moore's Law



The ML Landscape Today



6

The Ray Vision: Sharing a Common Framework

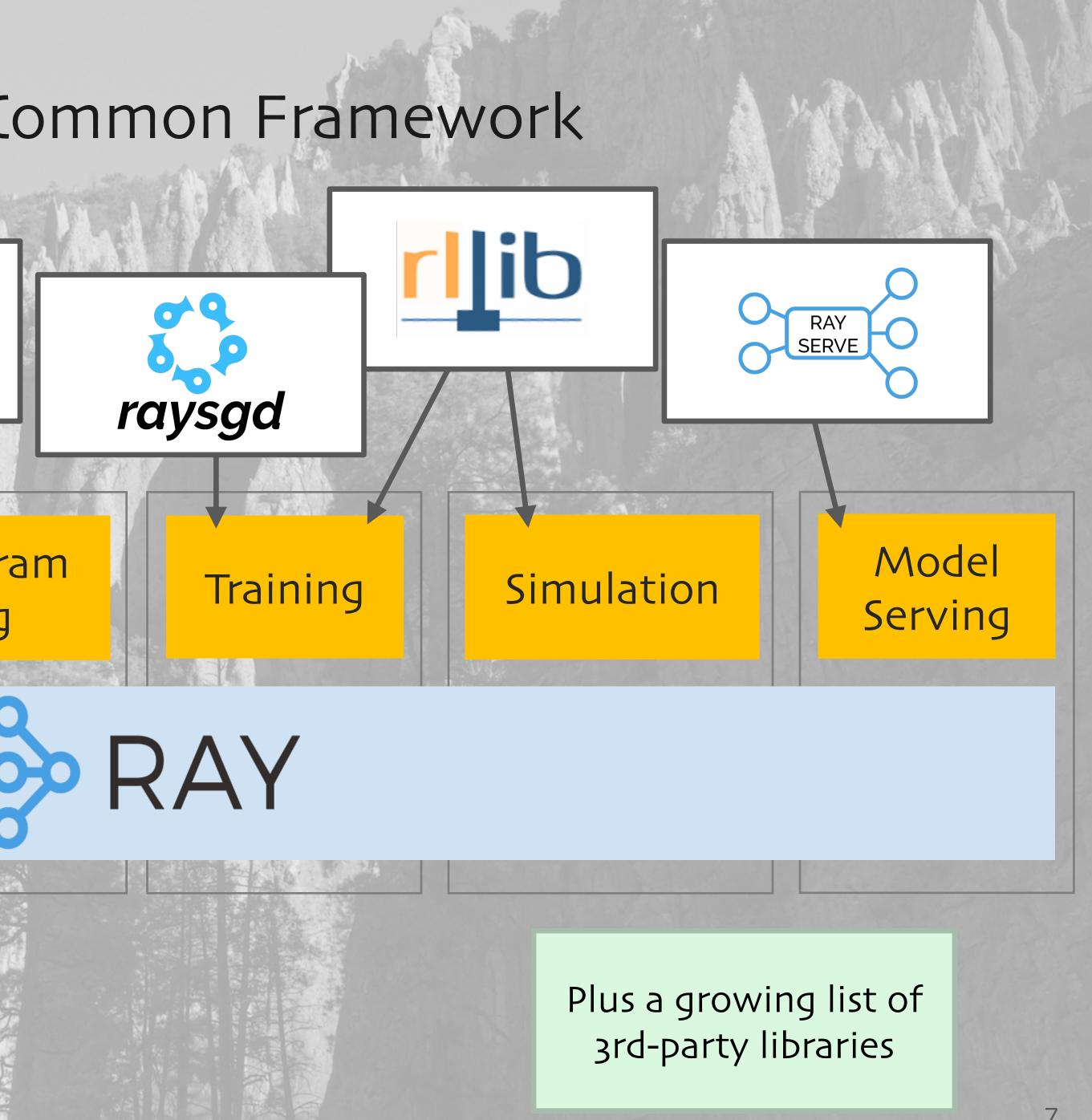
Domain-specific libraries for each subsystem

ETL

Streaming

Hyperparam Tuning

Framework for distributed Python (and other languages...)



Functions -> Tasks

def make_array(...):
 a = ... # Construct a NumPy array
 return a

def add_arrays(a, b):
 return np.add(a, b)

The Python you already know...

Functions -> Tasks

@ray.remote
def make_array(...):
 a = ... # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

For completeness, add these first:

import ray
import numpy as np
ray.init()

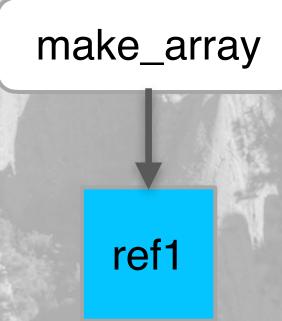
Now these functions are remote "tasks"

Functions -> Tasks

@ray.remote def make_array(...): a = ... # Construct a NumPy array return a

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...)

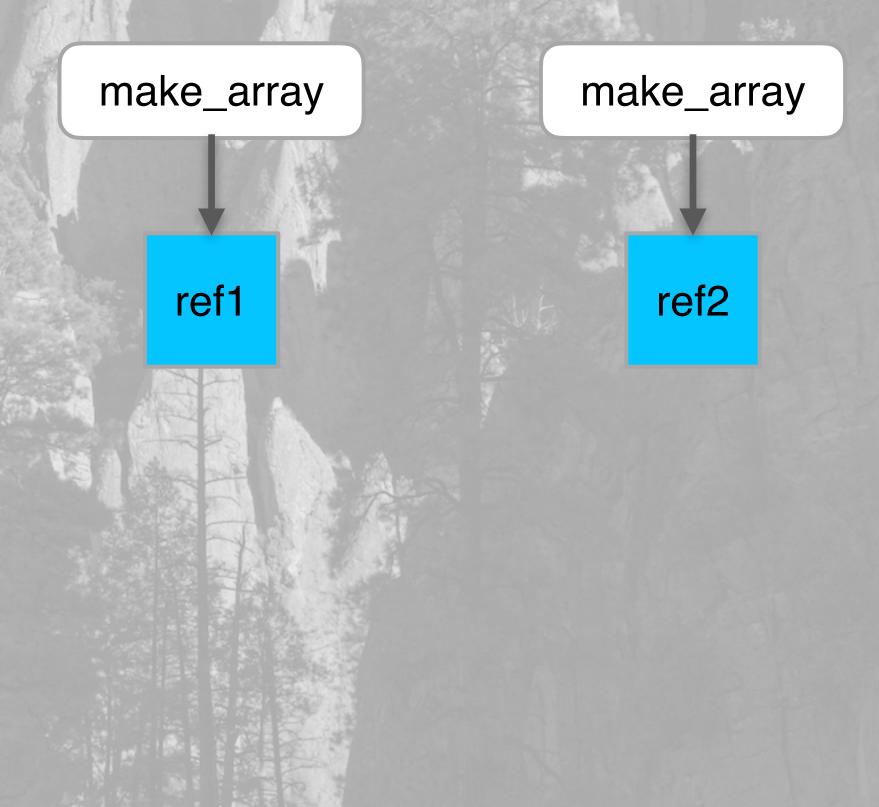


Functions -> Tasks

@ray.remote def make_array(...): a = ... # Construct a NumPy array return a

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...) **ref2** = make_array.remote(...)



@deanwampler

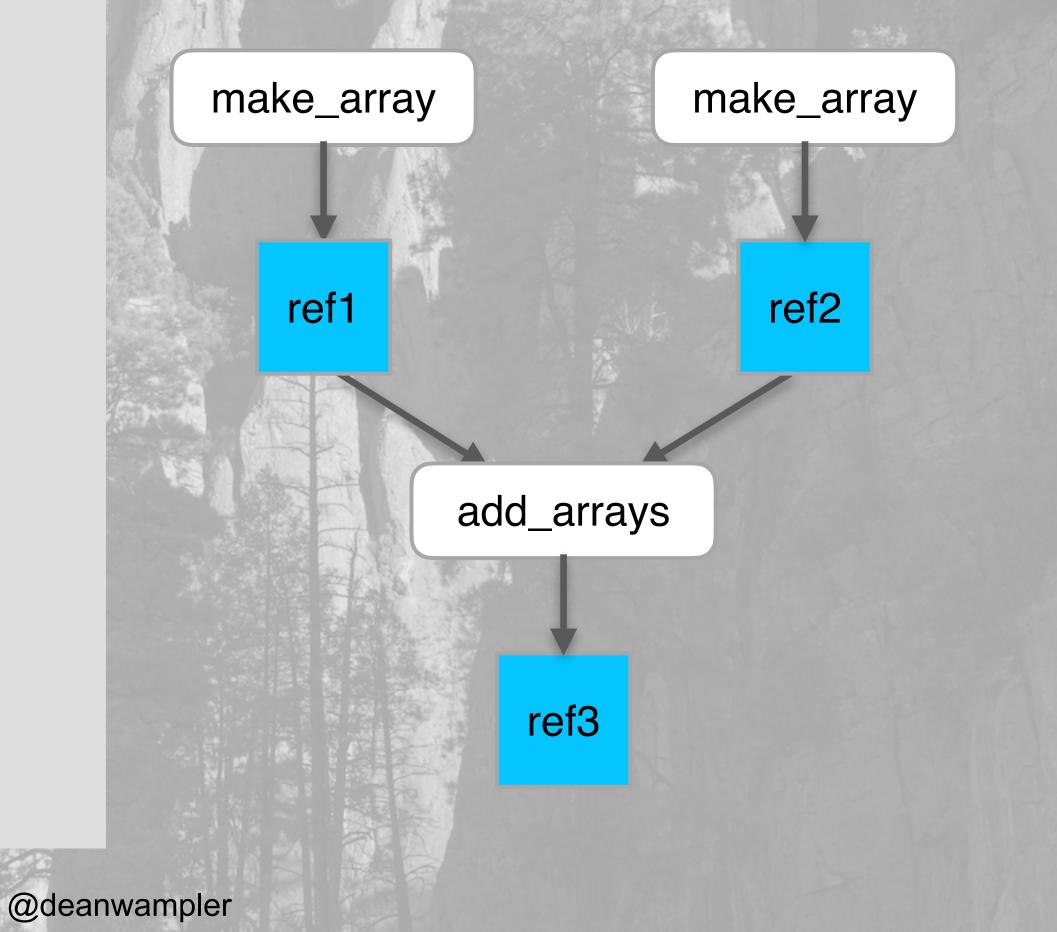
11

Functions -> Tasks

@ray.remote
def make_array(...):
 a = ... # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)



Functions -> Tasks

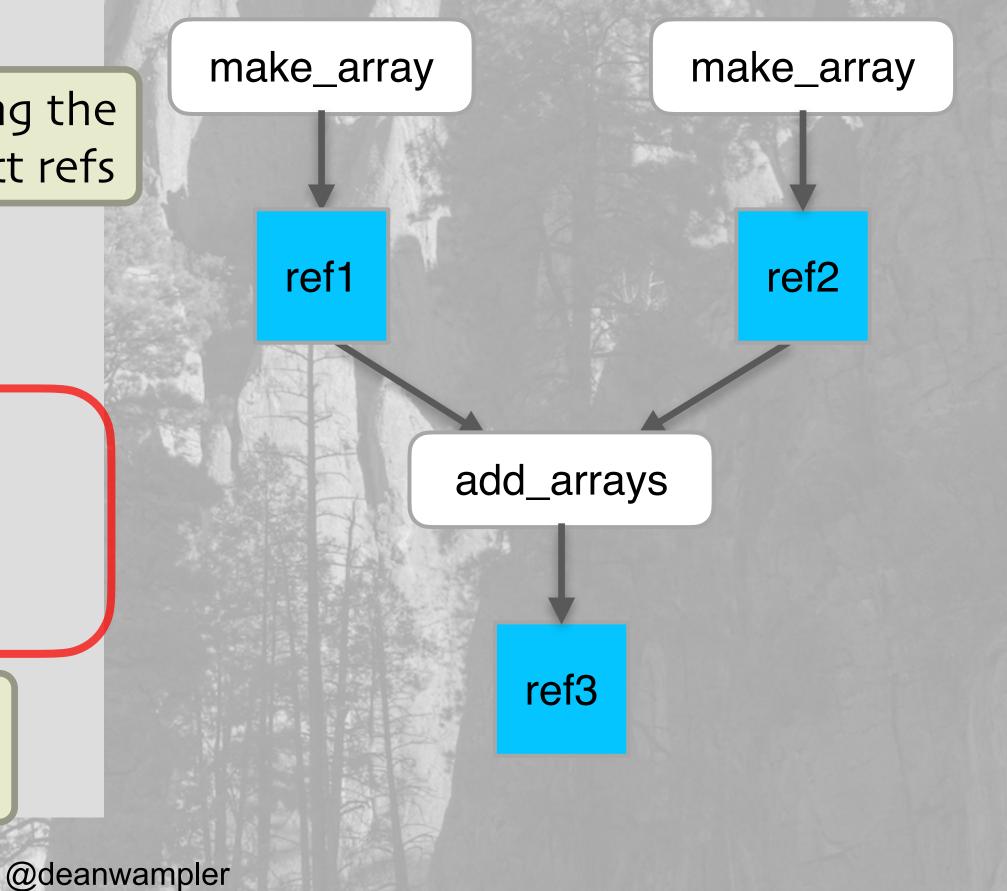
@ray.remote
def make_array(...):
 a = ... # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

Ray handles extracting the arrays from the object refs

ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Ray handles sequencing of async dependencies



Functions -> Tasks

@ray.remote def make_array(...): a = ... # Construct a NumPy array return a

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...) **ref2** = make_array.remote(...) ref3 = add_arrays.remote(ref1, ref2) ray.get(ref3)

What about distributed state?

Functions -> Tasks

@ray.remote
def make_array(...):
 a = ... # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

The Python classes you love...

Classes -> Actors

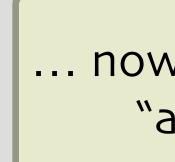
class Counter(object): def __init__(self): self.value = 0 def increment(self): self.value += 1 return self.value

Functions -> Tasks

@ray.remote **def** make_array(...): a = ... # Construct a NumPy array return a

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...) ref2 = make_array.remote(...) **ref3** = add_arrays.remote(**ref1**, **ref2**) ray.get(ref3)



Classes -> Actors

@ray.remote class Counter(object): def ___init___(self): self.value = 0def increment(self): self.value += 1 return self.value def get_count(self): return self.value

... now a remote "actor"

> You need a "getter" method to read the state.

Functions -> Tasks

@ray.remote def make_array(...): a = ... # Construct a NumPy array return a

@ray.remote def add_arrays(a, b): return np.add(a, b)

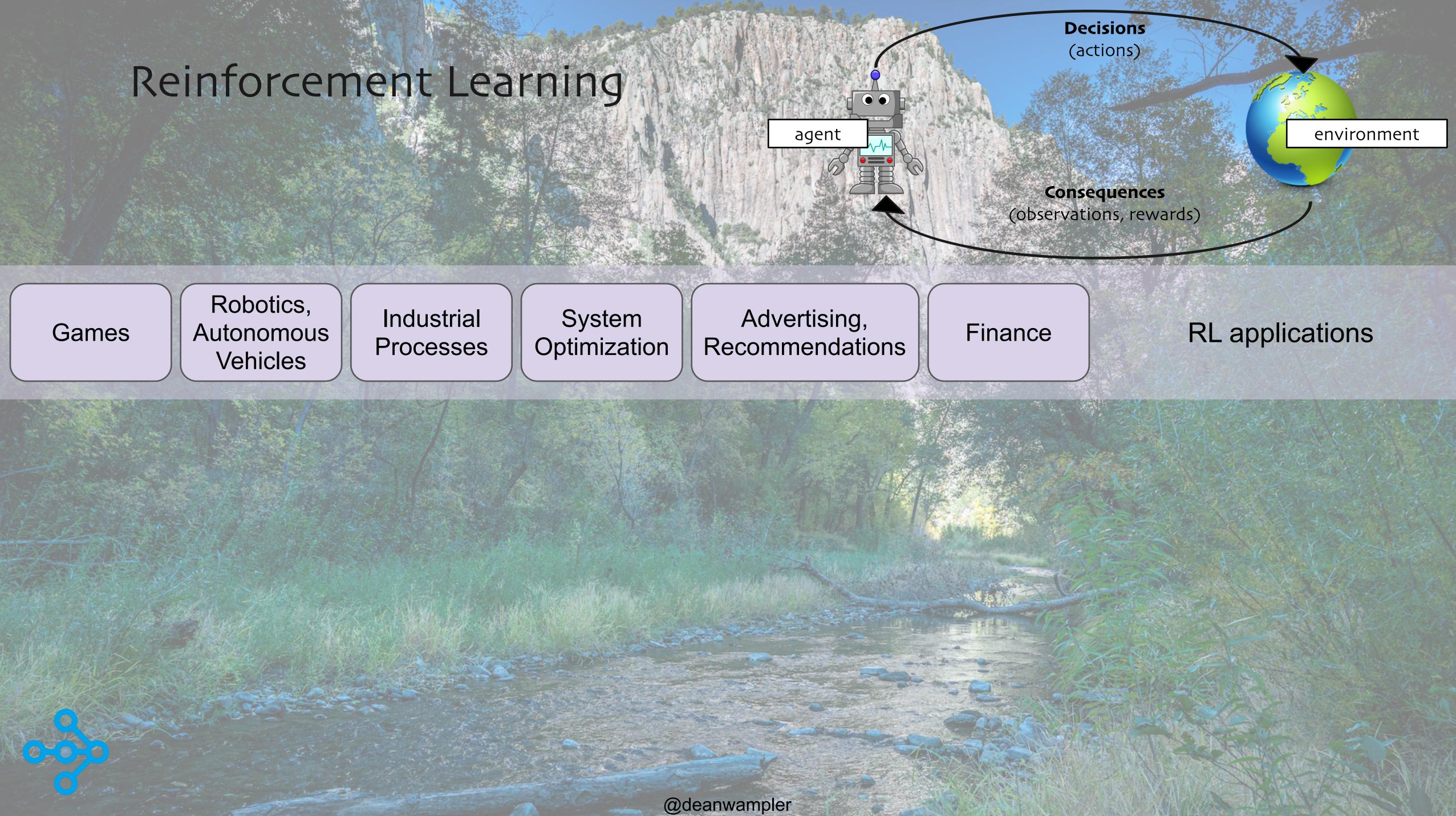
ref1 = make_array.remote(...) ref2 = make_array.remote(...) **ref3** = add_arrays.remote(**ref1**, **ref2**) ray.get(ref3)

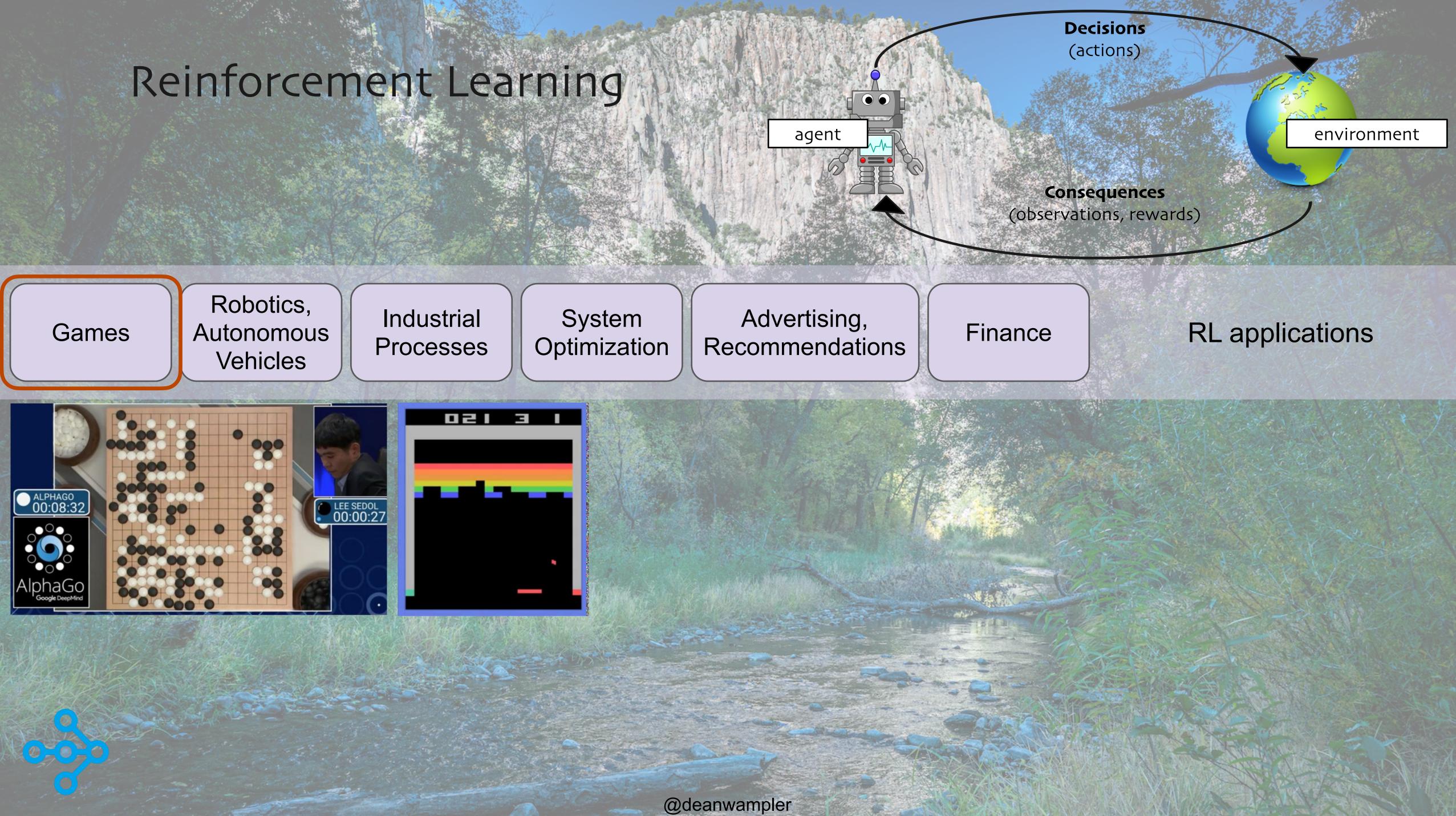
Classes -> Actors

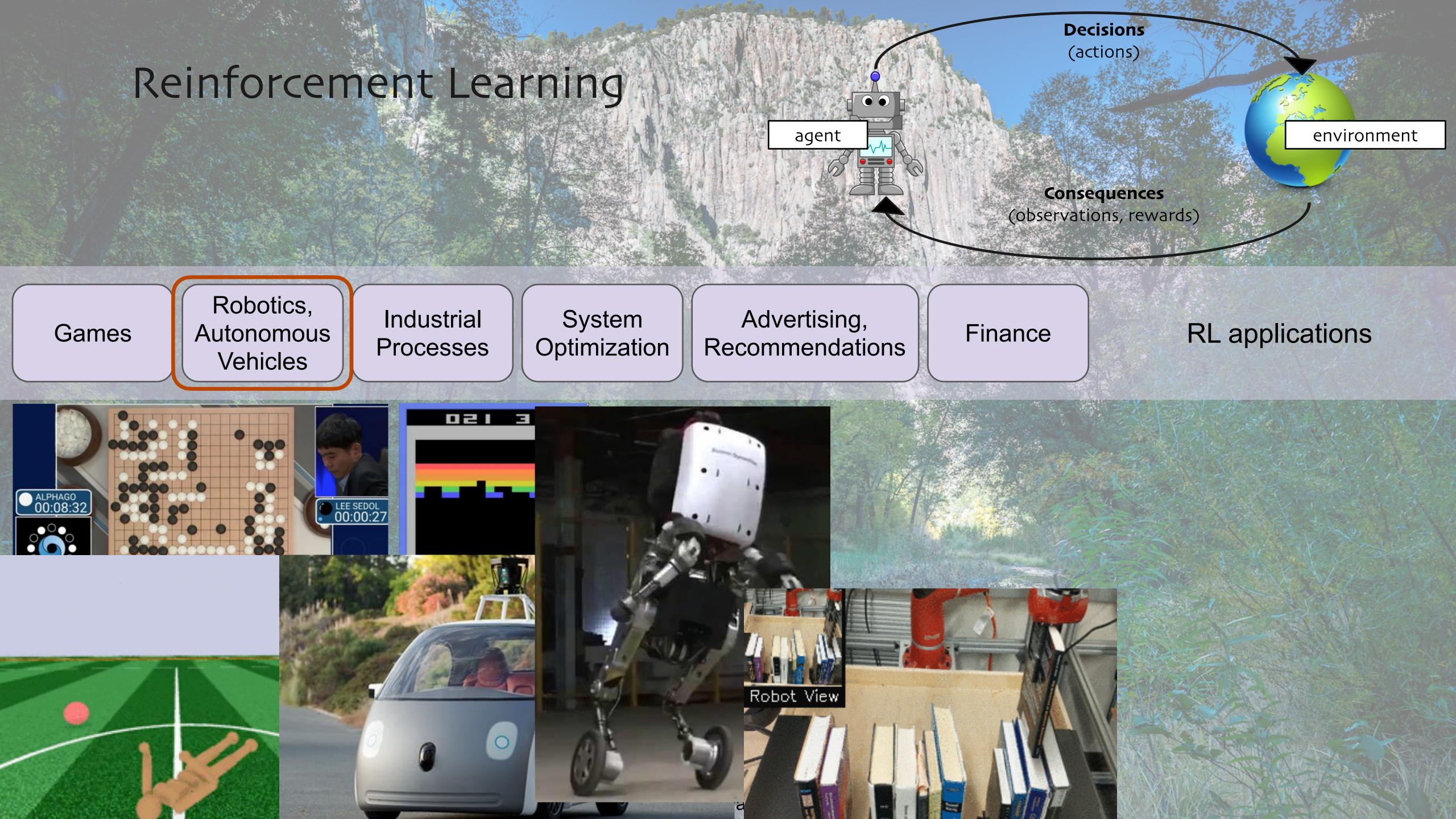
@ray.remote class Counter(object): def ___init___(self): self.value = 0def increment(self): self.value += 1return self.value def get_count(self): return self.value

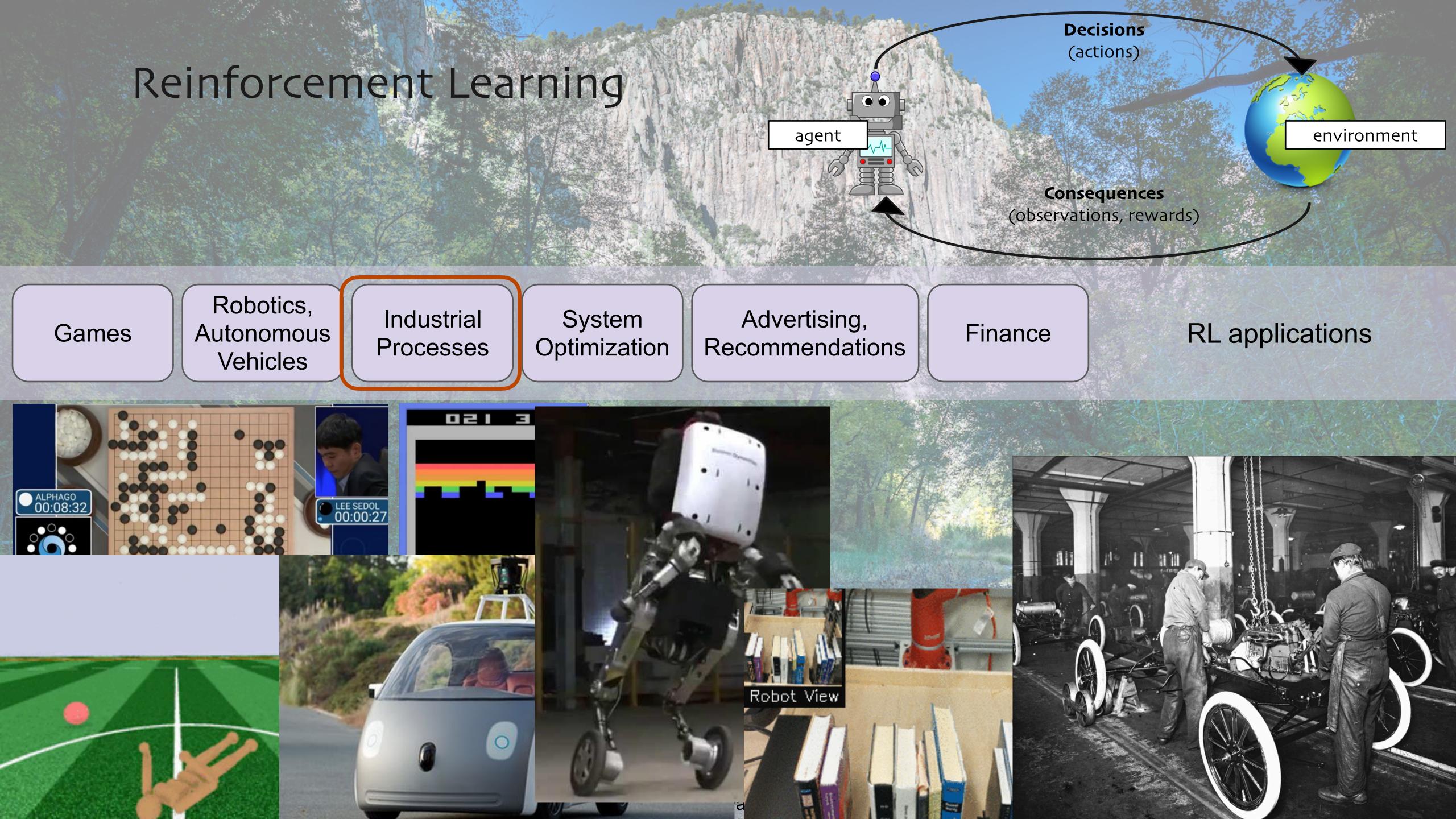
c = Counter.remote()ref4 = c.increment.remote() **ref5** = c.increment.remdte() ray.get([ref4, ref5]) # [1, 2]

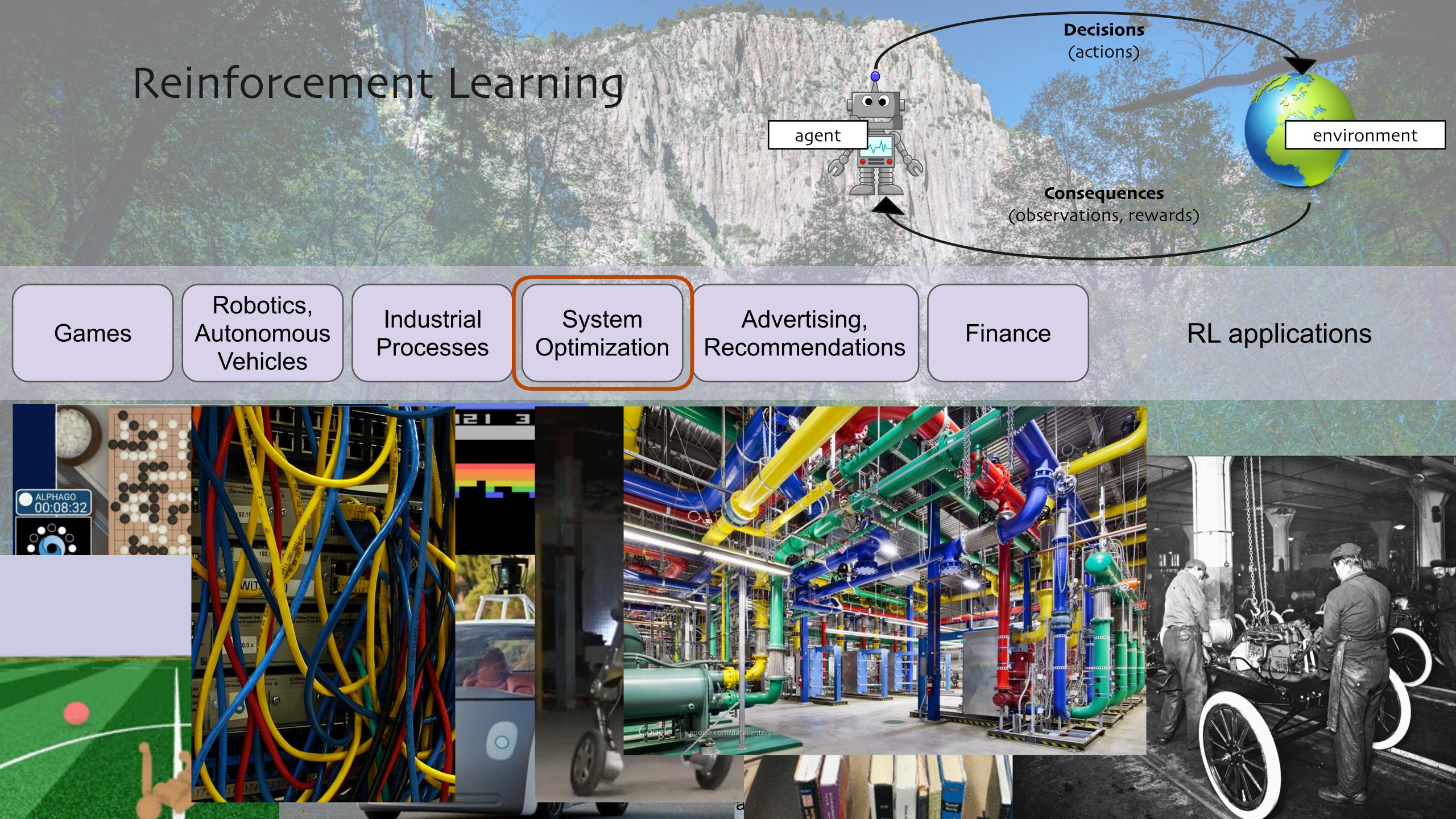
eanwampler:

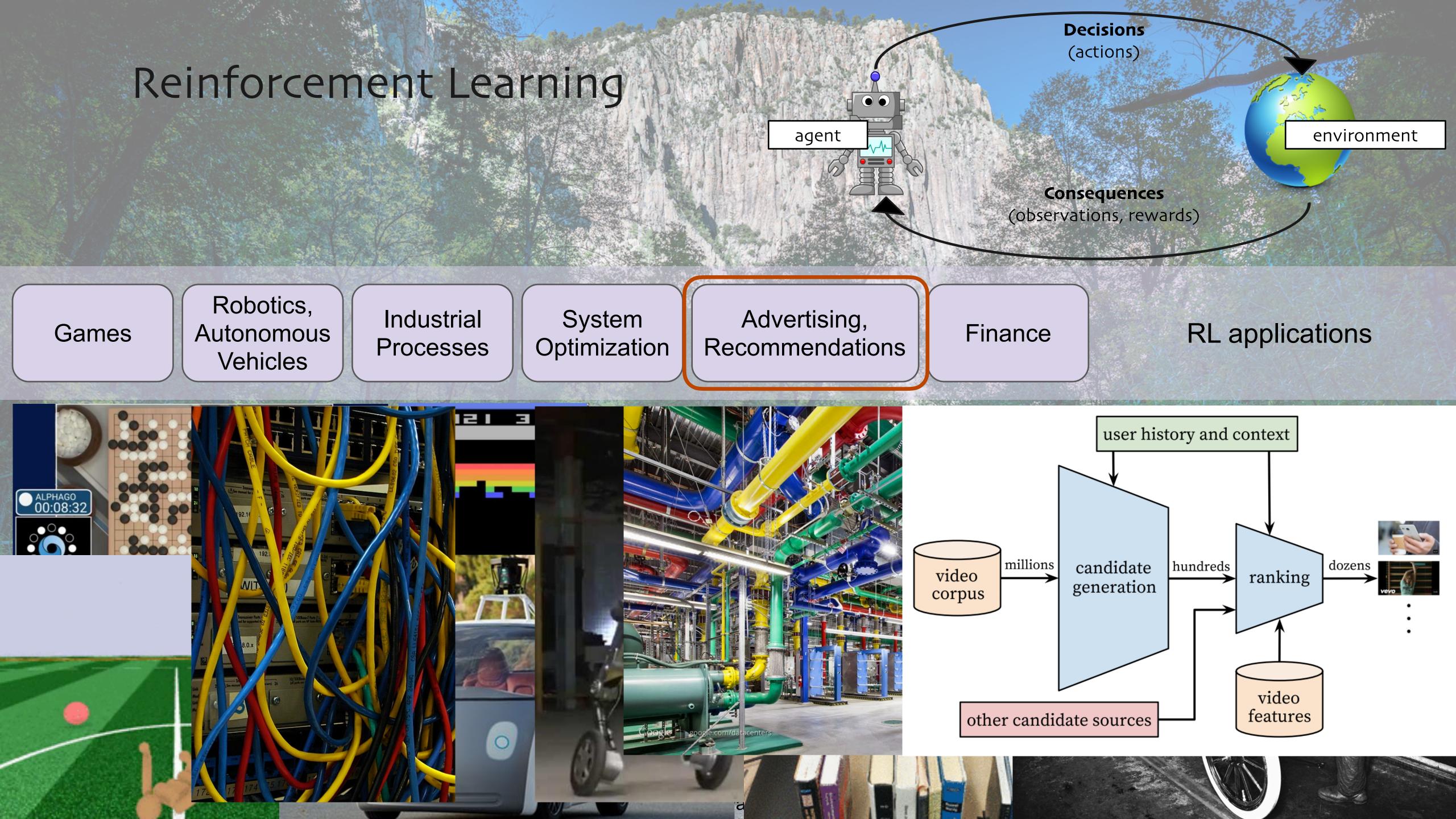


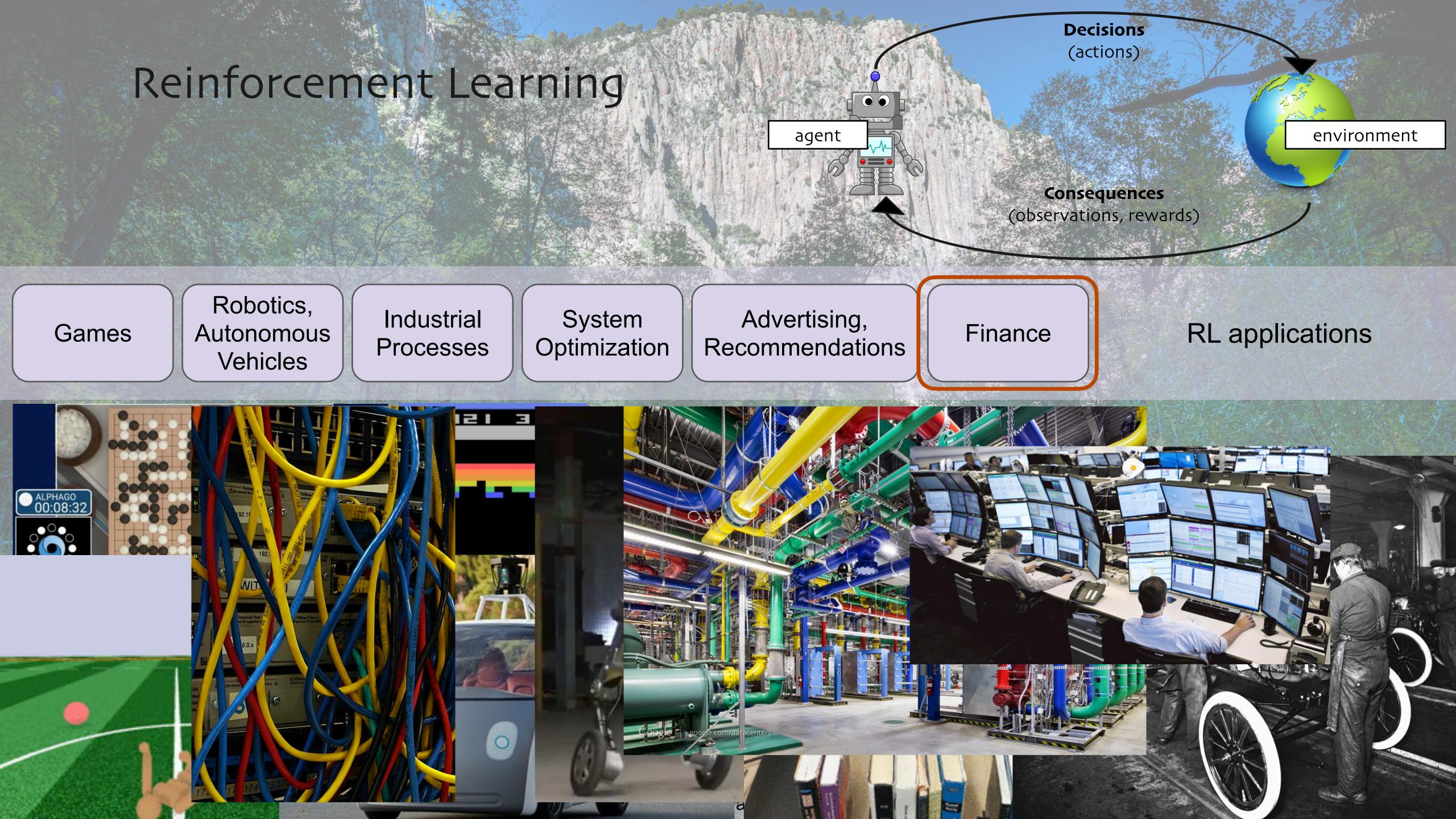












Go as a Reinforcement Learning Problem

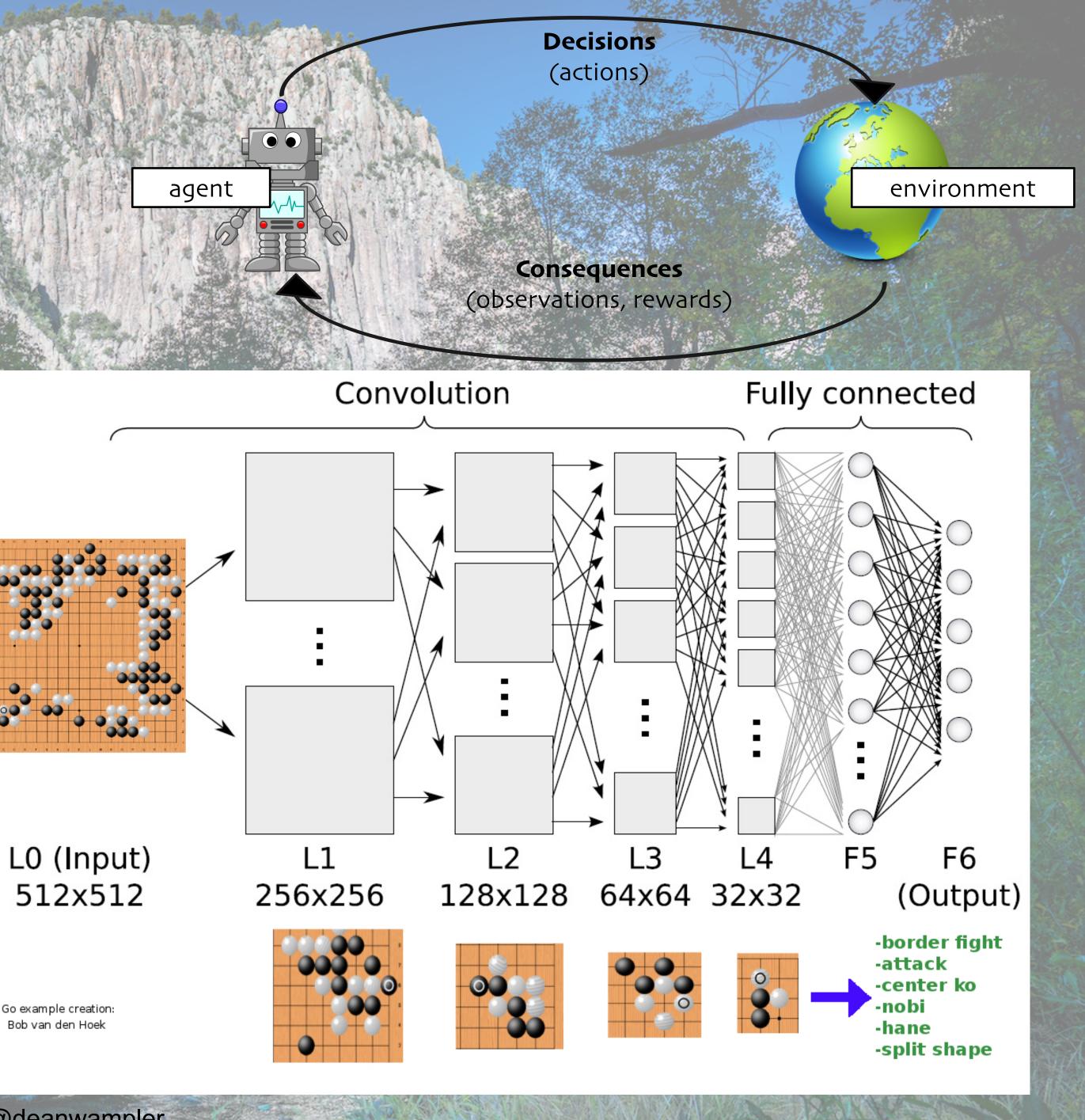
AlphaGo (Silver et al. 2016) • Observations:

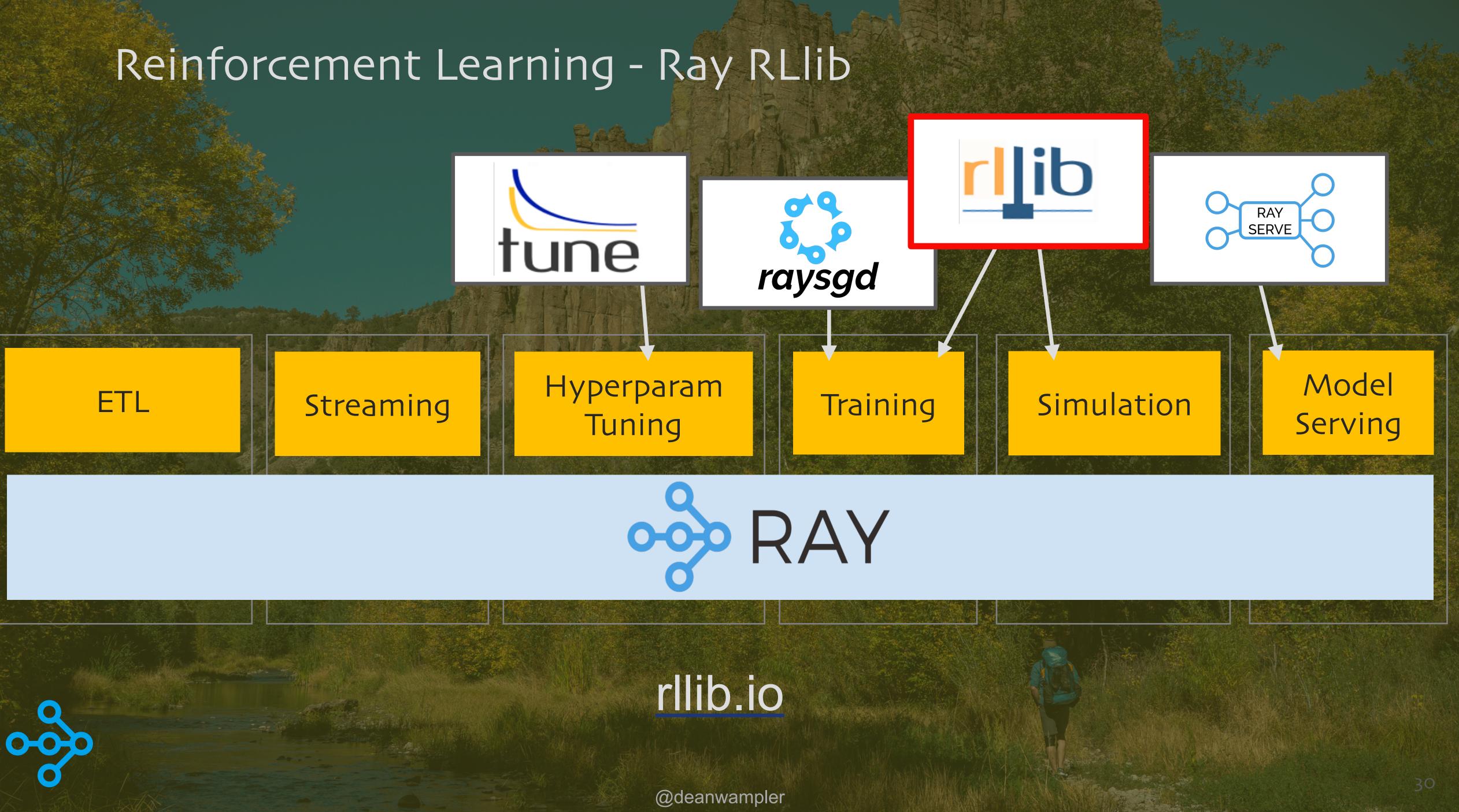
board state

Actions:

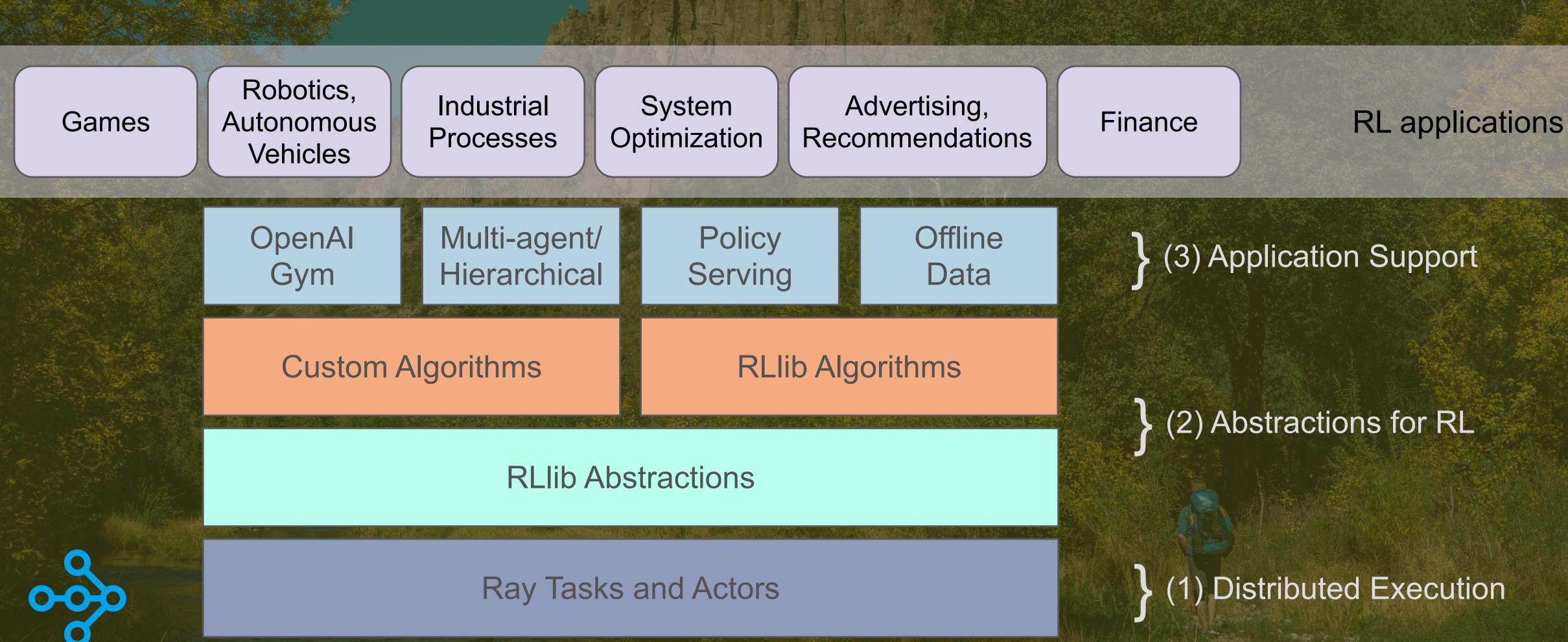
•

- where to place the stones 0 **Rewards**:
- \circ 1 if win
- o otherwise





RLIID: A Scalable, Unified Library for RL



A Broad Range of Popular Algorithms

High-throughput architectures Distributed Prioritized Experience Replay (Ape-X) \bigcirc Importance Weighted Actor-Learner Architecture (IMPALA) 0 Asynchronous Proximal Policy Optimization (APPO) 0

Gradient-based

- Soft Actor-Critic (SAC) 0
- Advantage Actor-Critic (A2C, A3C) 0
- Deep Deterministic Policy Gradients (DDPG, TD3) 0
- Deep Q Networks (DQN, Rainbow, Parametric DQN) \bigcirc
- **Policy Gradients** 0
- Proximal Policy Optimization (PPO) 0

gradient-free Augmented Random Search (ARS) 0 **Evolution Strategies** 0

Multi-agent specific **QMIX** Monotonic Value Factorisation 0 (QMIX, VDN, IQN)

Offline Advantage Re-Weighted Imitation Learning \bigcirc (MARWIL)

Amazon SageMaker RL

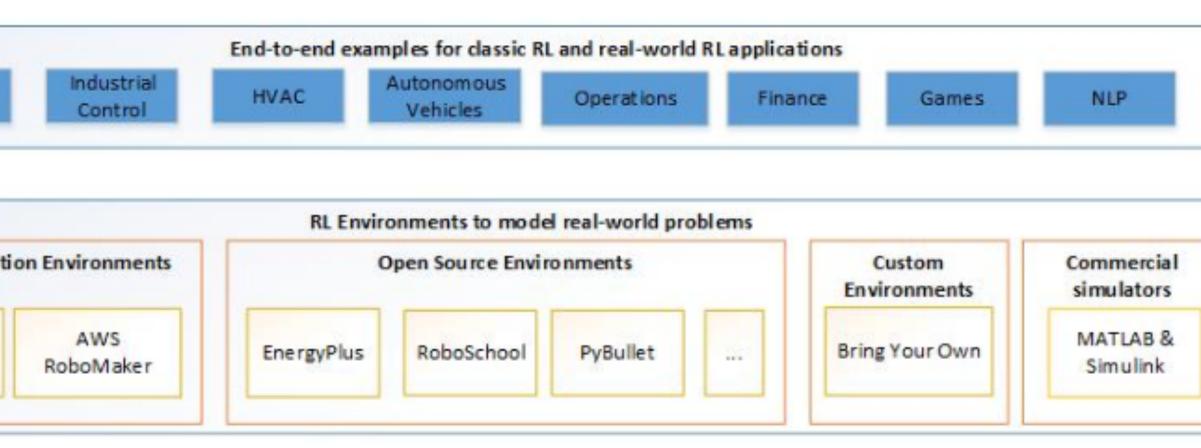
Reinforcement learning for every developer indicata scientist

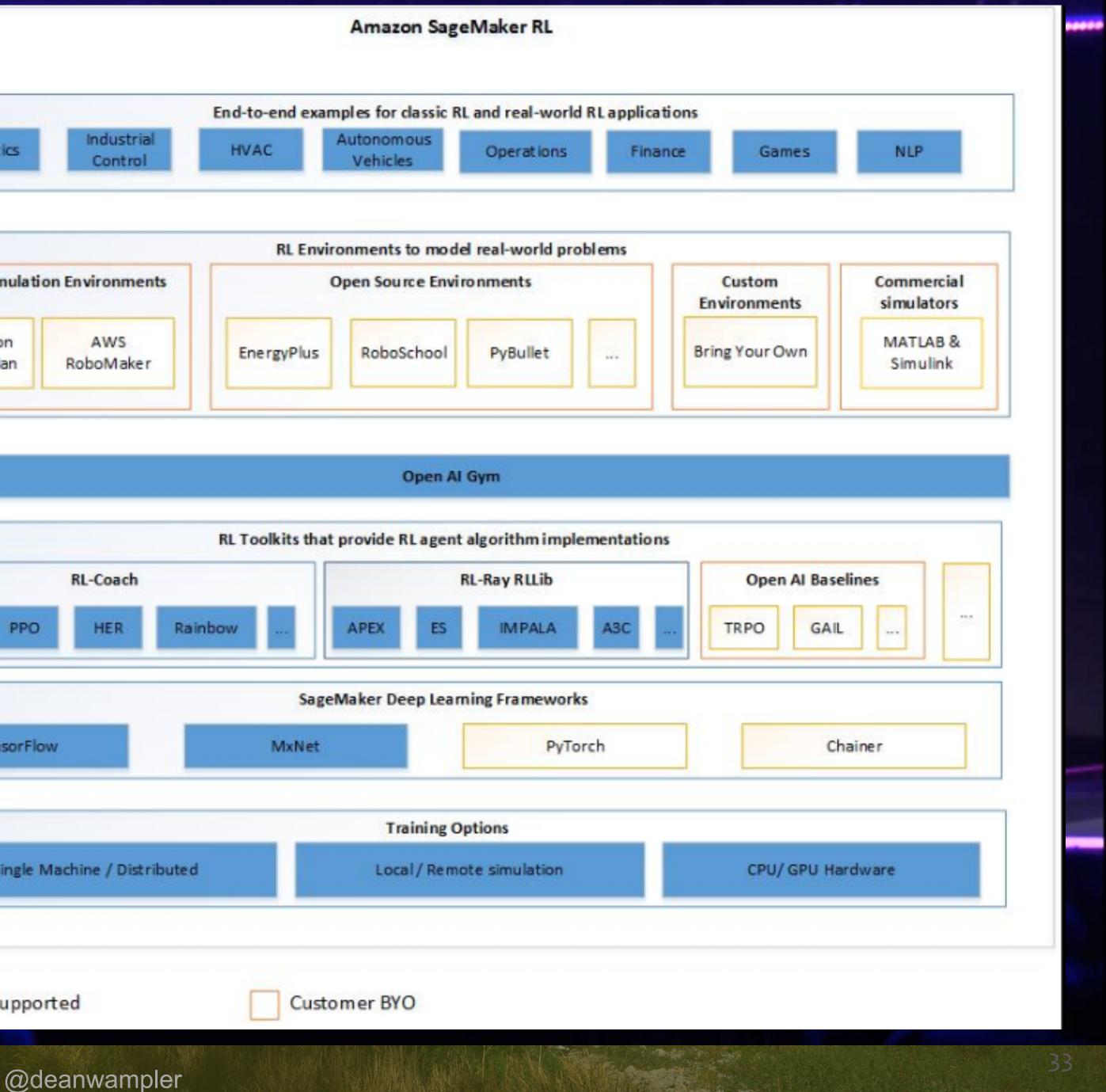
390

87.

U

Ro	botics
An	Simulat
DQN	PPC
	TensorFl
SageMake	Single





Now in Azure

Microsoft Docs Documentation Learn Q&	A Code Samples
Azure Product documentation < Architecture < Learn Azu	re \checkmark Develop \checkmark Resources \checkmark
Azure / Machine Learning	
🔓 Filter by title	Reinforcem
Azure Machine Learning Documentation	Machine Le
Azure Machine Learning vs Studio (classic) Architecture & terms	APPLIES TO: Sasic edition
 Tutorials Studio Python SDK R SDK 	① Note Azure Machine Learning Re this time.
> Visual Studio Code > Samples	In this article, you learn how t Python library <u>Ray RLlib</u> with <i>i</i> In this article you will learn ho

🛛 Bookmark

nent learning (preview) with Azure earning · 💿 🐠 🛞

Enterprise edition

(Upgrade to Enterprise edition)

einforcement Learning is currently a preview feature. Only Ray and RLlib frameworks are supported at

to train a reinforcement learning (RL) agent to play the video game Pong. You will use the open-source Azure Machine Learning to manage the complexity of distributed RL jobs.

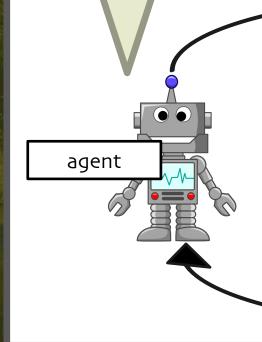
ow to:

Diverse Compute Requirements Motivated Creation of Ray!

And repeated play, over and over again, to train for achieving the best reward

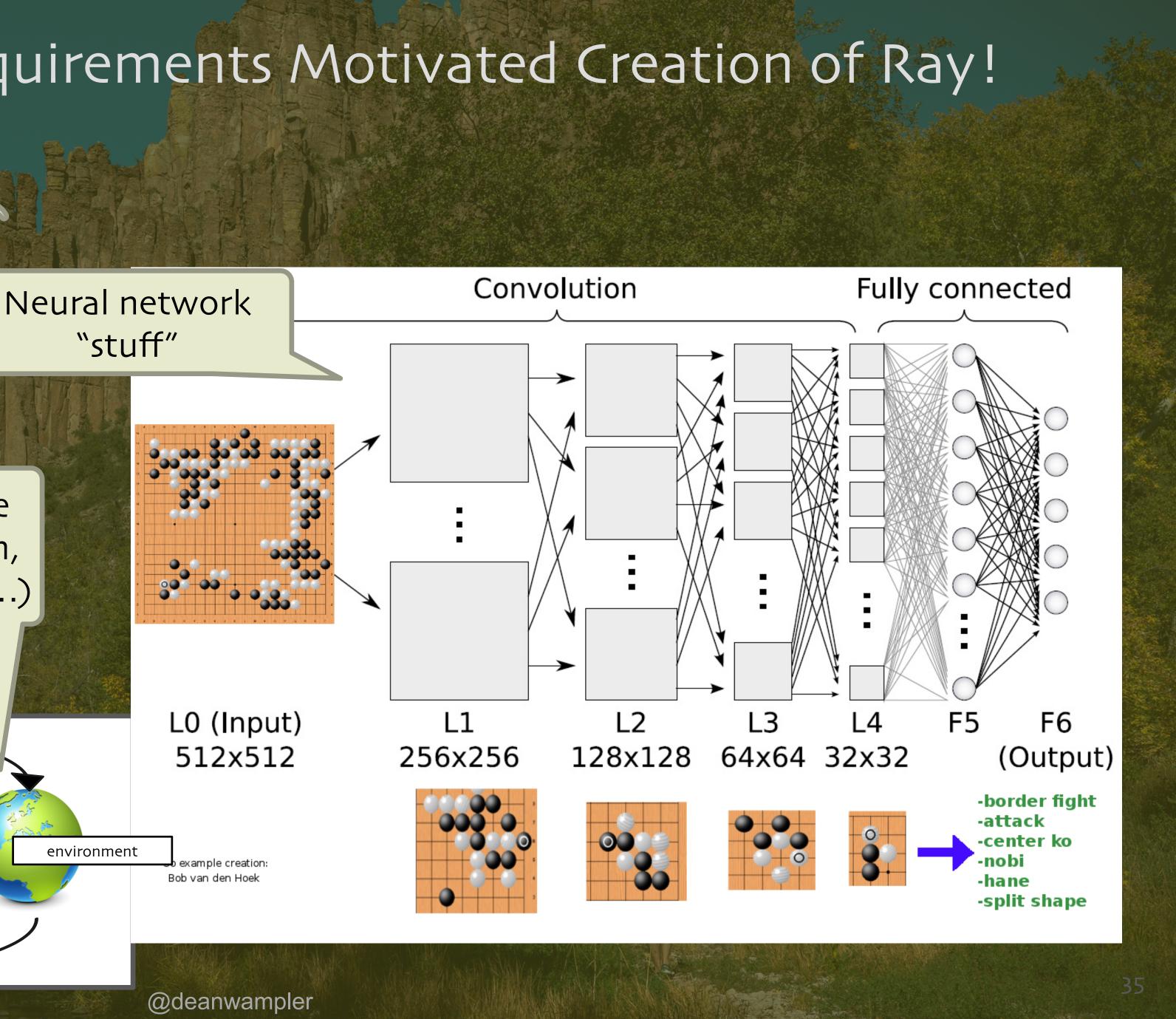
> Simulator (game engine, robot sim, factory floor sim...)

Complex agent?



Decisions (actions)

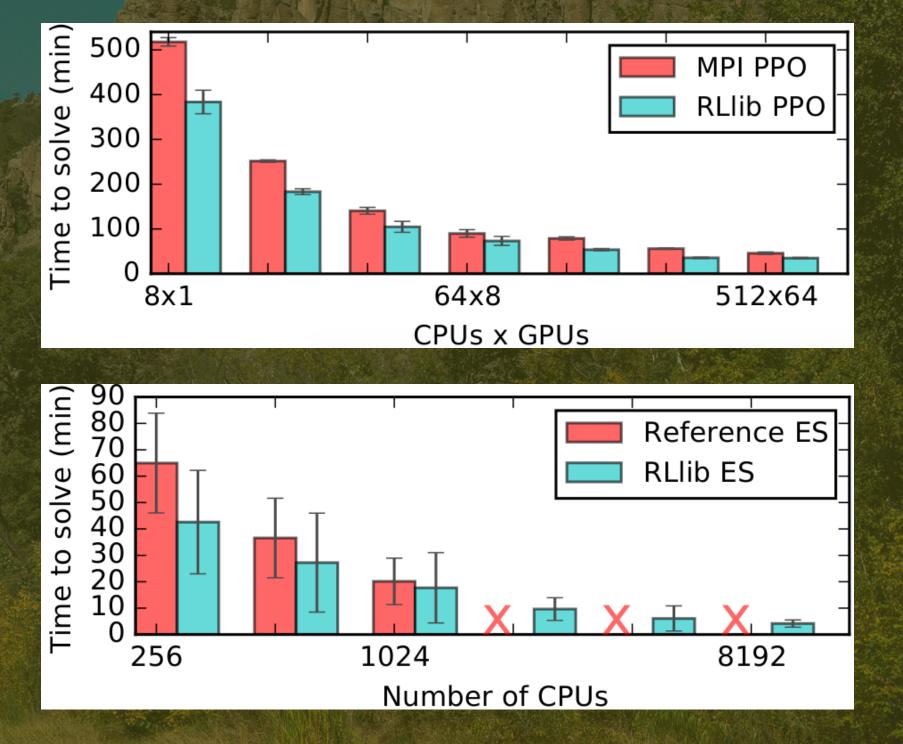
Consequences (observations, rewards) environment

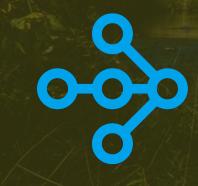


RLlib Provides a Unified Framework for Scalable RL that Doesn't Compromise on Performance

Distributed PPO

Evolution Strategies





Ape-X Distributed DQN, DDPG



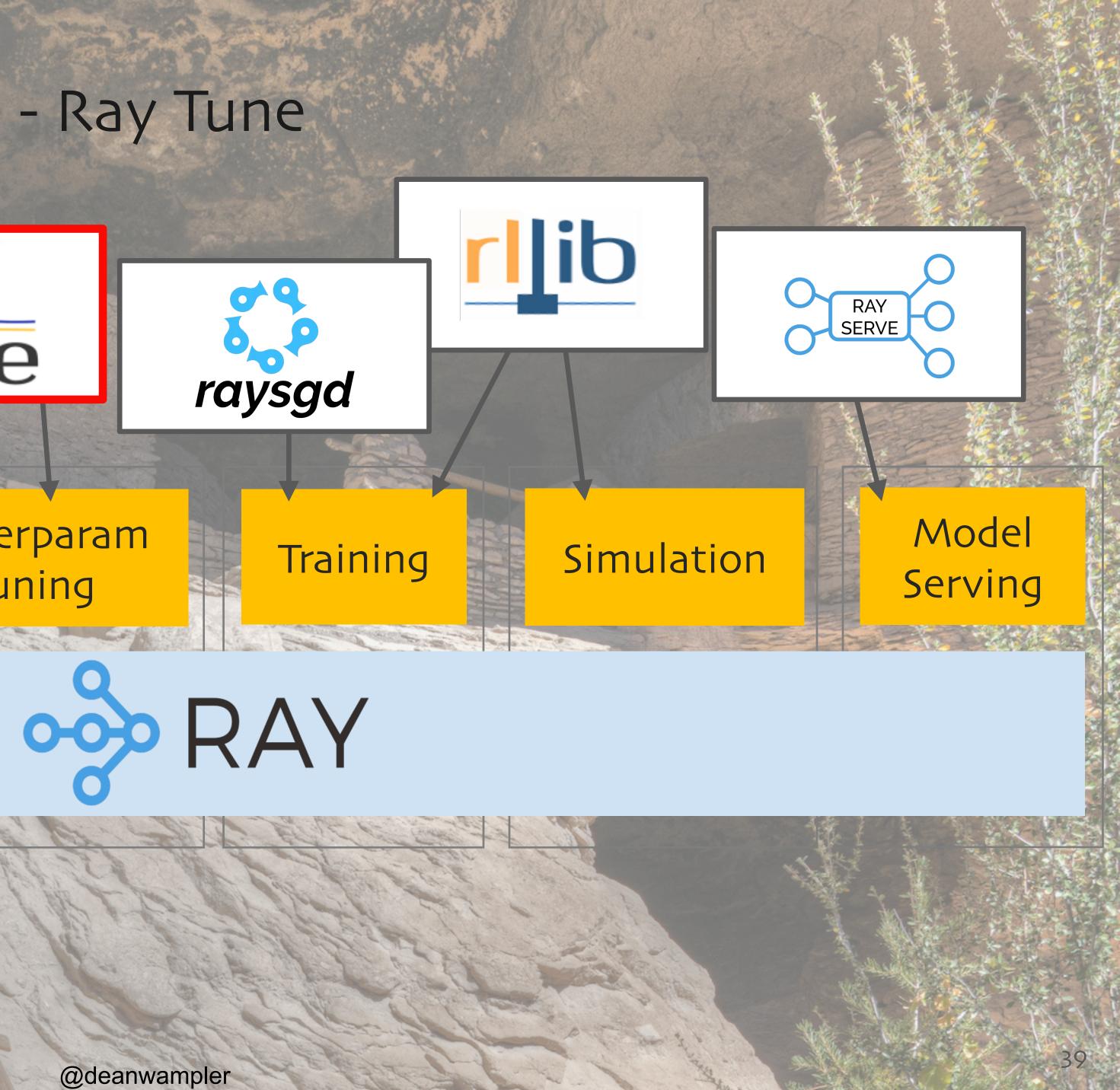
https://github.com/anyscale/academy

Hyperparameter Tuning - Ray Tune

Featurization

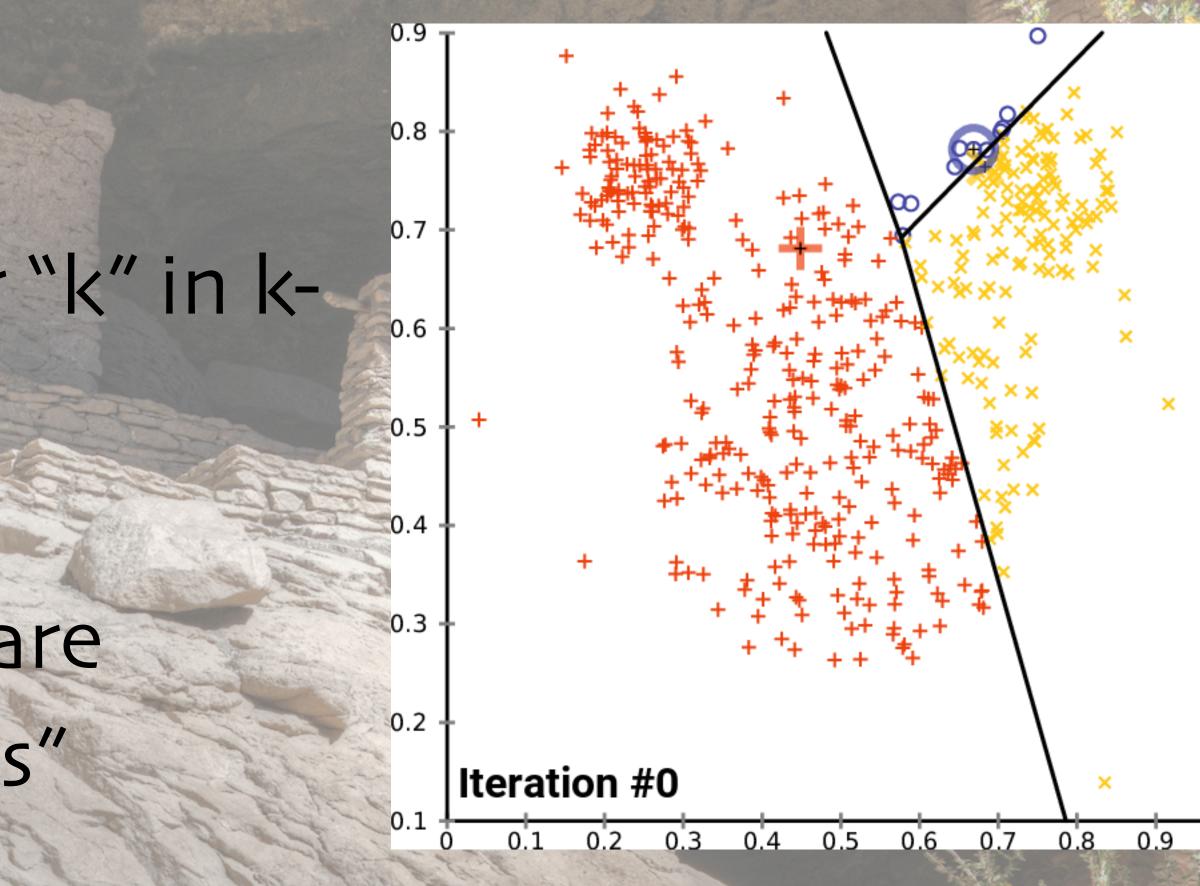
Streaming

Hyperparam Tuning

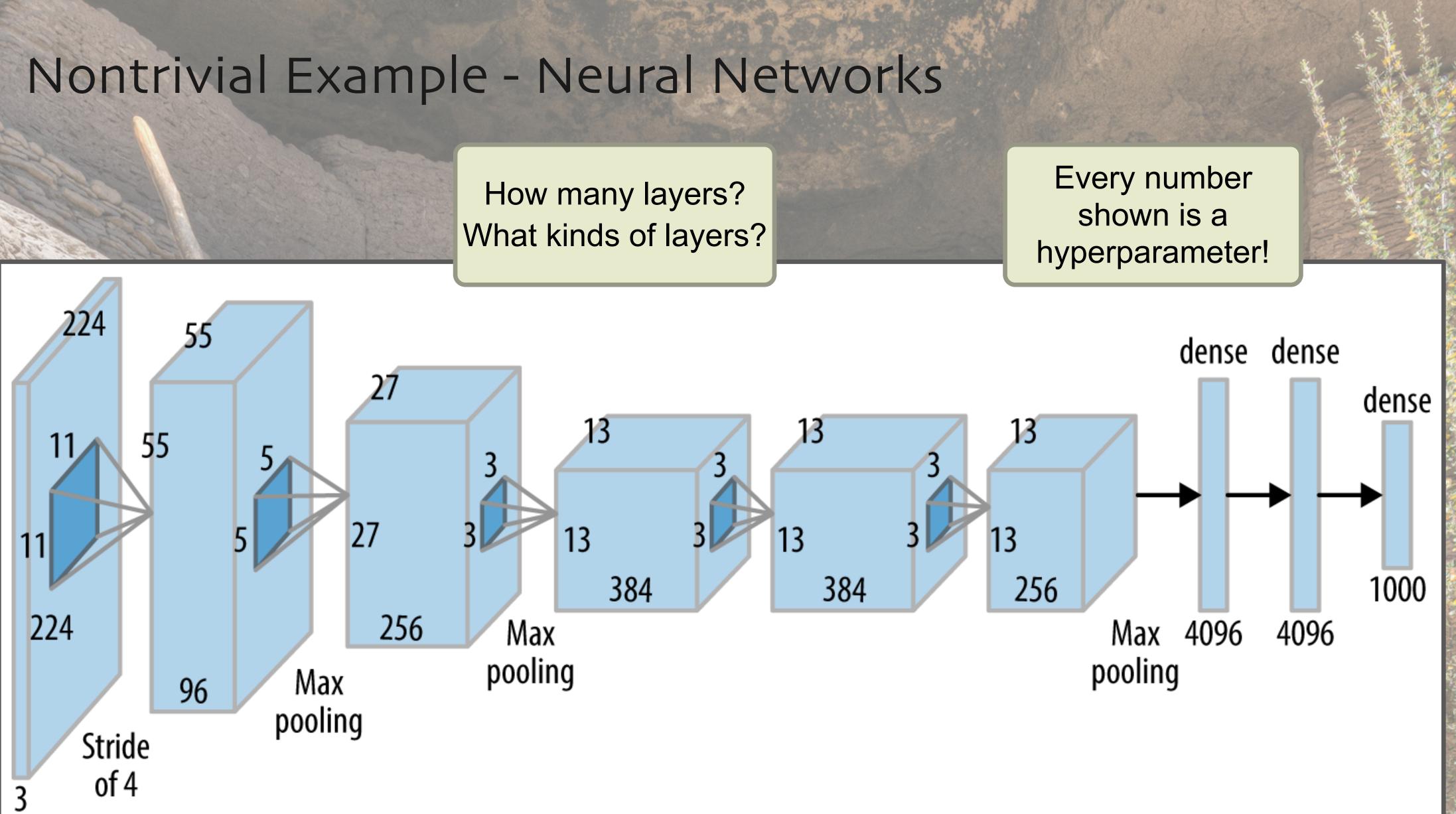


What Is Hyperparameter Tuning?

Trivial example: What's the best value for "k" in kmeans?? k is a "hyperparameter" The resulting clusters are defined by "parameters"



credit: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

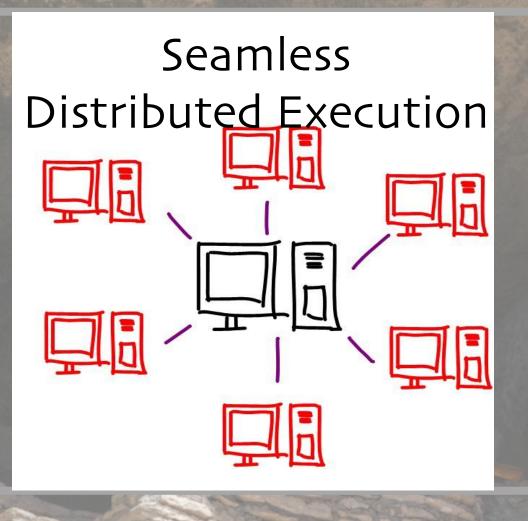


Tune is Built with Deep Learning as a Priority

Resource Aware Scheduling

Simple API for new algorithms

class TrialScheduler: def on_result(self, trial, result): ... def choose_trial_to_run(self): ...



Framework Agnostic

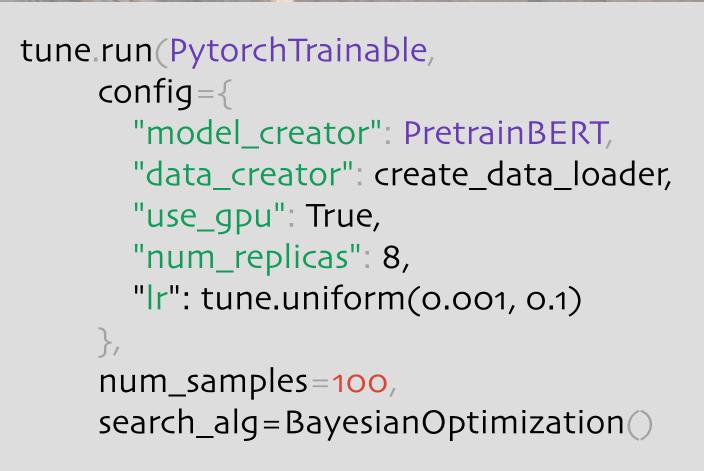
Why We Need a Framework for Tuning Hyperparameters

We want the best model

Resources are expensive

Model training is timeconsuming

Tuning + Distributed Training





scikit learn

Native Integration with TensorBoard HParams

TensorBo	oard SCALAR	S HPARAMS	
Hyperparameters → activation → relu		TABLE VIEW	
✓ tanh✓ widthMin		Color by ray/tune/neg_mean_l	
-infinity ^{Max} +infinity		 width Linear Logarithmic Quantile 	<u> </u>
Metrics		Quantile	
ray/tune/iterations_since_res			o otivotio n
Min -infinity	Max +infinity		activation
ray/tune/mean_loss			
Min -infinity	Max +infinity		
ray/tune/neg_mean_loss			
Min -infinity	Max +infinity		
ray/tune/time_since_restore			
Min -infinity	Max +infinity		relu -
Status			_

PARALLEL COORDINATES VIEW

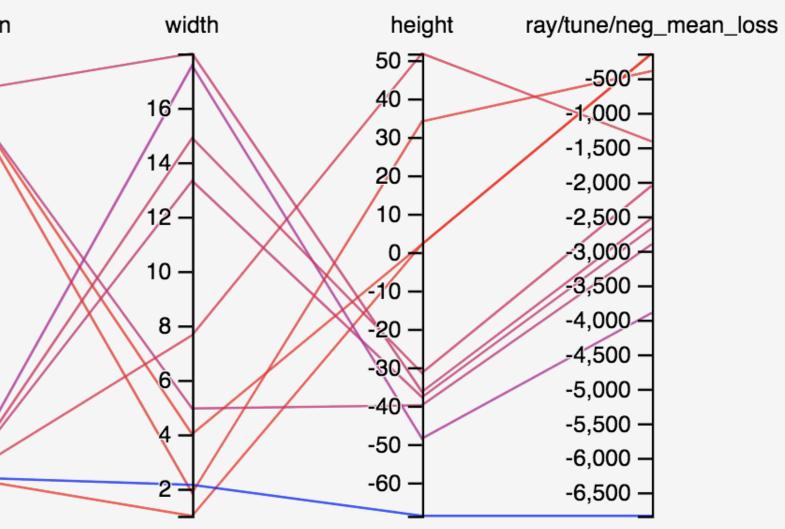
SCATTER PLOT MATRIX VIEW

INACTIVE

?

• C





Other Uses of Ray: Microservices?

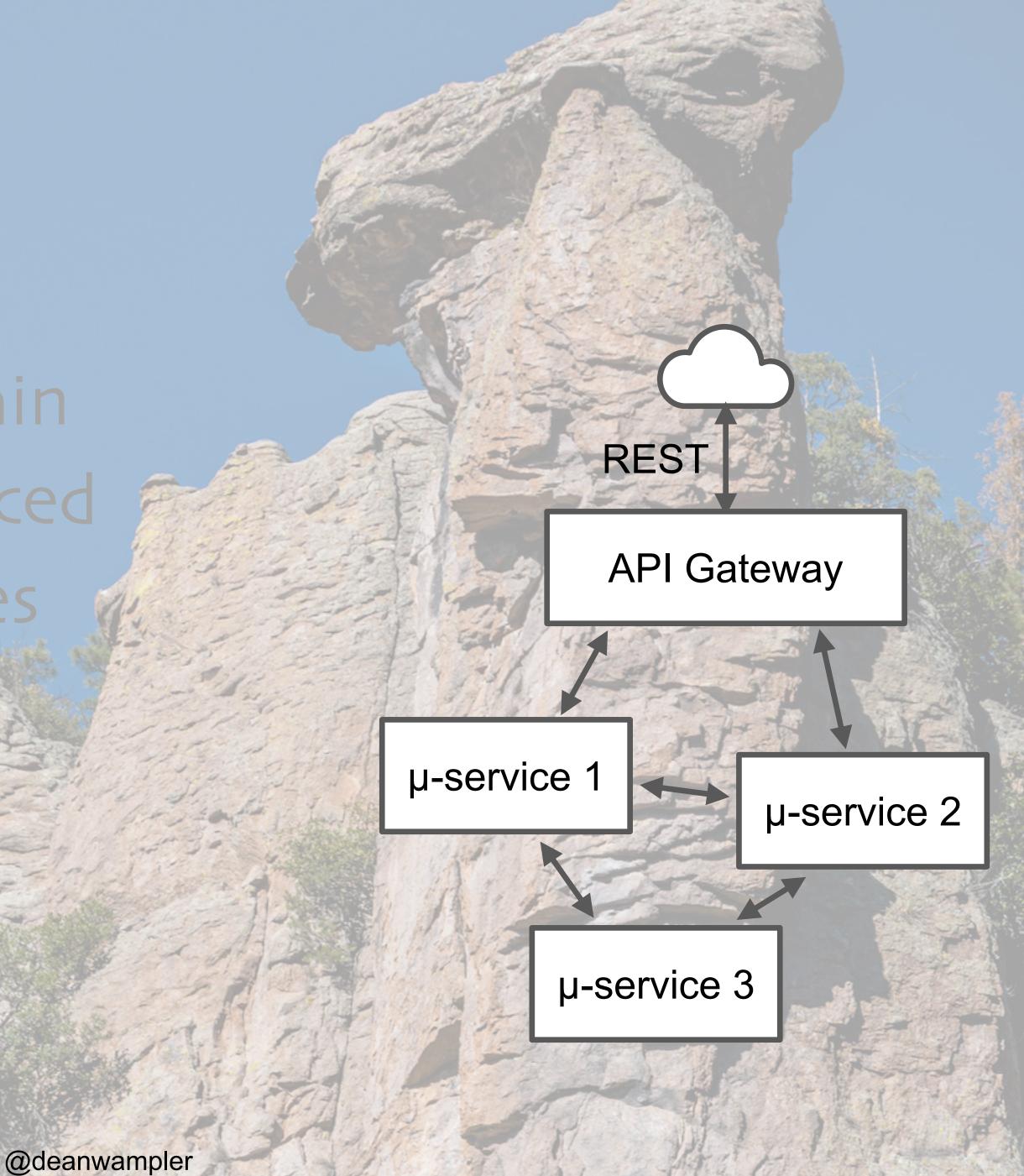
What Are Microservices?

They partition the domain
Conway's Law - Embraced
Separate responsibilities
Separate management

What Are Microservices?

They partition the domain Conway's Law - Embraced Separate responsibilities Separate management

What we mostly care about for today's talk, the "Ops in DevOps"



Separate Management

Each team manages its own instances • Each microservice has a different number of instances for scalability and resiliency But they have to be managed explicitly

API Gateway

µ-service 2

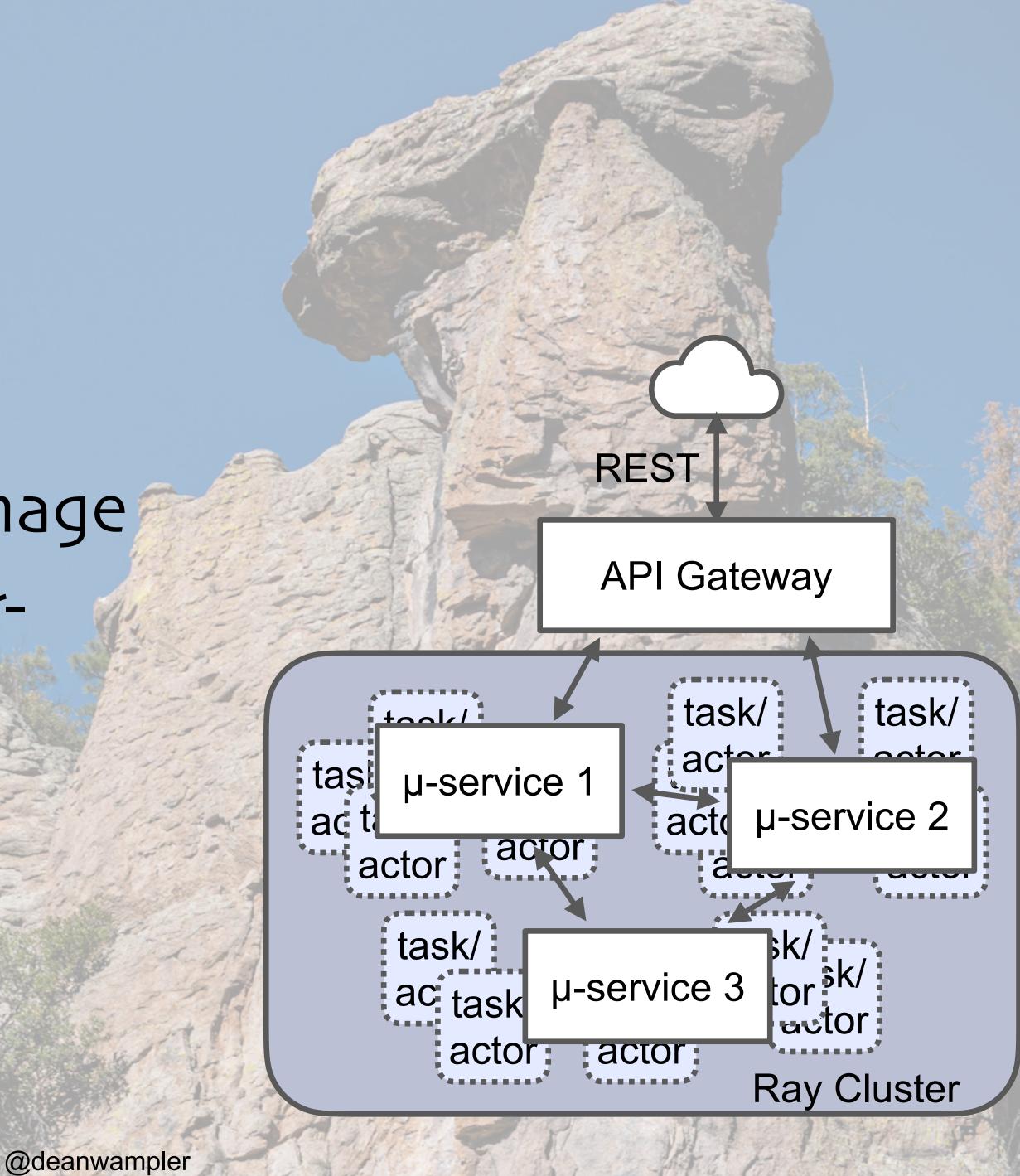
REST

µ-service 1

µ-service 3

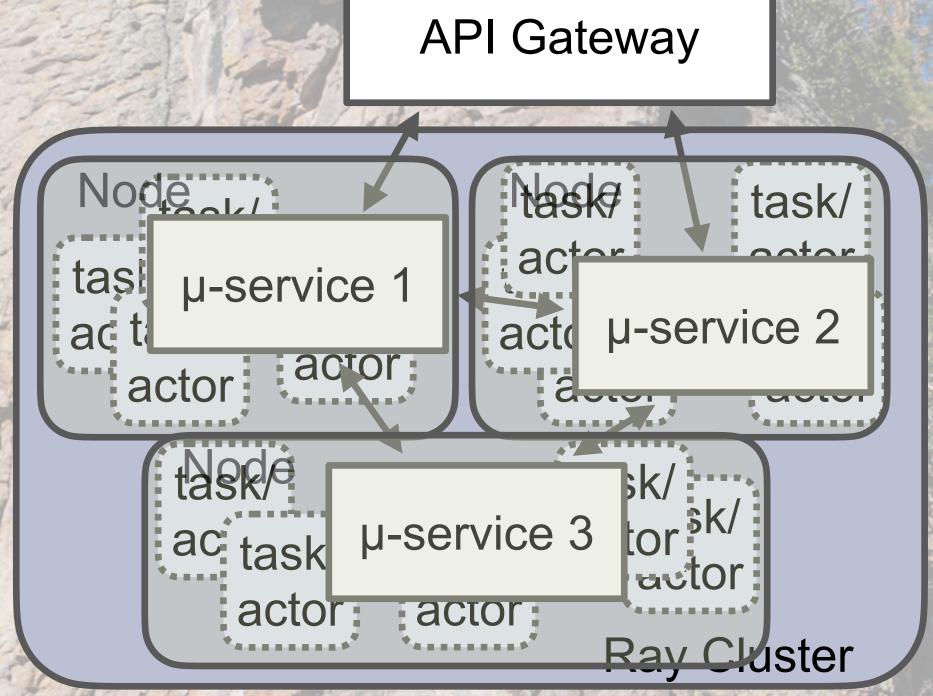
Management - Simplified

 With Ray, you have one "logical" instance to manage and Ray does the clusterwide scaling for you.



What about Kubernetes (and others...)?

Ray scaling is very fine grained. It operates within the "nodes" of • coarse-grained managers Containers, pods, VMs, or physical machines



REST

If you're already using...

joblib multiprocessing.Pool

Use Ray's implementations Drop-in replacements Change import statements Break the one-node limitation!

See these blog posts: https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

For example, from this:

from multiprocessing.pool import Pool

To this:

from ray.util.multiprocessing.pool import Pool

... And Ray is integrated with asyncio

@deanwampler

1 AVE

Ray Community and Resources

ray.io Need help? • <u>ray-dev</u> Google group

Tutorials (free): <u>anyscale.com/academy</u>

Ray Slack: ray-distributed.slack.com

Recap

tuning (among other Ray libs).

Ray is the new state-of-the-art for distributed computing Ray RLlib and Ray Tune are high-performance, flexible systems for reinforcement learning and hyper parameter

raysga

RAY

tune

Thank You

ray.io github.com/anyscale/academy deanwampler.com/talks dean@deanwampler.com adeanwampler

