GOTO

goto;

Reinforcement Learning: ChatGPT, Games, and More

Reinforcement Learning: ChatGPT, Games, and More

dean@deanwampler.com deanwampler.com/talks IBM Research @discuss.systems@deanwampler @deanwampler

© Dean Wampler, 2022-2023, except where noted. Photos from the Wind River Range, Grand Teton NP, and Yellowstone NP, Wyoming

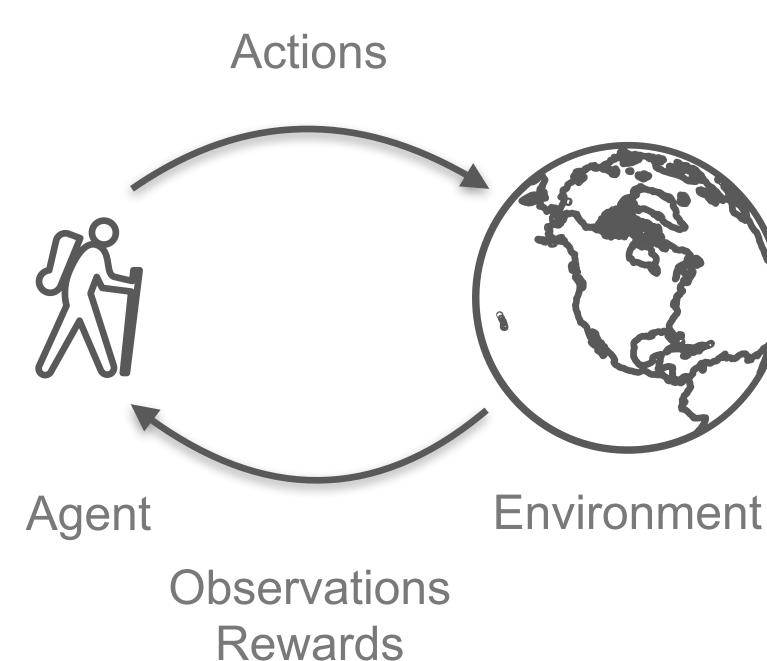
Topics

Why Reinforcement Learning? What Is It? How is it used?
Ray RLlib, a popular RL system built with Ray.
More Reinforcement Learning Concepts and Challenges
Reinforcement Learning and ChatGPT
Reinforcement Learning for Recommendations
To Learn More...

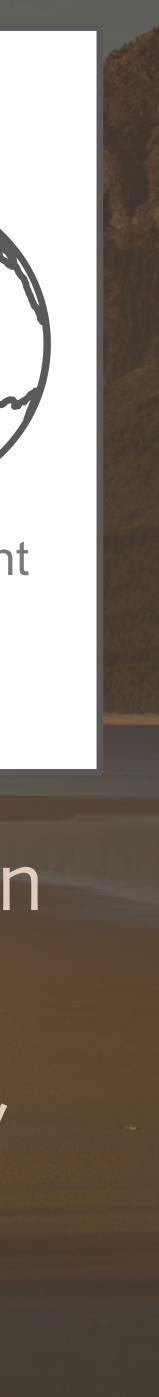
The Agent choses an Action, then Observes any changes to the Environment and a Reward received, if any.

Through a sequence of these steps, the Agent learns a Policy for maximizing the cumulative Reward.

Each sequence is an Episode. It takes many Episodes to learn a good Policy.

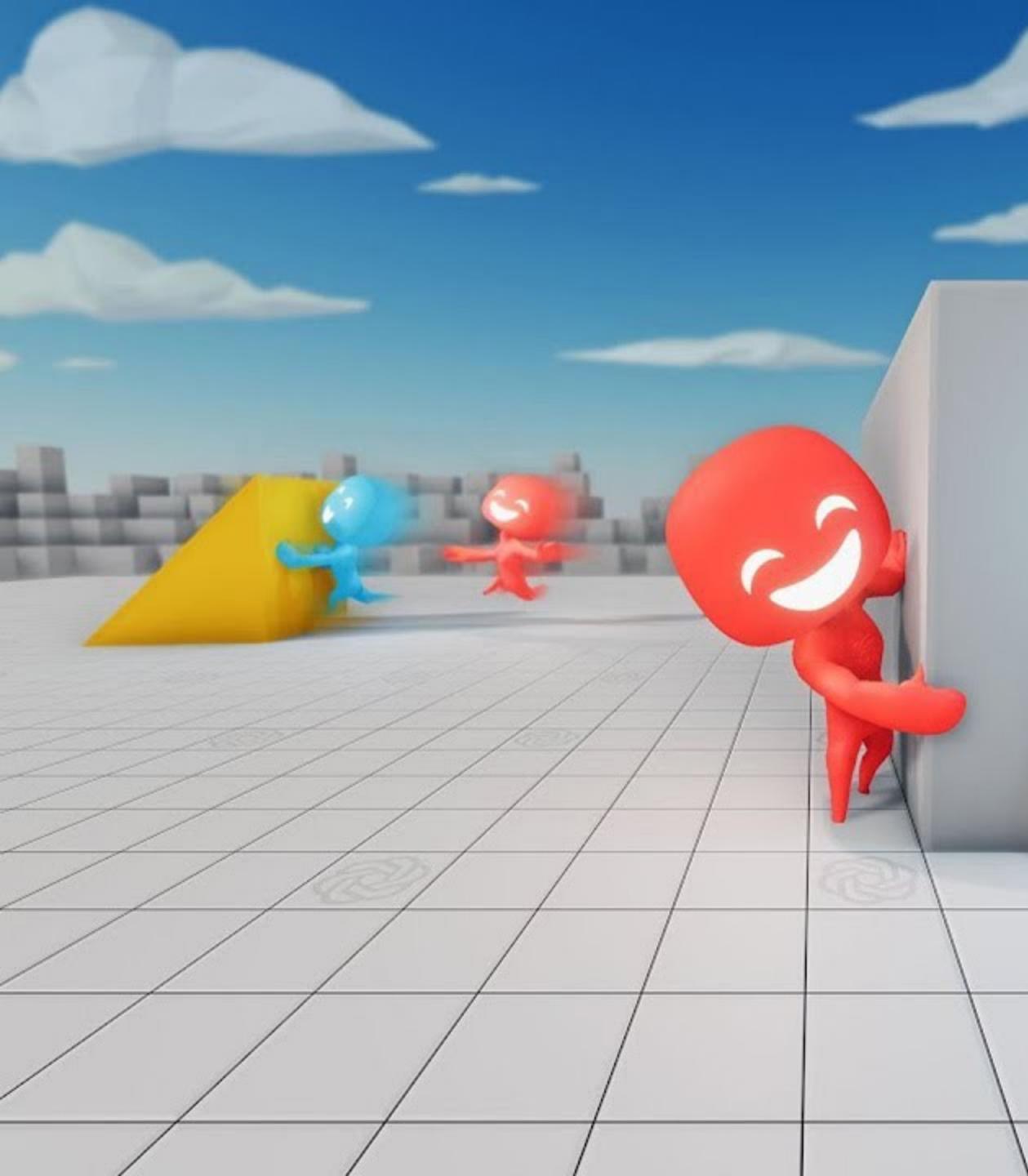


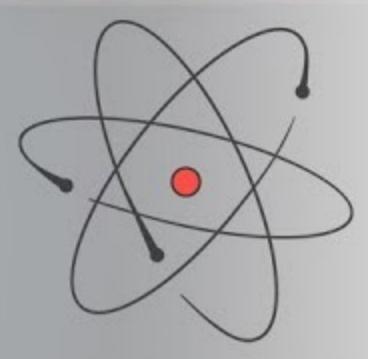
Some systems return a Reward after each Action. Others, only at the Episode end.



https://www.youtube.com/watch?v=Lu56xVIZ40M

Why Reinforcement Learning?

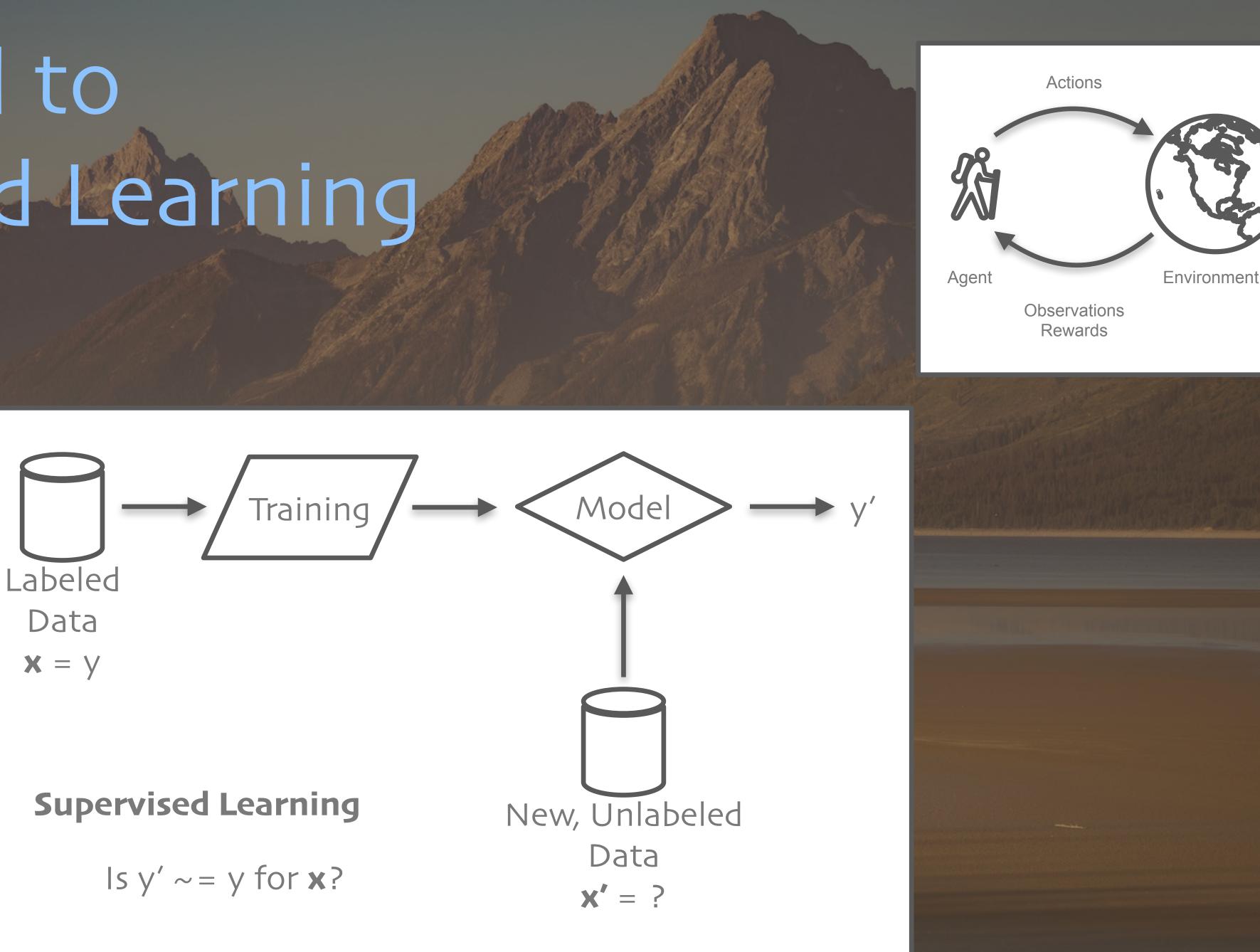




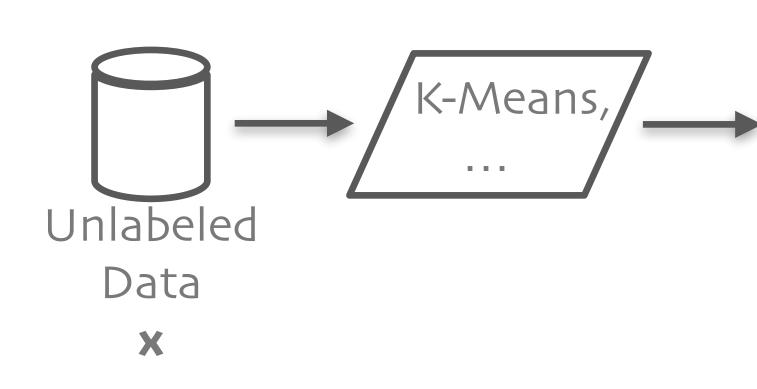
TWOMINUTE

WITH KÁROLY ZSOLNAI-FEHÉR

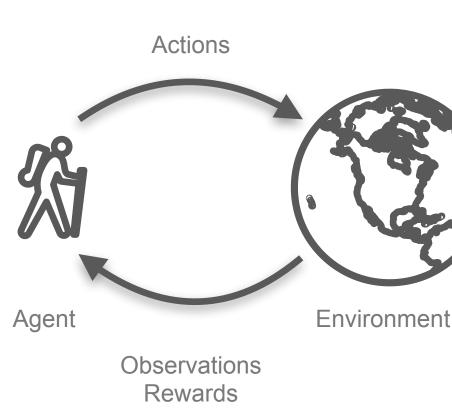
Compared to Supervised Learning

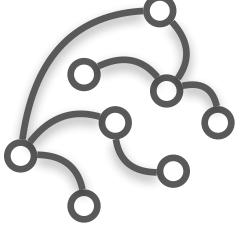


Compared to Unsupervised Learning



Unsupervised Learning





Structure

RLApplications

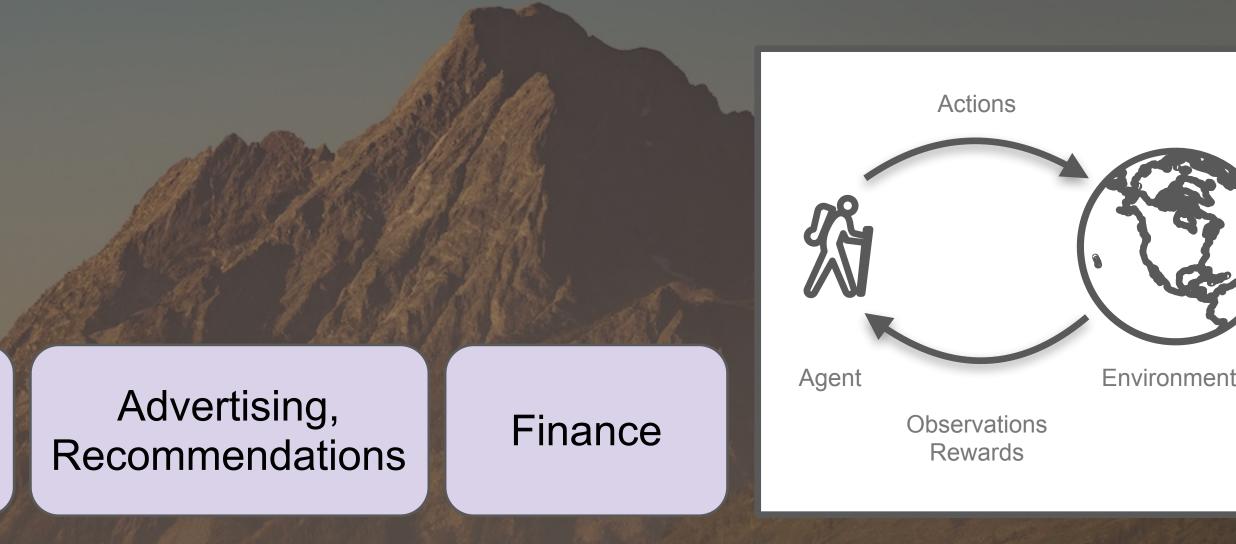
Games

Robotics, Autonomous Vehicles

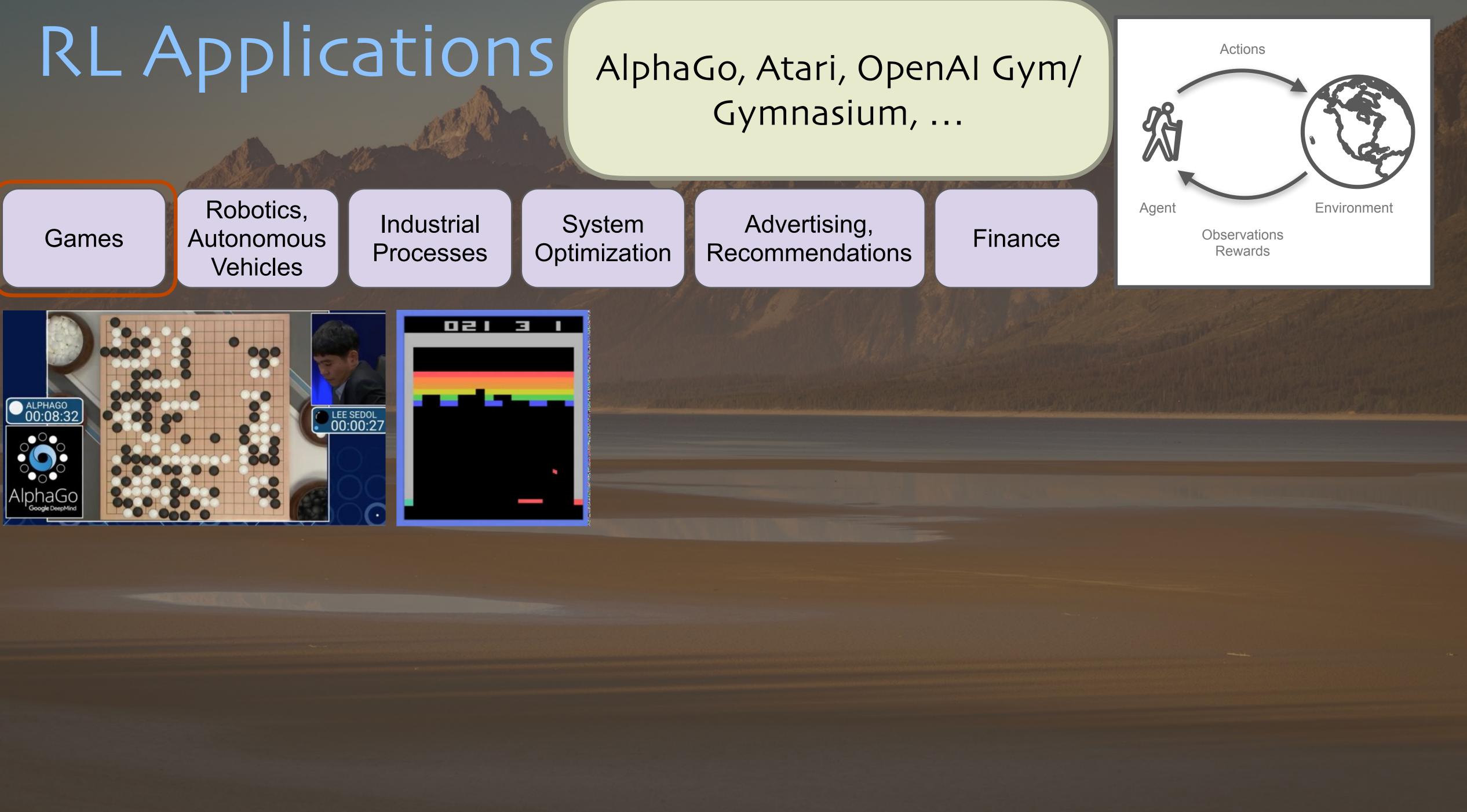
Industrial Processes

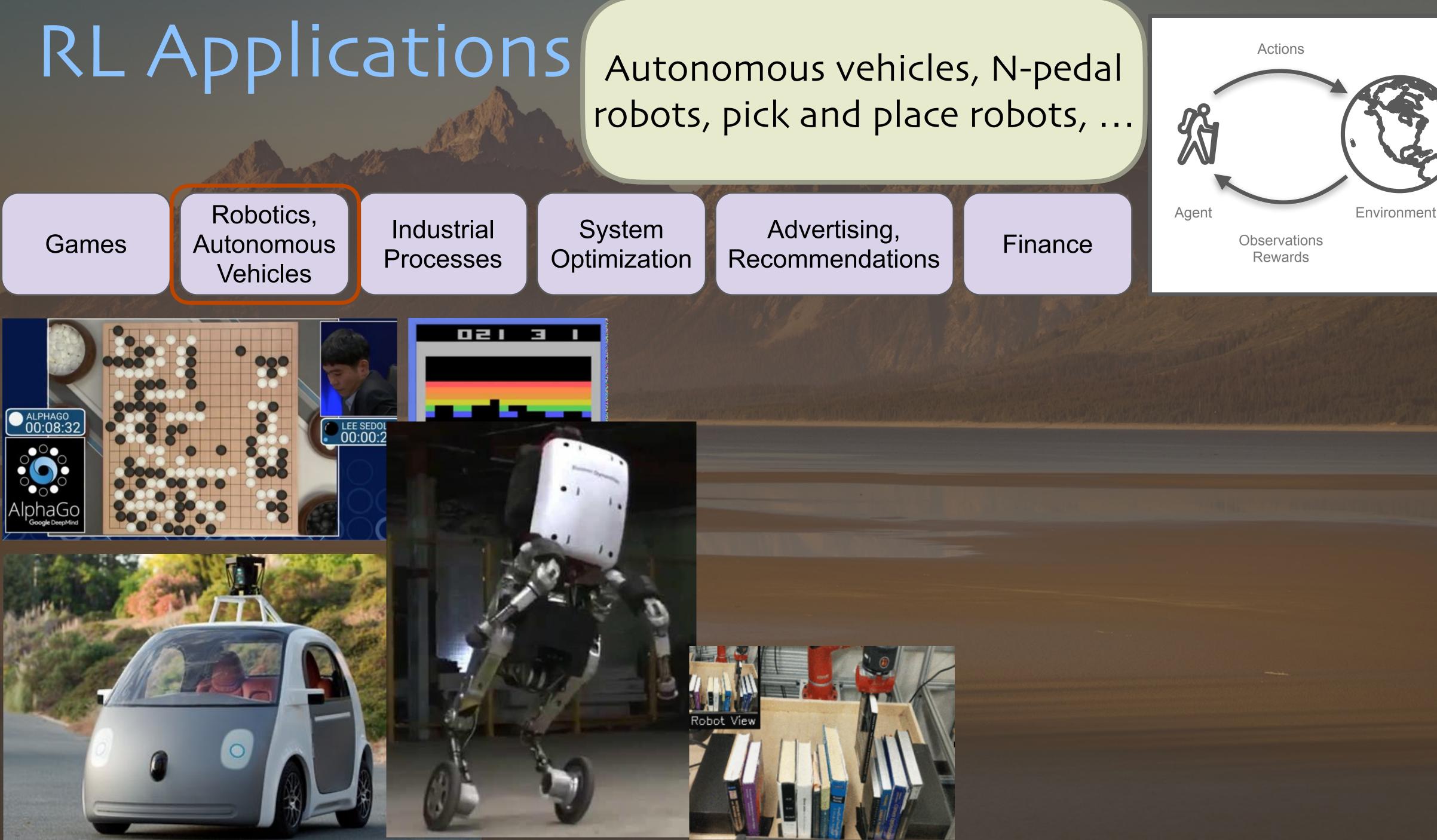
System Optimization

Common Theme:



The ideal applications have sequential, evolving state for the environment plus the agent.





RL Applications Assembly lines, warehouse and

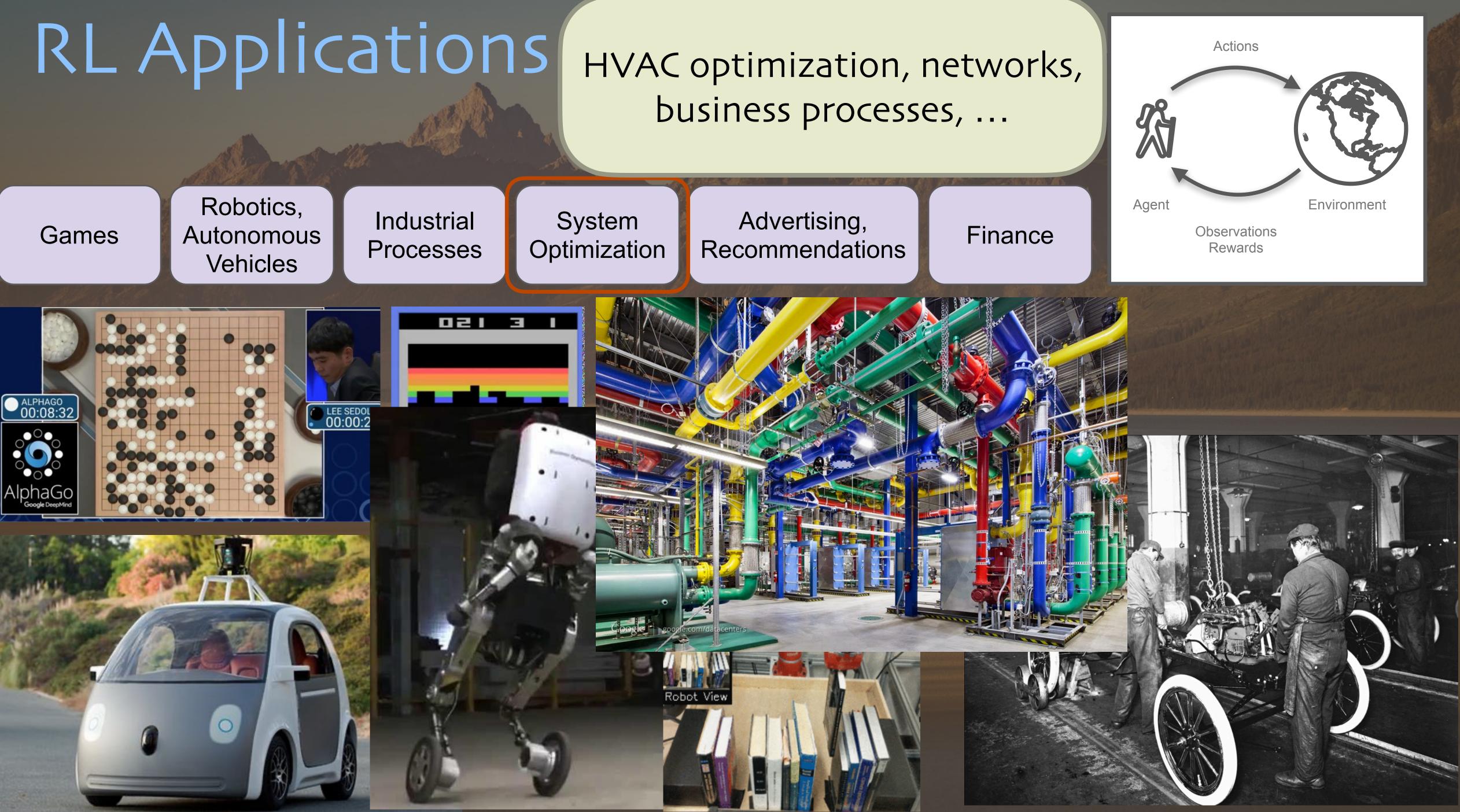
LEE SEDOL 00:00:2

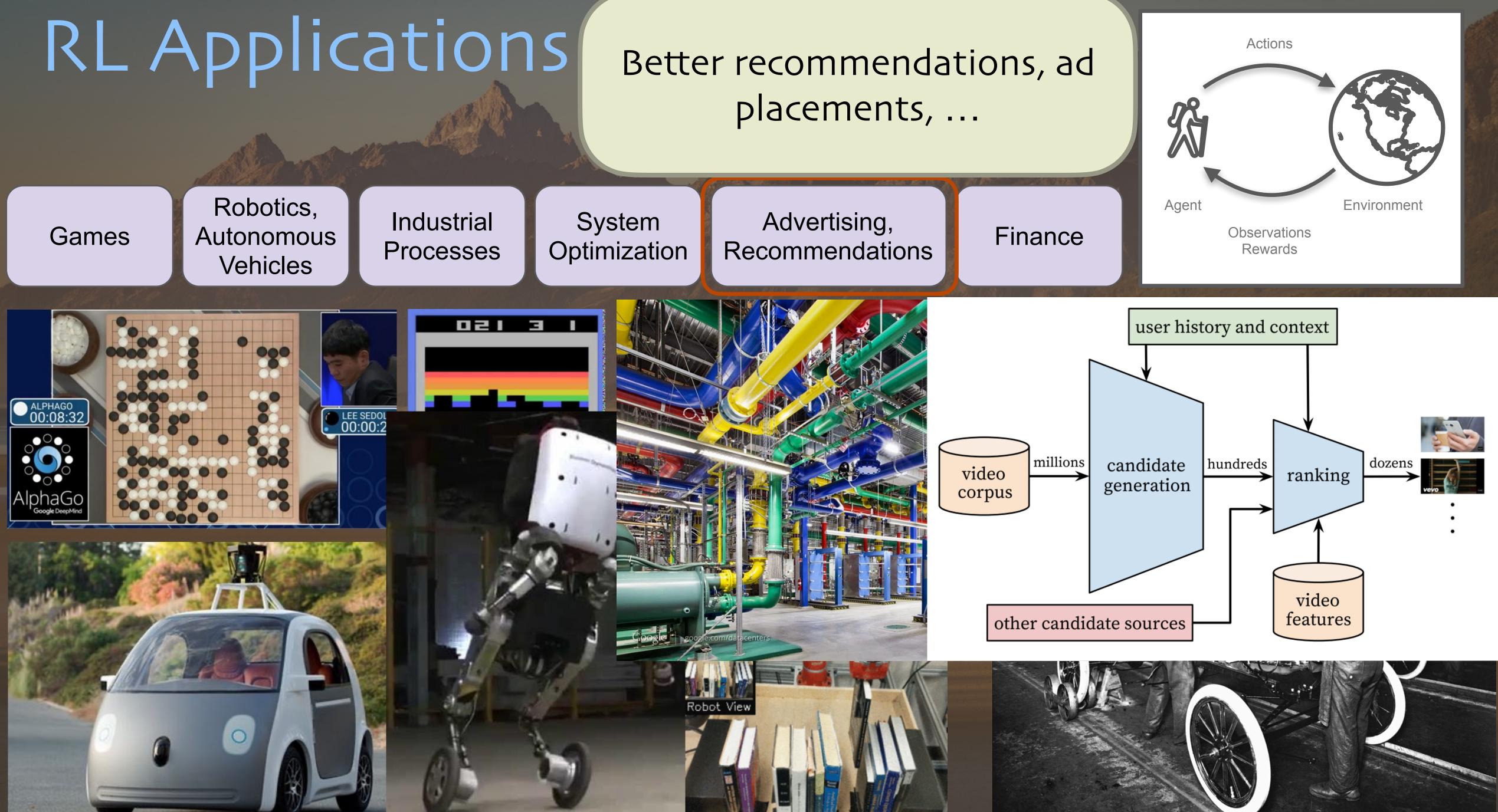
ALPHAGO 00:08:32 Robotics, Autonomous Vehicles

Industrial Processes

021 <u>3</u> 1

System Optimization

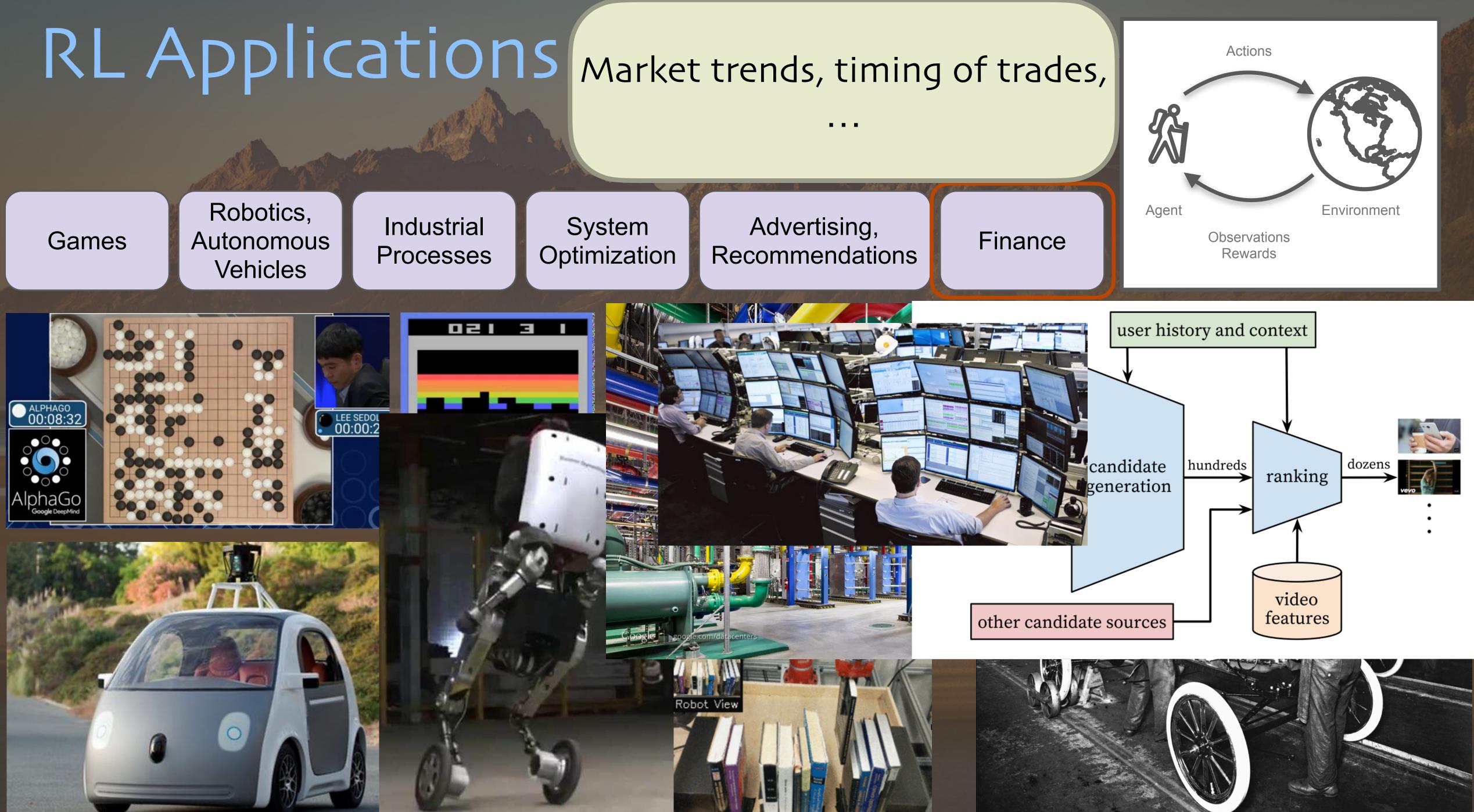




Robotics, Vehicles

Industrial

System

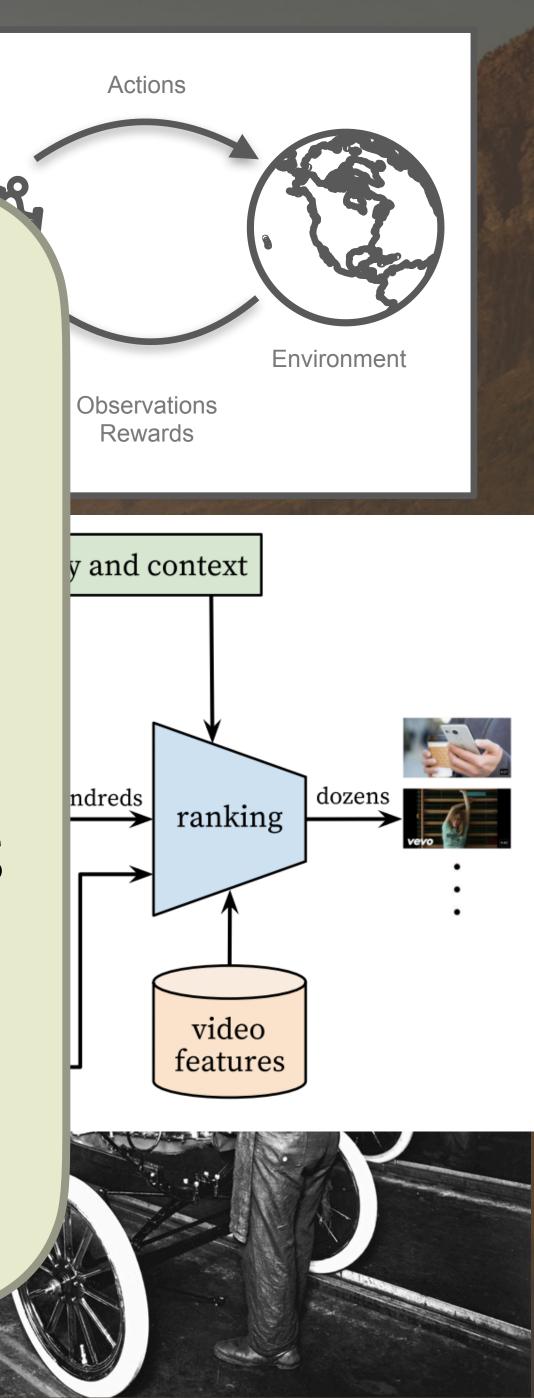


RL Applications Market trends, timing of trades,

Rob Games Auton Veh ALPHAGO

Common Theme:

The ideal applications have sequential, evolving state for the environment plus the agent.

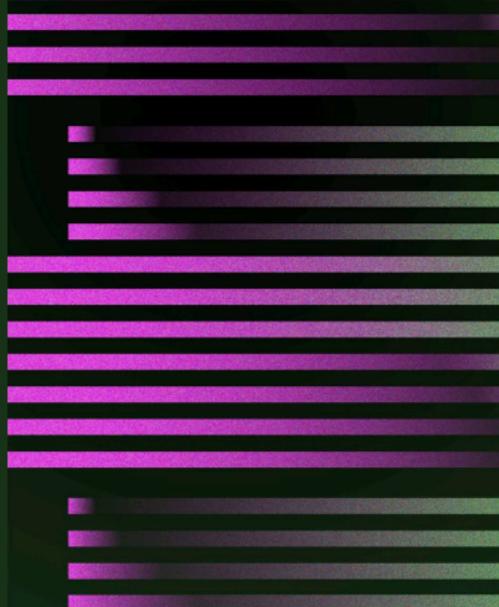


RL Applications

E 1 $\leftarrow \rightarrow C$ ○ A https://openai.com/blog/chatgpt/ \odot Introducing ChatGPT research release Try > Learn more > (S) OpenAI BLOG API RESEARCH

ChatGPT: Optimizing Language Models for Dialogue

We've trained a model called ChatGPT which interacts in a conversational way. The dialogue format makes it possible for ChatGPT to answer followup questions, admit its mistakes, challenge incorrect premises, and reject inappropriate requests. ChatGPT is a sibling model to <u>InstructGPT</u>, which is trained to follow an instruction in a prompt and provide a detailed response.



TRY CHATGPT 7

November 30, 2022 13 minute read

Actions

ChatGPT! https://openai.com/blog/chatgpt/

Methods

We trained this model using Reinforcement Learning from Human Feedback (RLHF), using the same methods as <u>instructor</u>, but with slight differences in the data collection setup. We trained an initial model using supervised fine-tuning: human AI trainers provided conversations in which they played both sides—the user and an AI assistant. We gave the trainers access to model-written suggestions to help them compose their responses. We mixed this new dialogue dataset with the InstructGPT dataset, which we transformed into a dialogue format.

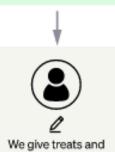
To create a reward model for reinforcement learning, we needed to collect comparison data, which consisted of two or more model responses ranked by quality. To collect this data, we took conversations that AI trainers had with the chatbot. We randomly selected a model-written message, sampled several alternative completions, and had AI trainers rank them. Using these reward models, we can fine-tune the model using Proximal Policy Optimization. We performed several iterations of this process.

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output



Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

C D We give treats and punishments to teach...

Step 3

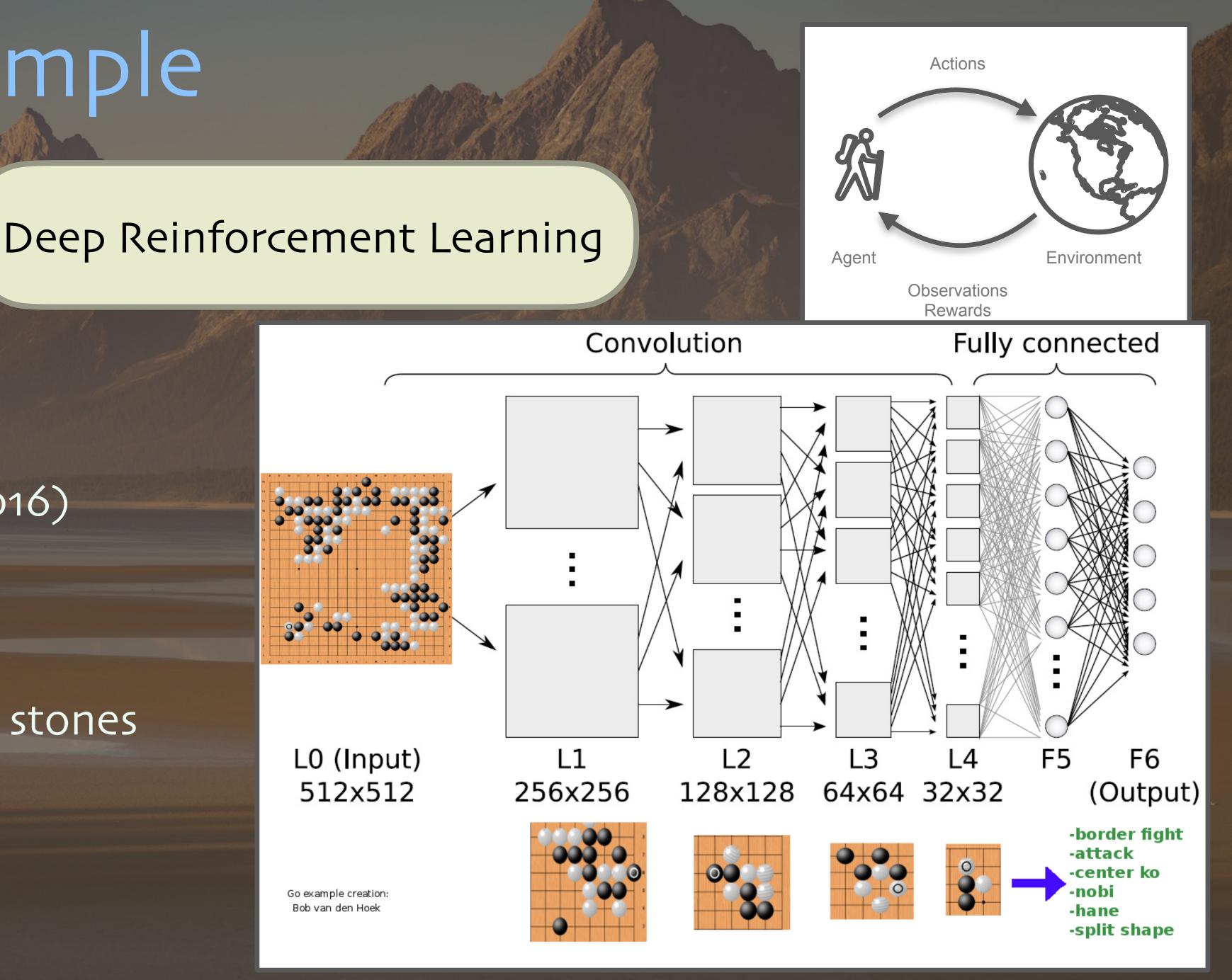
Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

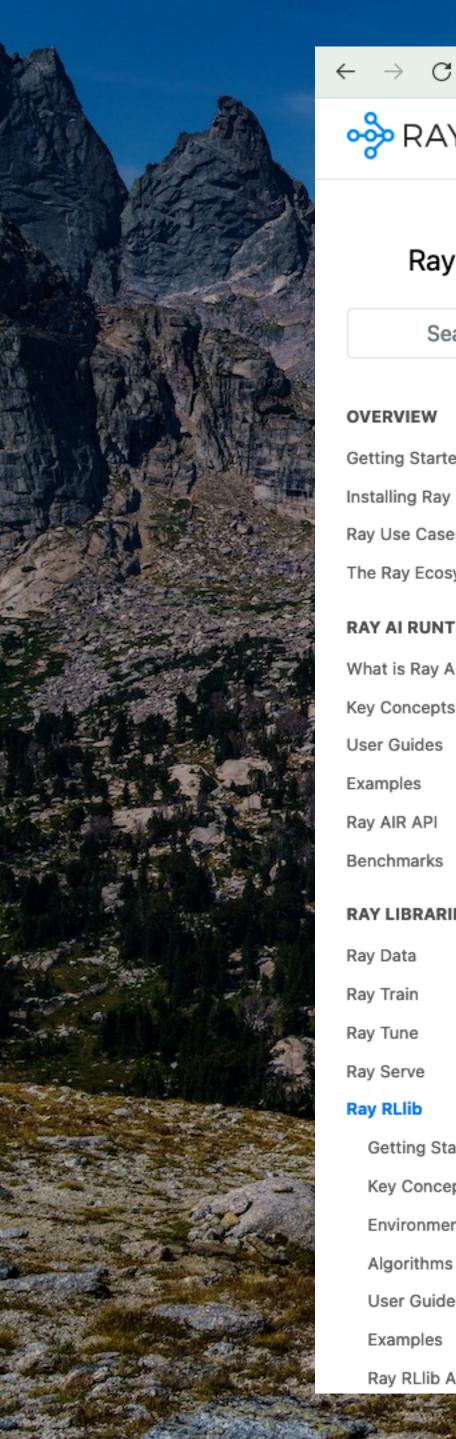
The PPO model is initialized from the supervised policy.

AlphaGo example

AlphaGo (Silver et al. 2016) • **Observations**: • board state • Actions: where to place the stones \bigcirc • Rewards: • 1 if you win o otherwise \bigcirc



Ray RLIIB



Get started

○ A = https://docs.ray.io/en/master/rllib/index.html

Use cases

 \equiv

Libraries ~

Docs

Resources ~

Ray 3.0.0.dev0

Search the docs ...

OVERVIEW

💑 RAY

Getting Started Guide

Installing Ray

Ray Use Cases

The Ray Ecosystem

RAY AI RUNTIME

What is Ray AI Runtime (AIR)? Key Concepts User Guides Examples Ray AIR API Benchmarks

 \sim

 \sim

 \mathbf{v}

 \sim

 \sim

 \sim

RAY LIBRARIES

Ray Data Ray Train Ray Tune Ray Serve Ray RLlib

Getting Started with RLlib

Key Concepts

Environments

Algorithms

User Guides

Examples

Ray RLlib API

RLlib: Industry-Grade Reinforcement Learning

RLlib is an open-source library for reinforcement learning (RL), offering support for production-level, highly distributed RL workloads while maintaining unified and simple APIs for a large variety of industry applications. Whether you would like to train your agents in a **multi-agent** setup, purely from offline (historic) datasets, or using externally connected simulators, RLlib offers a simple solution for each of your decision making needs.

If you either have your problem coded (in python) as an RL environment or own lots of pre-recorded, historic behavioral data to learn from, you will be up and running in only a few days.

RLlib is already used in production by industry leaders in many different verticals, such as climate control, industrial control, manufacturing and logistics, finance, gaming, automobile, robotics, boat design, and many others.

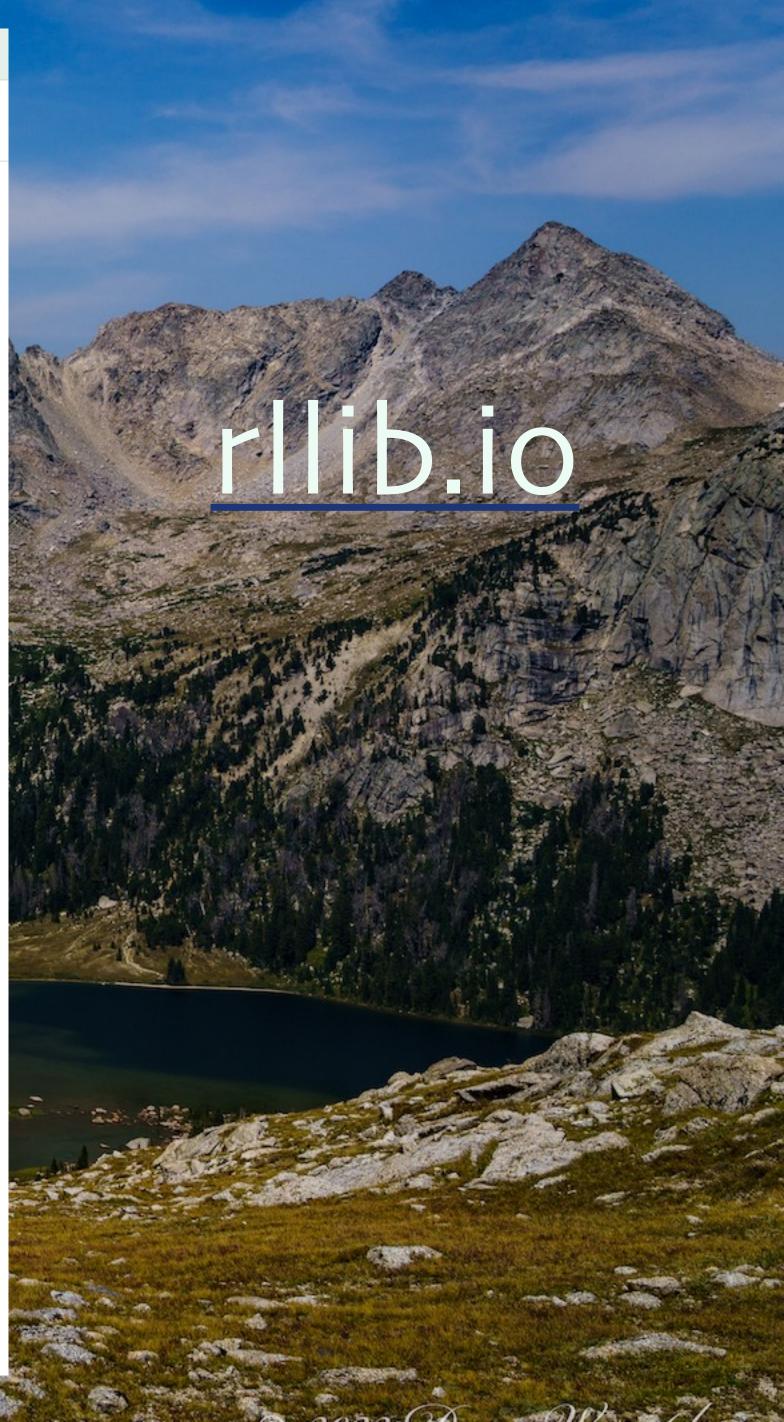
RLlib in 60 seconds

It only takes a few steps to get your first RLlib workload up and running on your laptop.

RLlib does not automatically install a deep-learning framework, but supports TensorFlow (both 1.x with static-graph and 2.x with eager mode) as well as **PyTorch**. Depending on your needs, make sure to install either TensorFlow or PyTorch (or both, as shown below):

8 €

II O 🕇

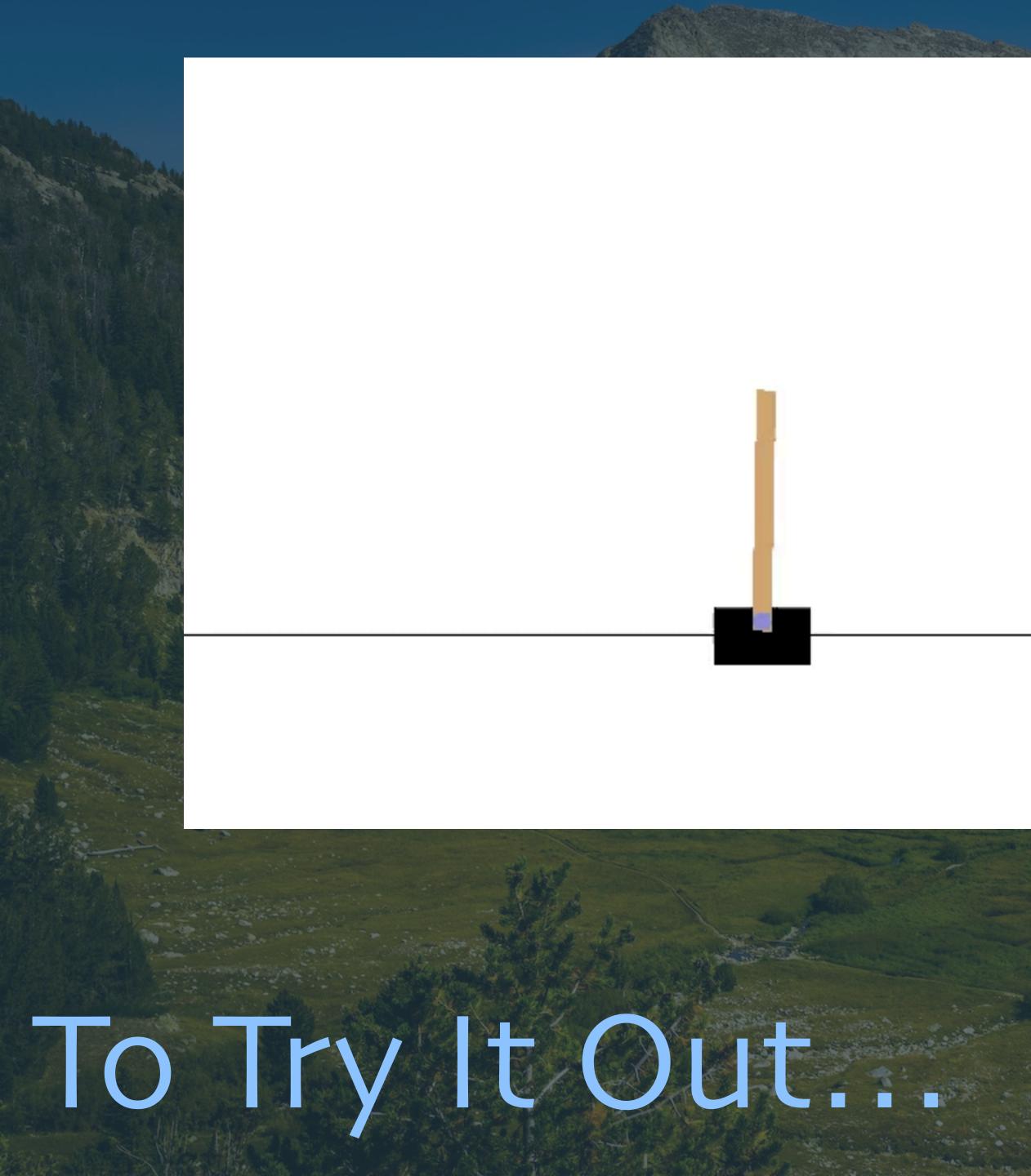


Install what we need: \$ pip install "ray[rllib]" tensorflow \ tensorflow-probability pygame

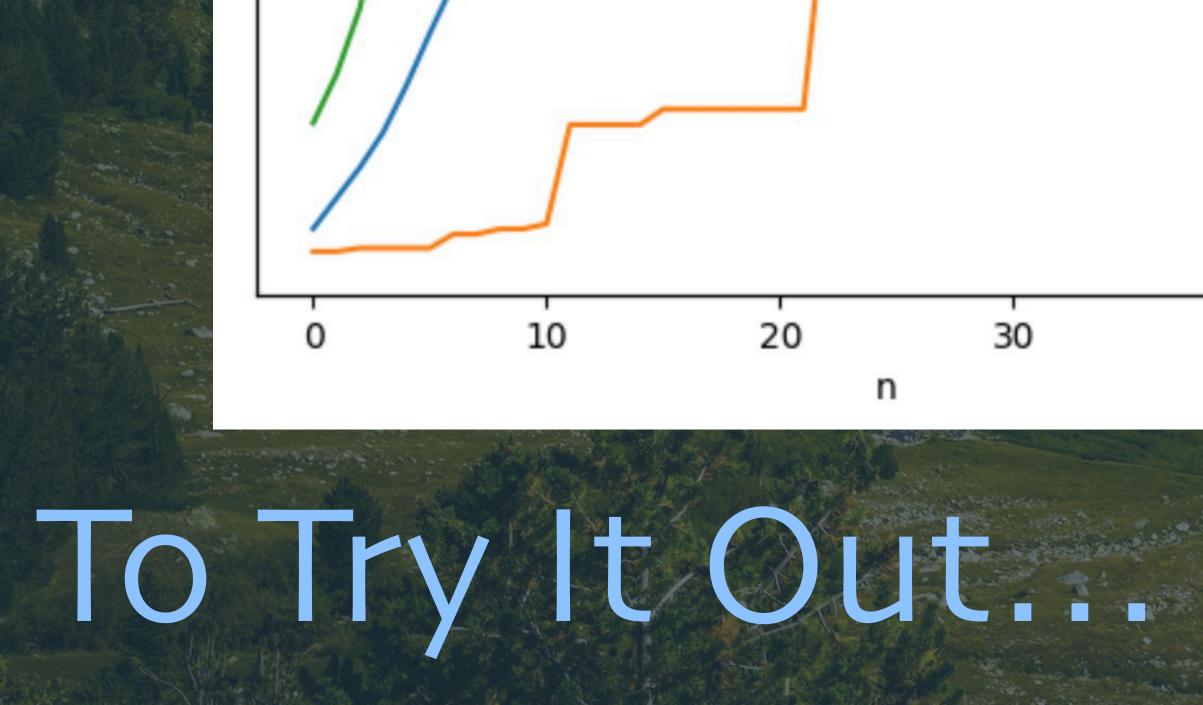
Train CartPole using DQN, stop after 100 iterations: # At end, will print the next command to run: \$ rllib train --algo DQN --env 'CartPole-v1' \ --stop '{"training_iteration": 200}'

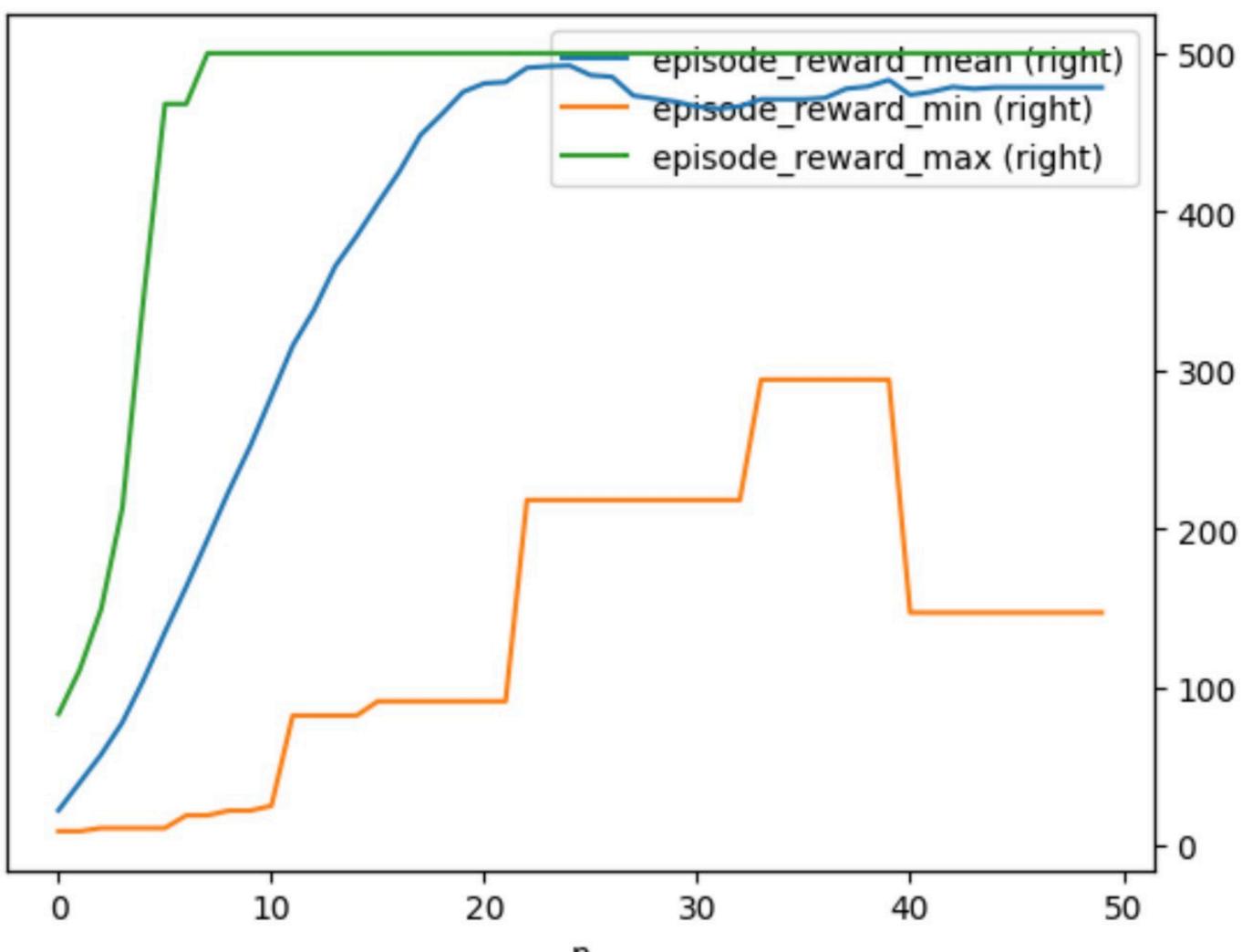
Run CartPole and see how well it goes: \$ rllib evaluate /path/to/checkpoint --algo DQN

To Try It Out...



Example episode after training.





Training n=50 episodes with PPO. Max score is 500. Note that the average actually dips above 20 episodes. Probably overfitting?

RLIIB Benefits

Rich set of RL algorithms
... and features for building your own.
Integrated with OpenAI Gym/Gymnasium
... and you can build your own environments.
Integrated with PyTorch and TensorFlow.
Excellent performance... from Ray!

More Reinforcement Learning Concepts and Challenges

Exploitation VS. Exploration

What if the agent finds an action with a good short-term reward? Should it keep exploiting it?

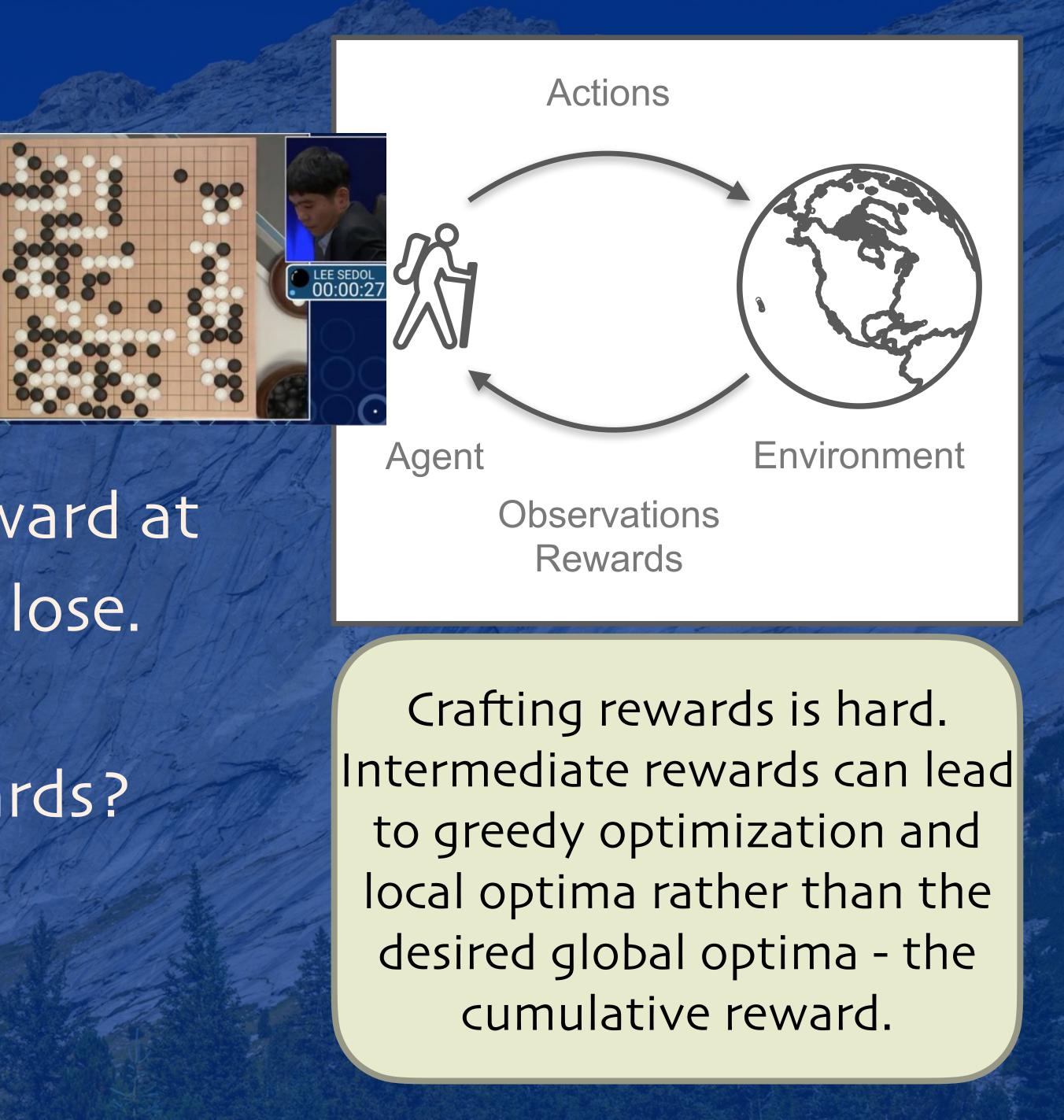
Or, should it explore other actions, in case even better options exist?



What Makes a Good Reward?

Games often only provide a reward at the end of the episode - win or lose.

What about intermediate rewards?



Environments and Offline RL

What if you want to train a system for optimizing a chemical plant?

You can't let a naïve policy drive your plant while it learns!! The plant might be too complex to simulate, too. The higher the stakes, the greater the fidelity required.

However, since the environment "generates" data in normal RL, what about using historical data, instead?

Offline RL works with historical data instead of interacting with the environment.

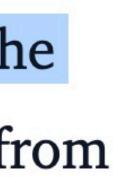
Reinforcement Learning and ChatGPT

"Reinforcement Learning from Human Feedback"

Useful references:
https://openai.com/blog/chatgpt
huggingface.co/blog/rlhf

shortcomings of the loss itself people define metrics that are designed to better capture human preferences such as <u>BLEU</u> or <u>ROUGE</u>. While being better suited than the loss function itself at enabled language models to begin to align a model trained on a general corpus of text data to that of complex human values.

Writing a loss function to capture these attributes seems intractable and most language models are still trained with a simple next token prediction loss (e.g. cross entropy). To compensate for the measuring performance these metrics simply compare generated text to references with simple rules and are thus also limited. Wouldn't it be great if we use human feedback for generated text as a measure of performance or go even one step further and use that feedback as a loss to optimize the model? That's the idea of Reinforcement Learning from Human Feedback (RLHF); use methods from reinforcement learning to directly optimize a language model with human feedback. RLHF has



Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior. Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

This data is used to fine-tune GPT-3.5 with supervised learning.

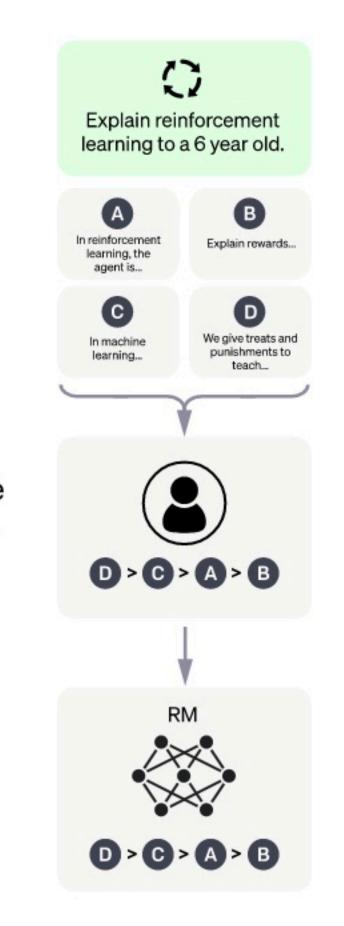
Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from Write a story the dataset. about otters. PPO The PPO model is initialized from the supervised policy. The policy generates Once upon a time... an output. The reward model calculates a reward for the output. The reward is used to update the \mathbf{r}_k policy using PPO.

Step 1

A prompt is

A labeler

behavior.

sampled from our

demonstrates the

desired output

prompt dataset.

Collect demonstration data and train a supervised policy. Step 2

Collect comparison data and train a reward model.

IS Write a story about otters. Sample some prompts and PPO el is the instead of the AI. licy. generates Once upon a time... an output. D > C > A > B The reward model calculates a reward for the output. The reward is used ¥X I to update the \mathbf{r}_k D > C > A > B policy using PPO.

have humans write answers A labeler ranks the outputs from best to worst. This data is used to train our reward model.

This data is used to fine-tune GPT-3.5 with supervised learning.

We give treats and

punishments to teach ...

0

Explain reinforcement

learning to a 6 year old.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

0 Explain reinforcement learning to a 6 year old.

We give treats and

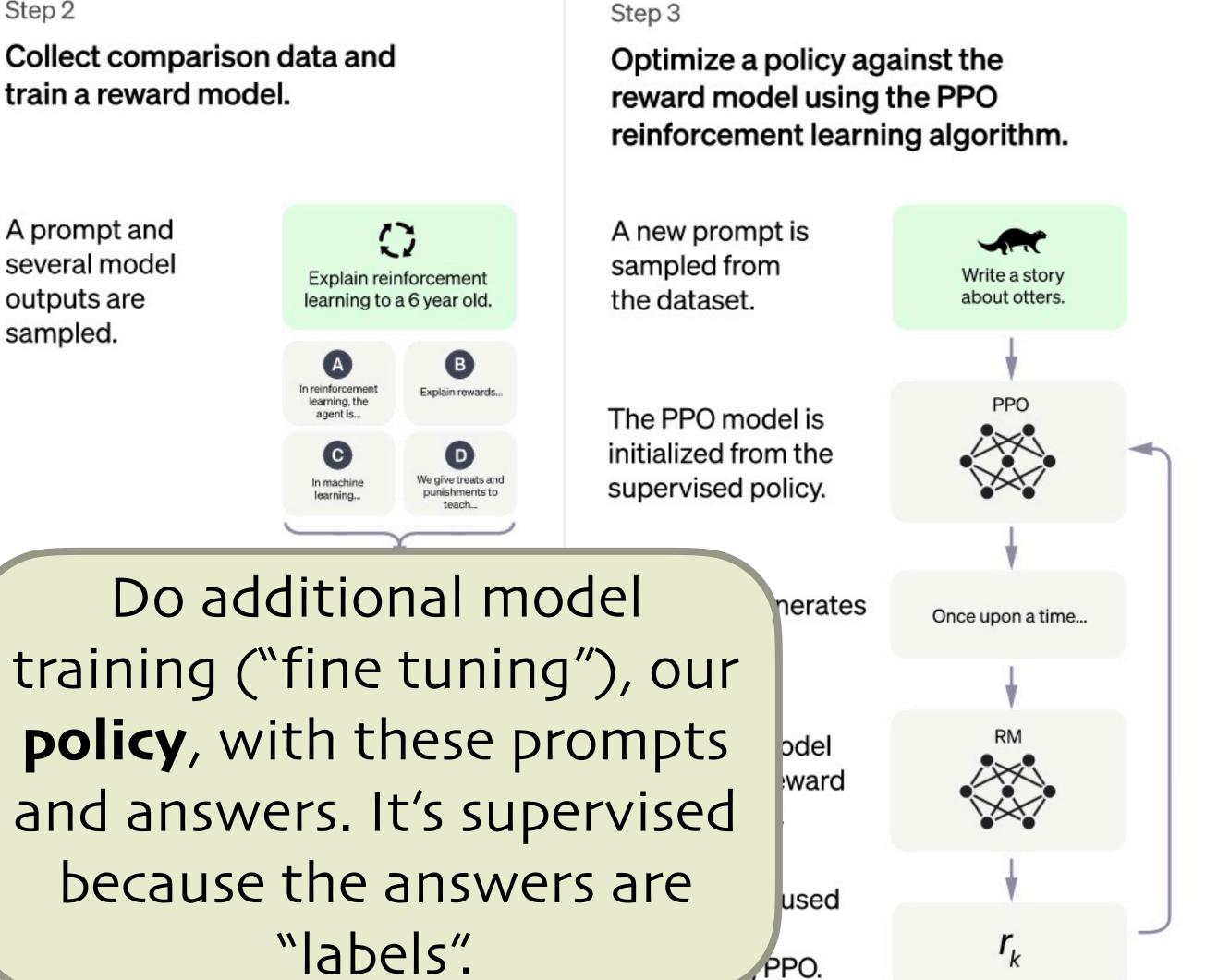
punishments to teach...

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

train a reward model.

A prompt and several model outputs are sampled.



Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior. Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

This data is used to fine-tune GPT-3.5 with supervised learning.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



Step 3

Optimize a policy against the reward model using the PPO

For a given prompt, collect several model-generated outputs.

Step 1

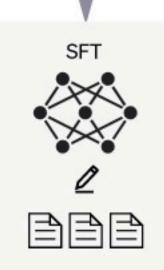
Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

We give treats and punishments to teach...



Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The DDO model is

A human ranks ("labels") the prompts.

The reward is used to update the policy using PPO.

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior. Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach...

This data is used to fine-tune GPT-3.5 with supervised learning.

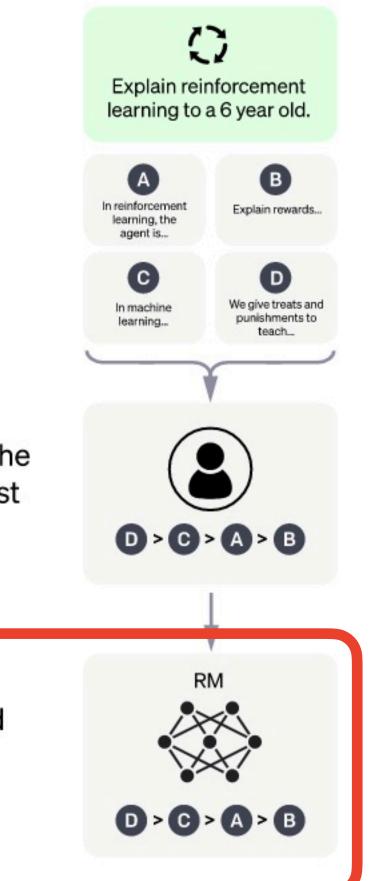
Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.



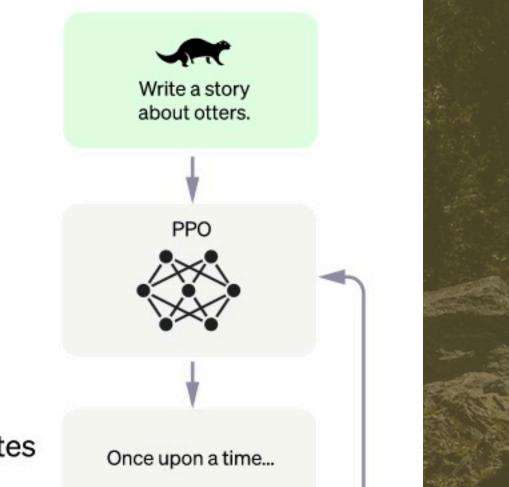
Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from the dataset.

The PPO model is initialized from the supervised policy.

The policy generates an output.



Use this labeled data to train a **reward model** for reinforcement learning. This is different than the GPT model!

Step 1

Step 2

Collect demonstration data and train a supervised po

A prompt is sampled from our prompt dataset.

Now optimize the **policy** language model with a series of prompts. PPO is an algorithm for RL, also developed by OpenAI.

A labeler demonstrates the desired output behavior.

We give treats and punishments to teach...

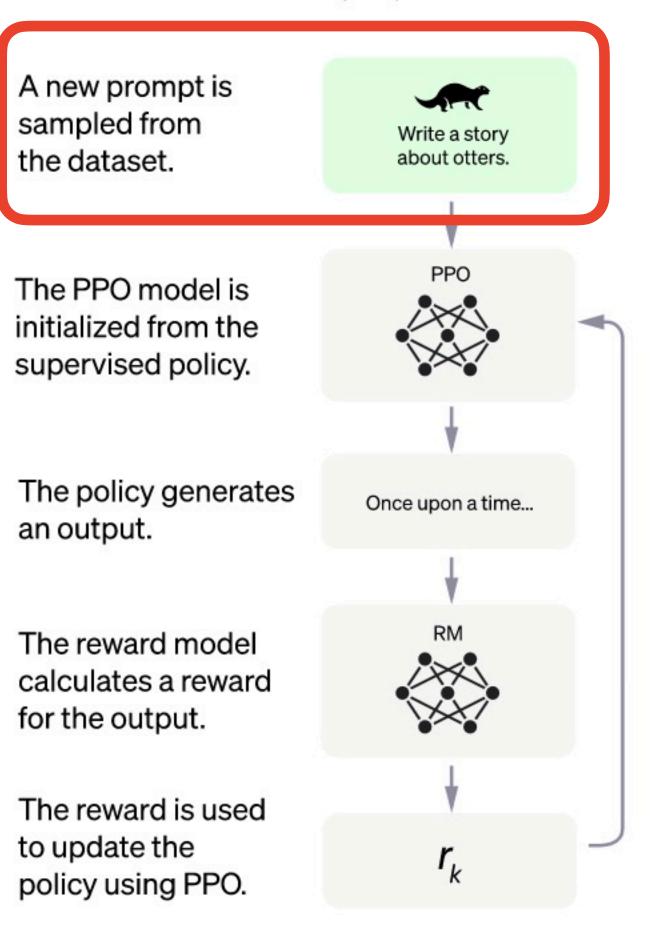
Exp lear

This data is used to fine-tune GPT-3.5 with supervised learning.

ounishments to A labeler ranks the outputs from best to worst. D > C > A > B This data is used to train our ¥X I reward model. D > C > A > B

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm. "Proximal Policy Optimization"



Step 1

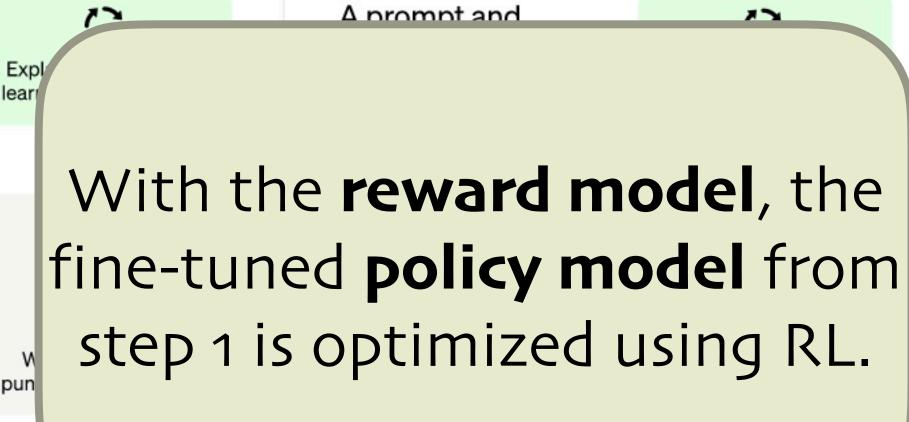
Collect demonstration data and train a supervised policy. Step 2

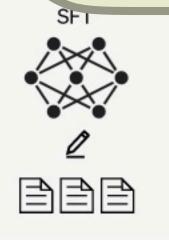
Collect comparison data and train a reward model.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.





D · C · A · B to worst. This data is used to train our ¥X I reward model. D > C > A > B

27

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from Write a story the dataset. about otters. The PPO model is initialized from the supervised policy. The policy generates Once upon a time... an output. The reward model calculates a reward for the output. The reward is used to update the r_k policy using PPO.

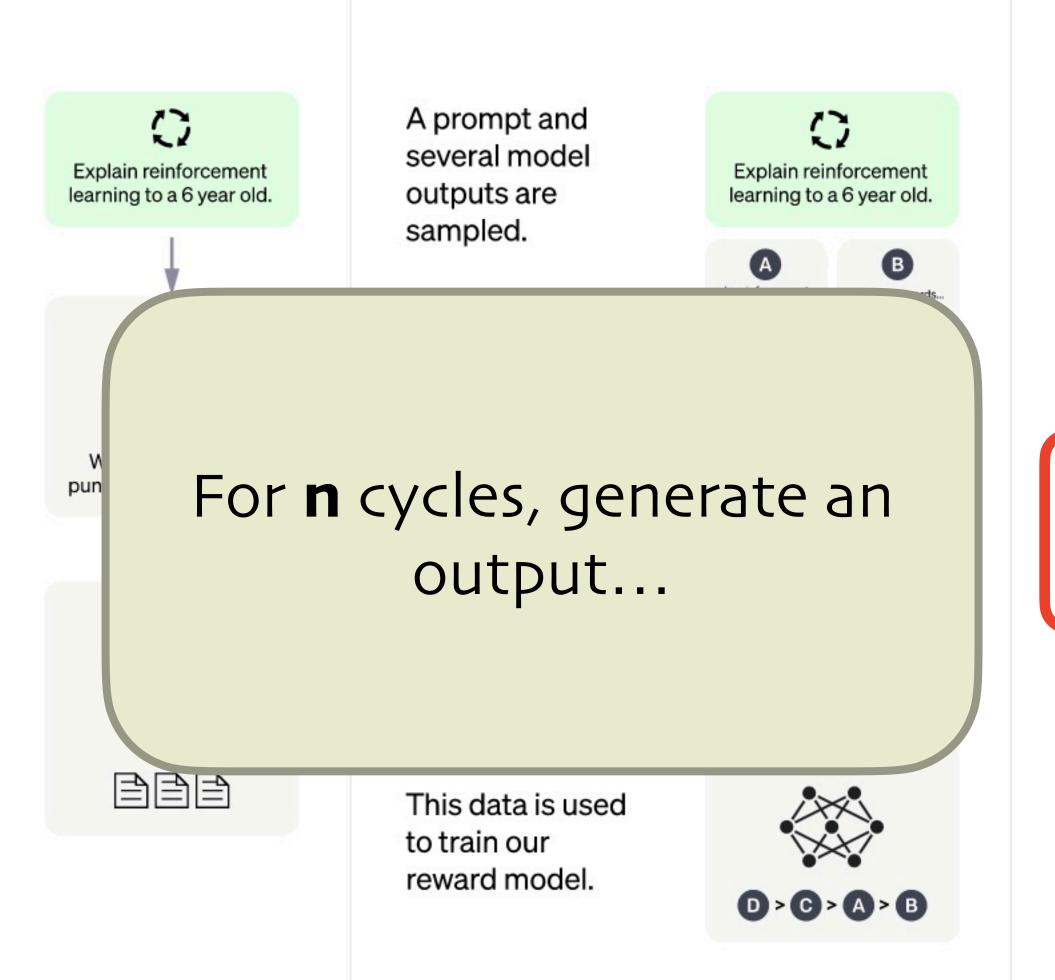
Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.



Step 2

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from Write a story the dataset. about otters. The PPO model is initialized from the supervised policy. The policy generates Once upon a time... an output. RM The reward model calculates a reward for the output. The reward is used to update the r_k policy using PPO.

Step 1

Collect demonstration data and train a supervised policy.

0

Explain reinforcement

learning to a 6 year old.

We give treats and

punishm

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3.5 with supervised learning.

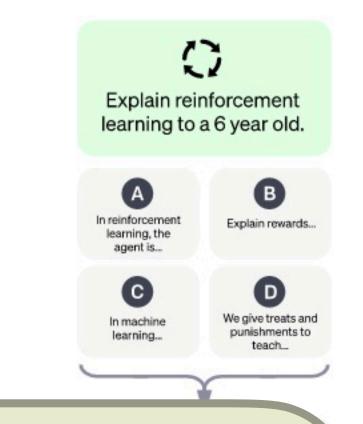
... get the reward for this output from the reward model.

Step 2

Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

Credit: openai.com/blog/chatgpt



Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

A new prompt is sampled from Write a story the dataset. about otters. The PPO model is initialized from the supervised policy. The policy generates Once upon a time... an output. The reward model calculates a reward for the output. The reward is used to update the \mathbf{r}_k policy using PPO.

Step 1

Collect demonstration data and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

0 Explain reinforcement learning to a 6 year old.

We give treats and punishments to teach... Step 2

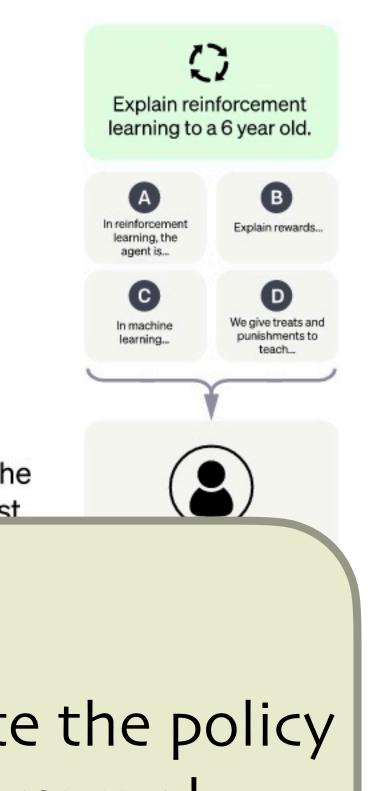
Collect comparison data and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best

This data is used to fine-tune GPT-3.5 with supervised learning.

Use PPO to update the policy based on the reward.

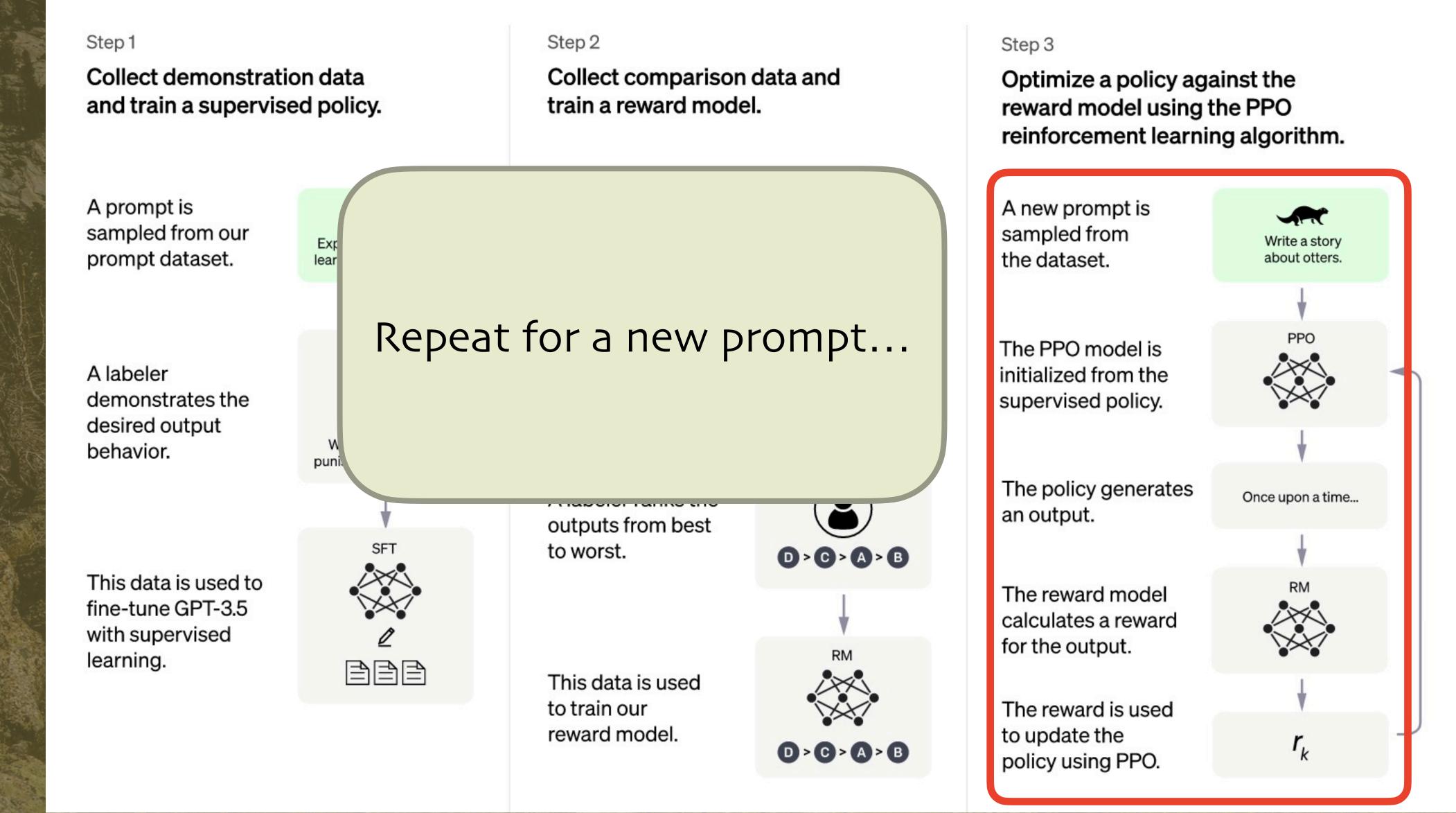


lgpt

Step 3

Optimize a policy against the reward model using the PPO reinforcement learning algorithm.

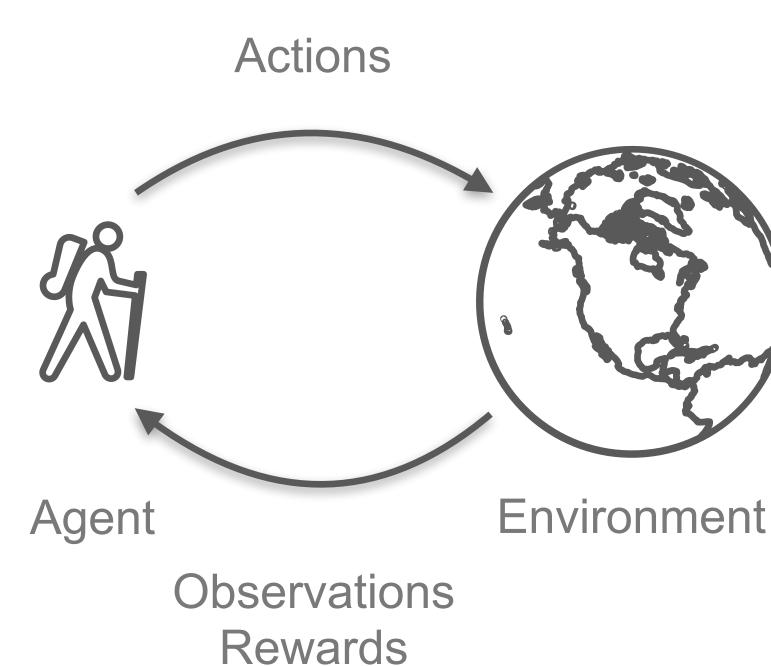
A new prompt is sampled from Write a story the dataset. about otters. PPO The PPO model is initialized from the supervised policy. The policy generates Once upon a time... an output. The reward model calculates a reward for the output. The reward is used to update the r_k policy using PPO.



Reinforcement Learning for Recommendations and Ad Placements

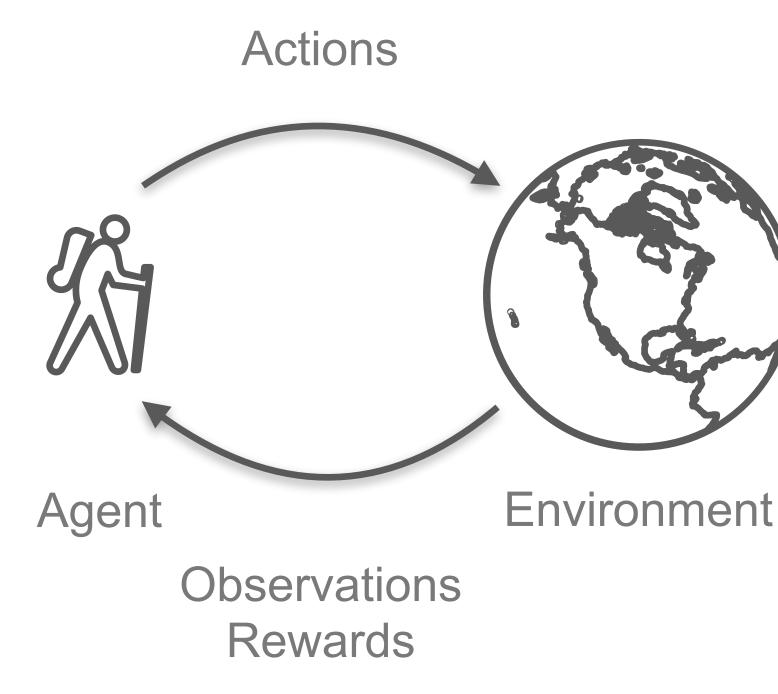
Preferences Change...

• You bought a toilet brush. Do you want to keep seeing ads for toilet 0 brushes? • You've watched five action movies in a row. Do you want to watch a sixth action \bigcirc movie or maybe watch something else for a change?



Preferences Change...

 How have your interests changed because of: the weather 0 the economy local, national, or world affairs \bigcirc 0 ???

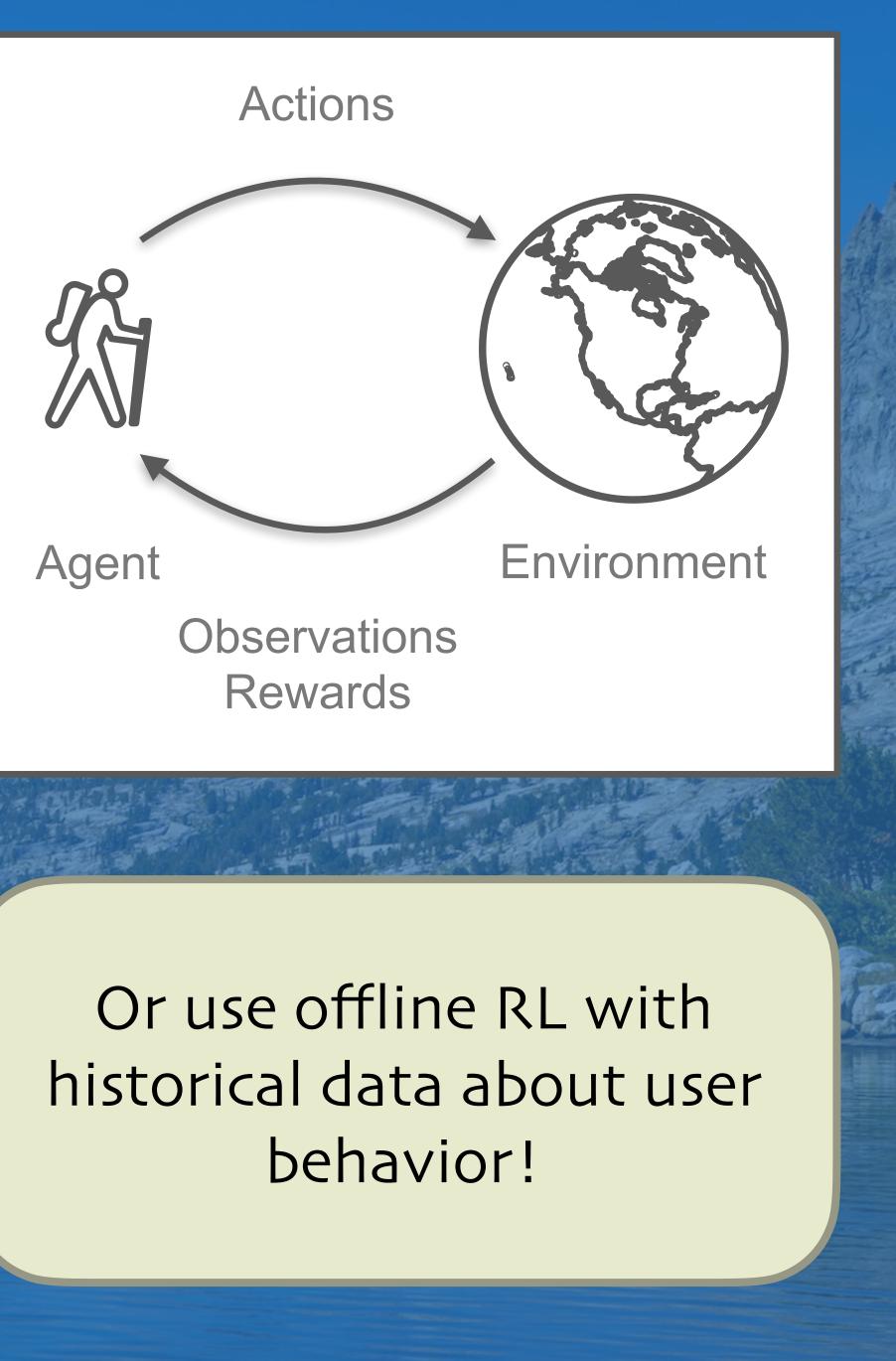


RL for recommendations/ads helps with evolving preferences.

RL is less able to scale to large state spaces (e.g., all available movies catalog items).
 Traditional supervised learning methods are more scalable.

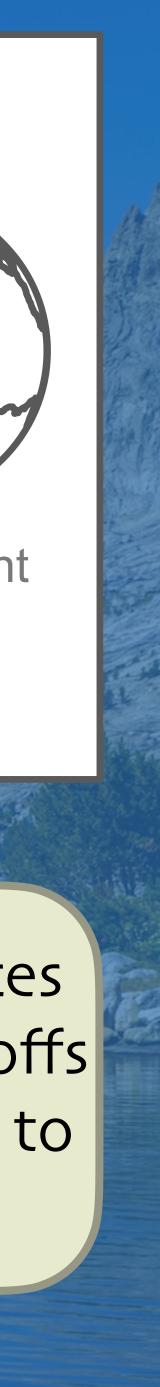
Real recommendation and ad systems must combine approaches; use RL once a subset of the state space is identified using a "classic" supervised learning approach.

• A simulator is used to model real user behavior. (Training with real users doesn't scale well, etc.)

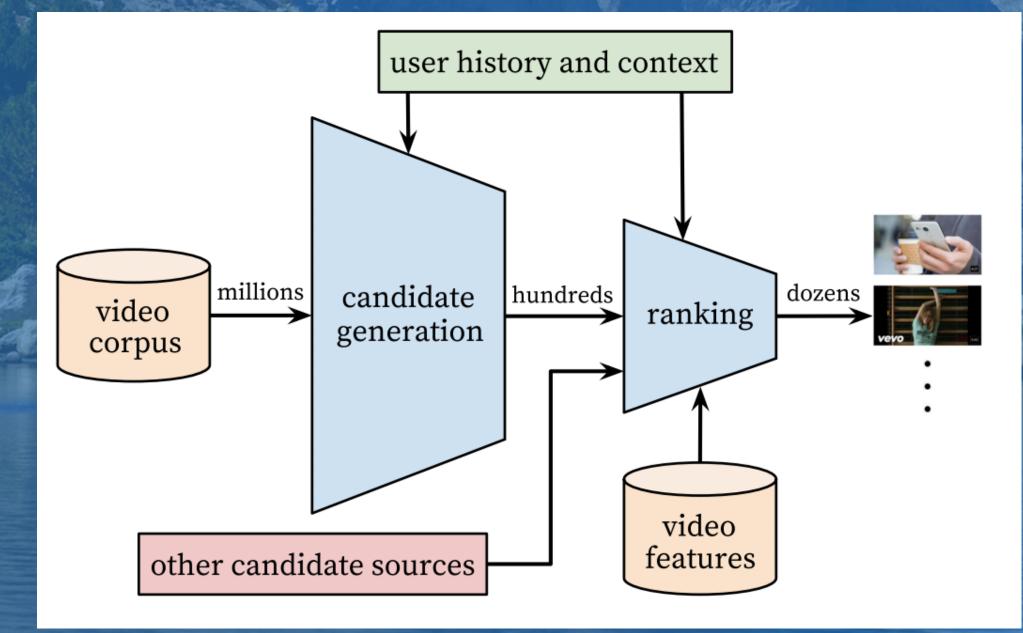


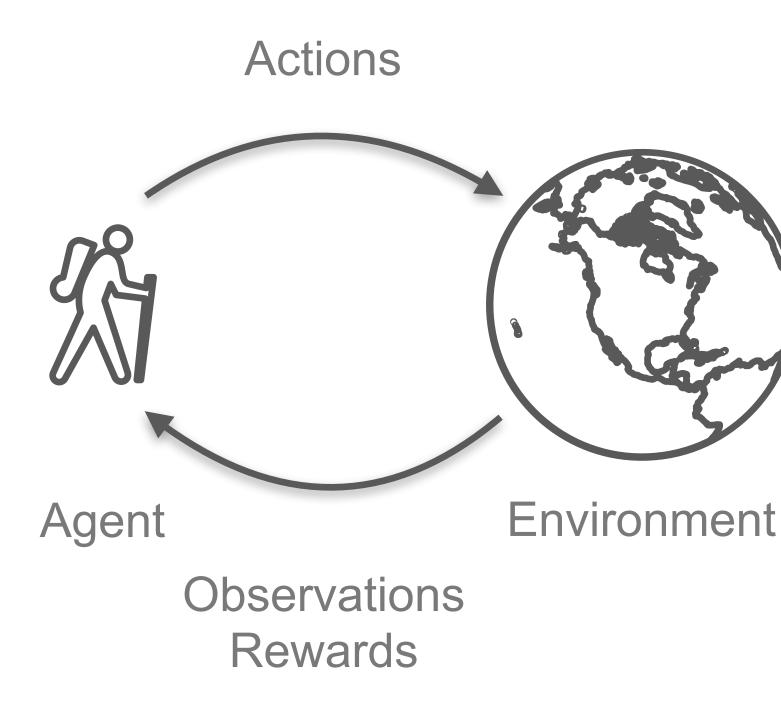
• What is the reward? Some combination of user happiness measures? • Could be very specific to the subgenre of entertainment or product category.

Reward calculation balances mixed preferences & tradeoffs as they evolve in response to use actions.



• YouTube! Research: o research.google/pubs/pub45530/





See the Anyscale RL tutorial link at the end for a Recommendation example

Don't forget to vote for this session in the GOTO Guide app

To Learn More...

rllib.io ray.io Anyscale RL & RLlib course: https://applied-rl-course.netlify.app/en More resources in the extra slides!

GOTO Chicago, May 23, 2023 dean@deanwampler.com deanwampler.com/talks IBM Research @discuss.systems@deanwampler <u>adeanwampler</u>

Extra Slides

To Learn More...

Courses

- Hugging Face RL course https://huggingface.co/deep-rl-course/ Delta Academy https://delta-academy.xyz/
- Fast Deep RL https://courses.dibya.online/p/fastdeeprl 0 Coursera RL Specialization from U of A https://www.coursera.org/specializations/reinforcement-learning
- Video lectures
- David Silver's lectures https://www.davidsilver.uk/teaching/
- Sergey Levine's lectures http://rail.eecs.berkeley.edu/deeprlcourse/ 0 Books
 - 0
 - \bigcirc edition/9781838826994
 - Other
 - Spinning Up https://spinningup.openai.com/en/latest/ (a well-known resource for RL)
 - Illustrated RL from Human Feedback: https://huggingface.co/blog/rlhf

Udacity RL coursehttps://www.udacity.com/course/reinforcement-learning--ud6oo

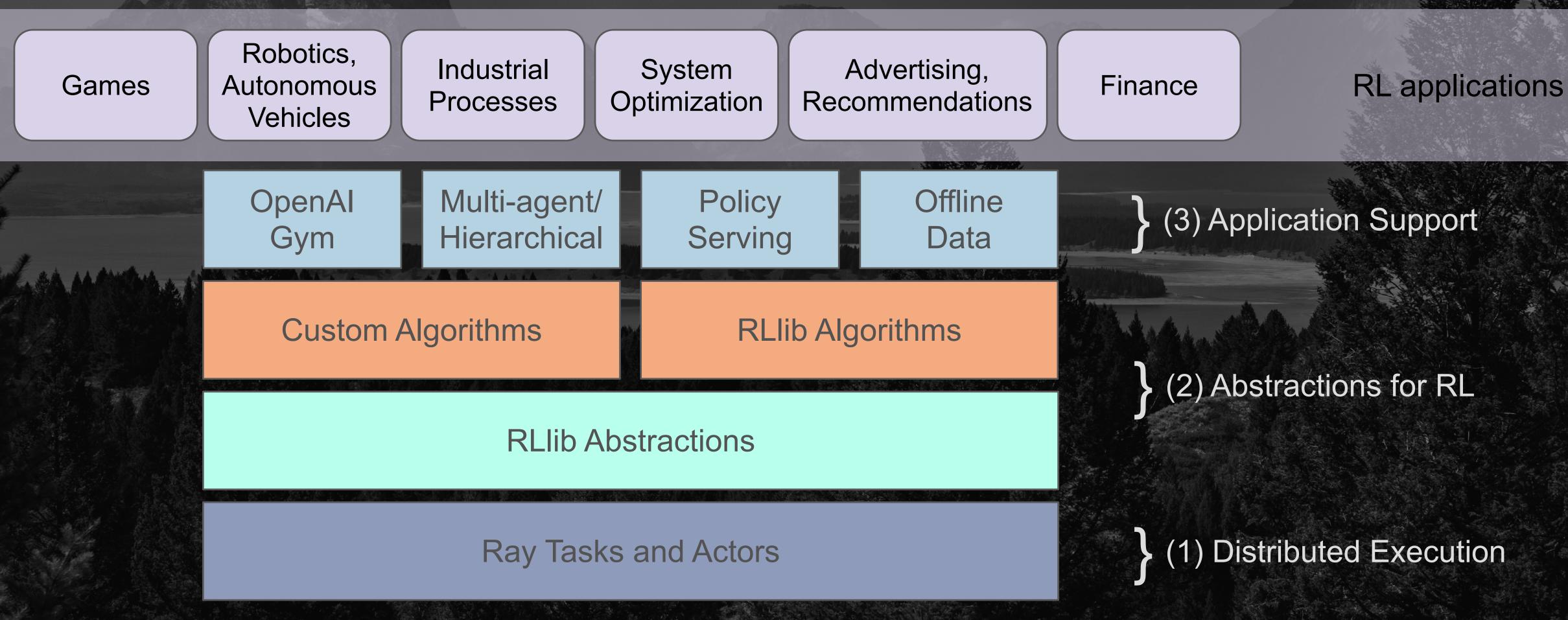
Sutton & Barto http://incompleteideas.net/book/the-book-2nd.html (considered the definitive RL book) Deep RL Hands-On https://www.packtpub.com/product/deep-reinforcement-learning-hands-on-second-

https://twitter.com/hardmaru/status/1597950795361660928

Another example of why RL; how else are you going to train your new puppy?

More about RLIIB

Architecture of RLlib



Some Algorithms in RLlib

High-throughput architectures

- Distributed Prioritized Experience Replay (Ape-X)
- Importance Weighted Actor-Learner Architecture (IMPALA)
- Asynchronous Proximal Policy Optimization (APPO)

Gradient-based

Soft Actor-Critic (SAC)

- Advantage Actor-Critic (A2C, A3C)
- Deep Deterministic Policy Gradients (DDPG, TD3)
- Deep Q Networks (DQN, Rainbow, Parametric DQN)
- Policy Gradients
- Proximal Policy Optimization (PPO)

C) e (IMPALA) PO)

0

gradient-free Augmented Random Search (ARS) Evolution Strategies

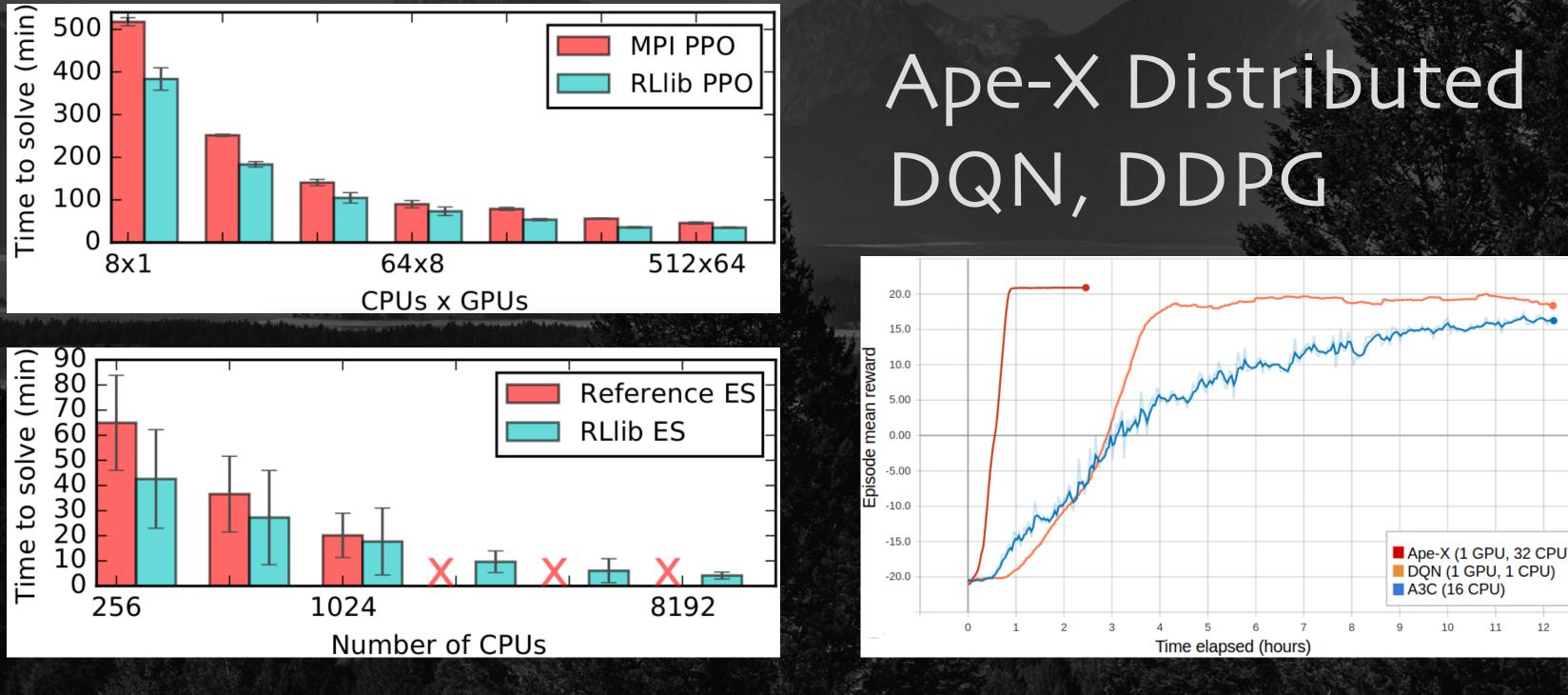
 Multi-agent specific
 QMIX Monotonic Value Factorisation (QMIX, VDN, IQN)

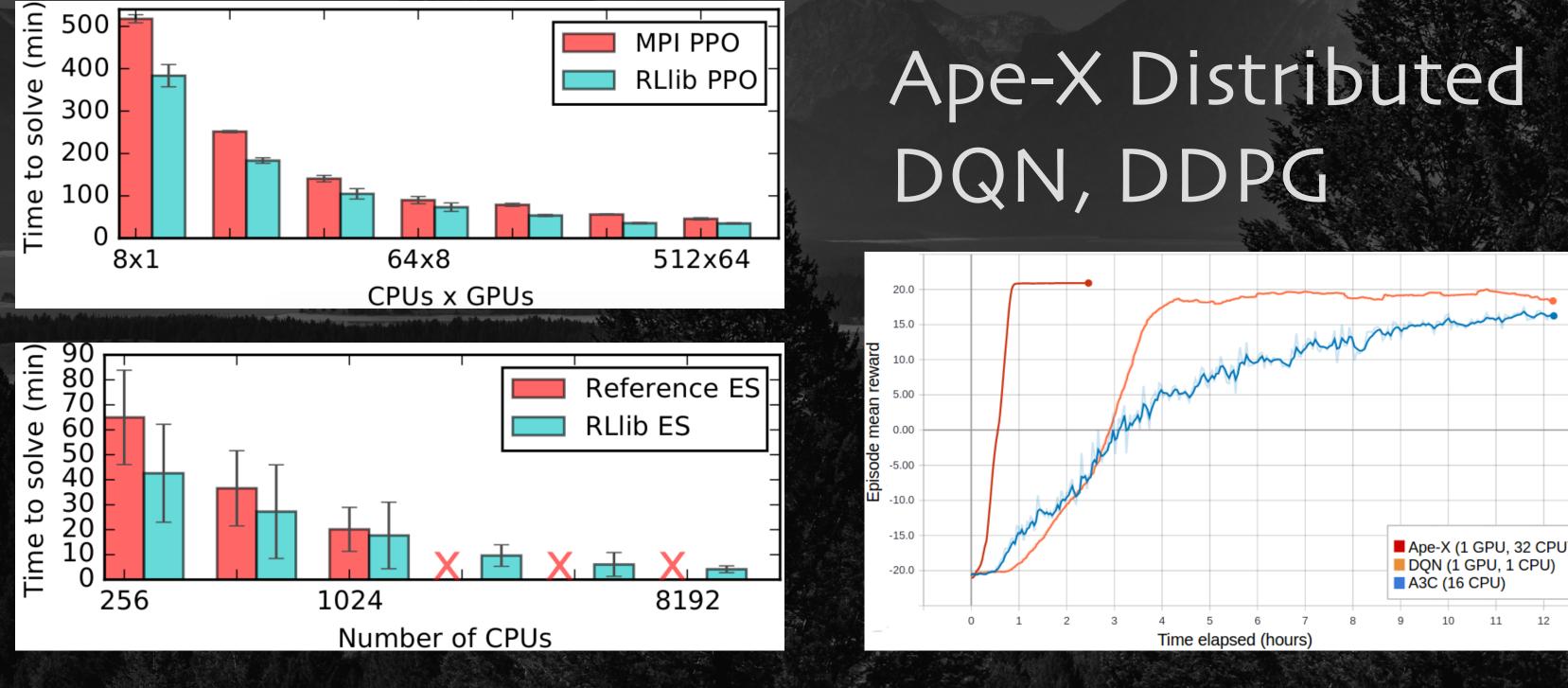
 Offline
 Advantage Re-Weighted Imitation Learning (MARWIL)

Excellent Performance vs. "Hand-tuned" Implementations

Distributed PPO

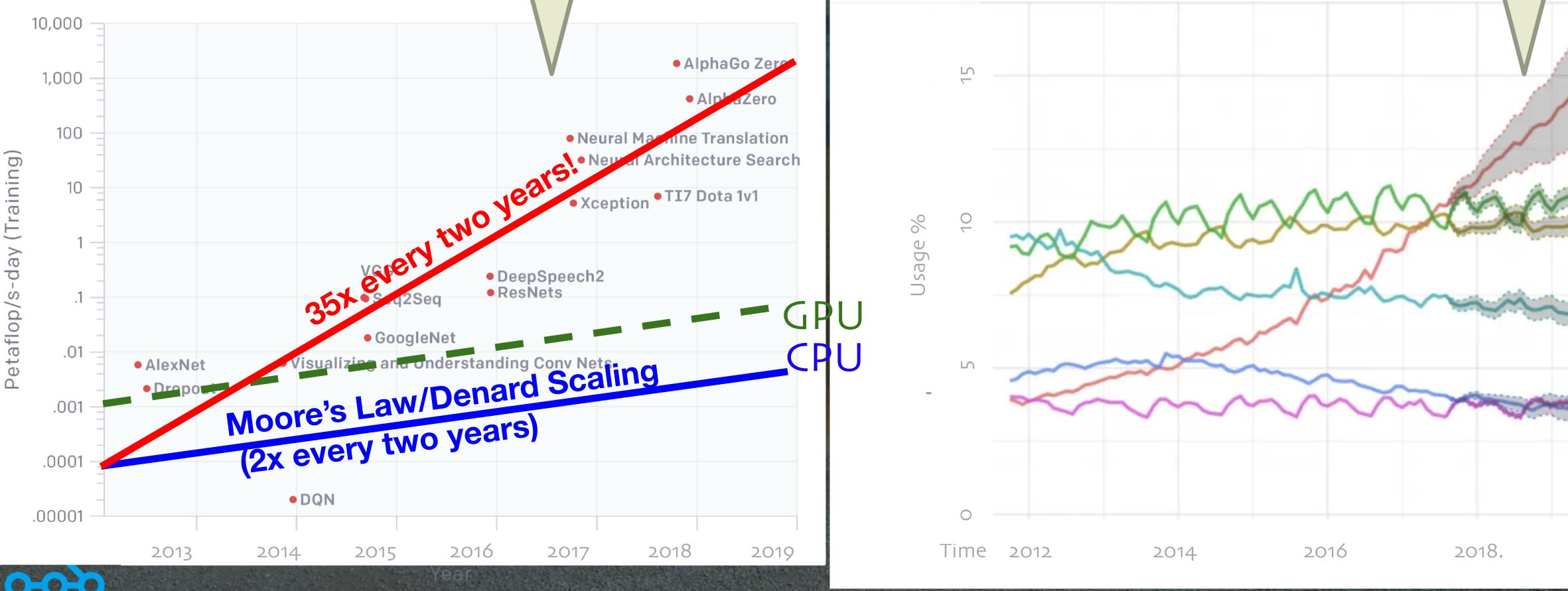
Evolution Strategies





To Major Trends

Model sizes and therefore compute requirements outstripping Moore's Law



https://openai.com/blog/ai-and-compute/

Hence, there is a pressing need for a robust, easy to use Python-centric distributed computing system

Python growth driven by ML/AI and other data science workloads

The Data & ML Landscape Today

ETL

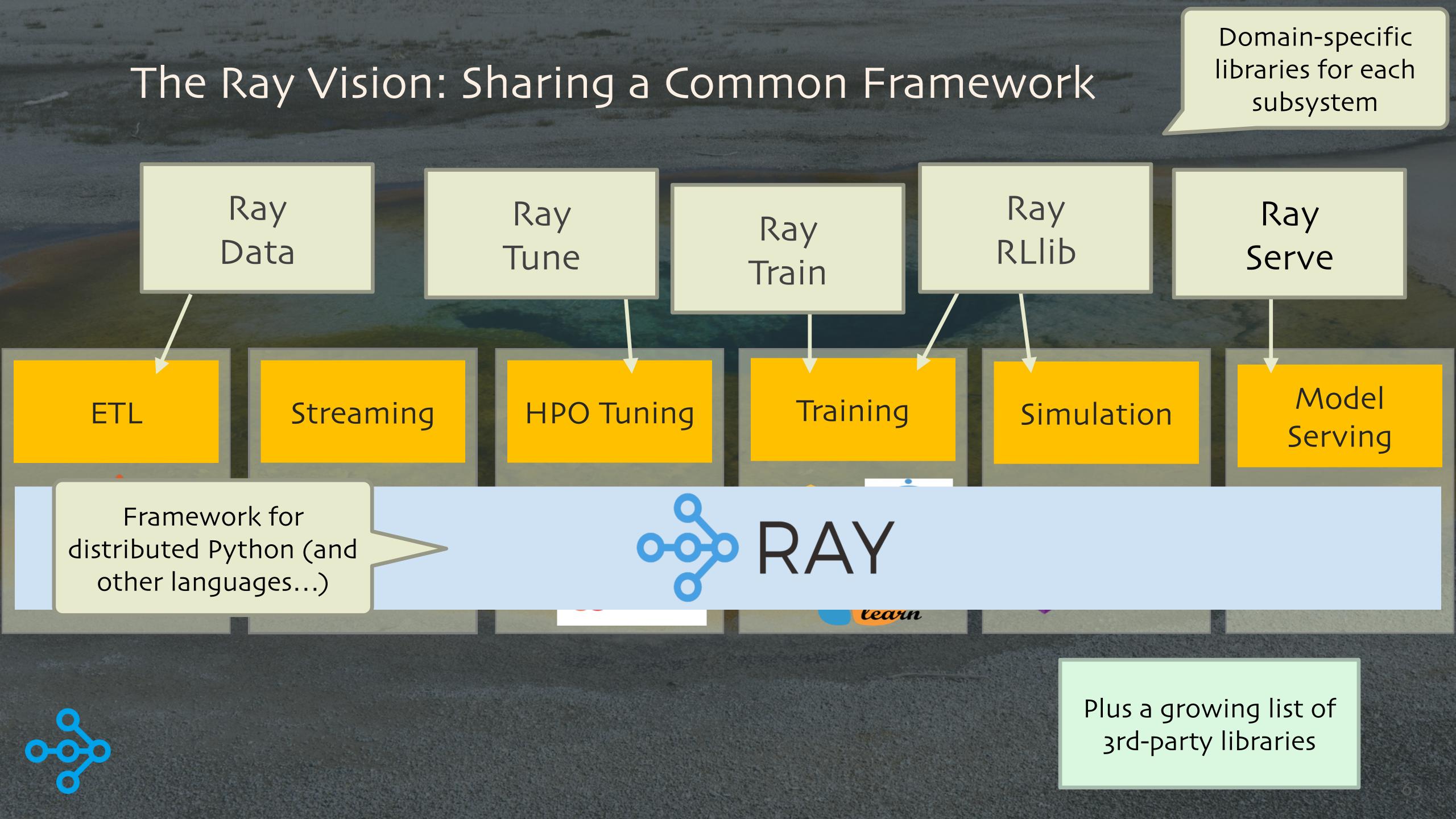
Streaming

Spache Flink & kafka

HPO Tuning

SIGOPT

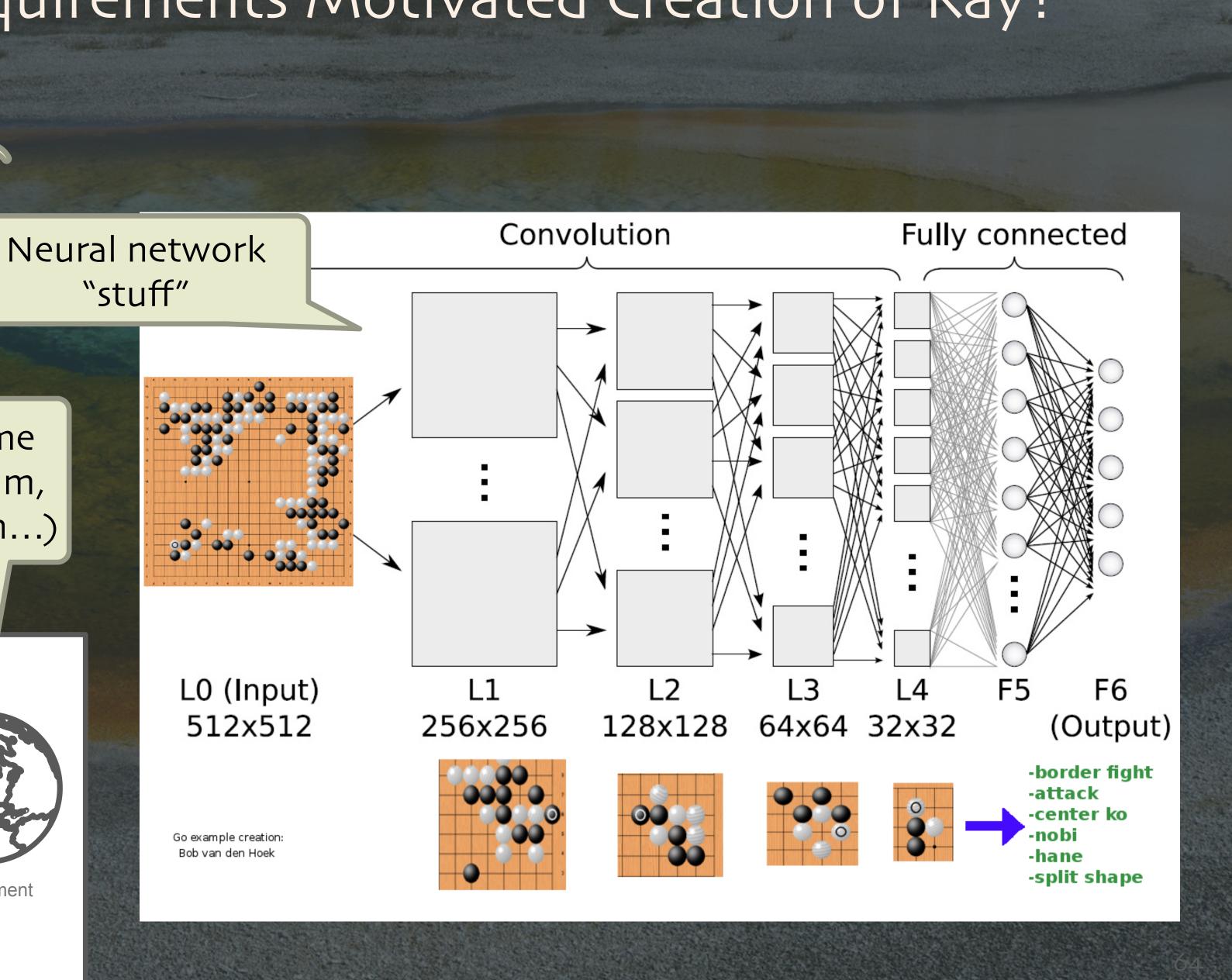
All require distributed implementations to scale



Diverse Compute Requirements Motivated Creation of Ray!

And repeated play, over and over again, to train for achieving the best reward

> Simulator (game engine, robot sim, factory floor sim...)



Complex agent?

def make_array(...):

a = ... # Construct a NumPy array return a

def add_arrays(a, b):
 return np.add(a, b)



The Python you already know...

@ray.remote
def make_array(...):

a = ... # Construct a NumPy array return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

For completeness,

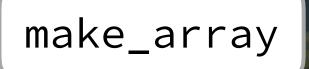
import ray
import numpy as np
ray.init()

Now these functions are remote "tasks"

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(...)




```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

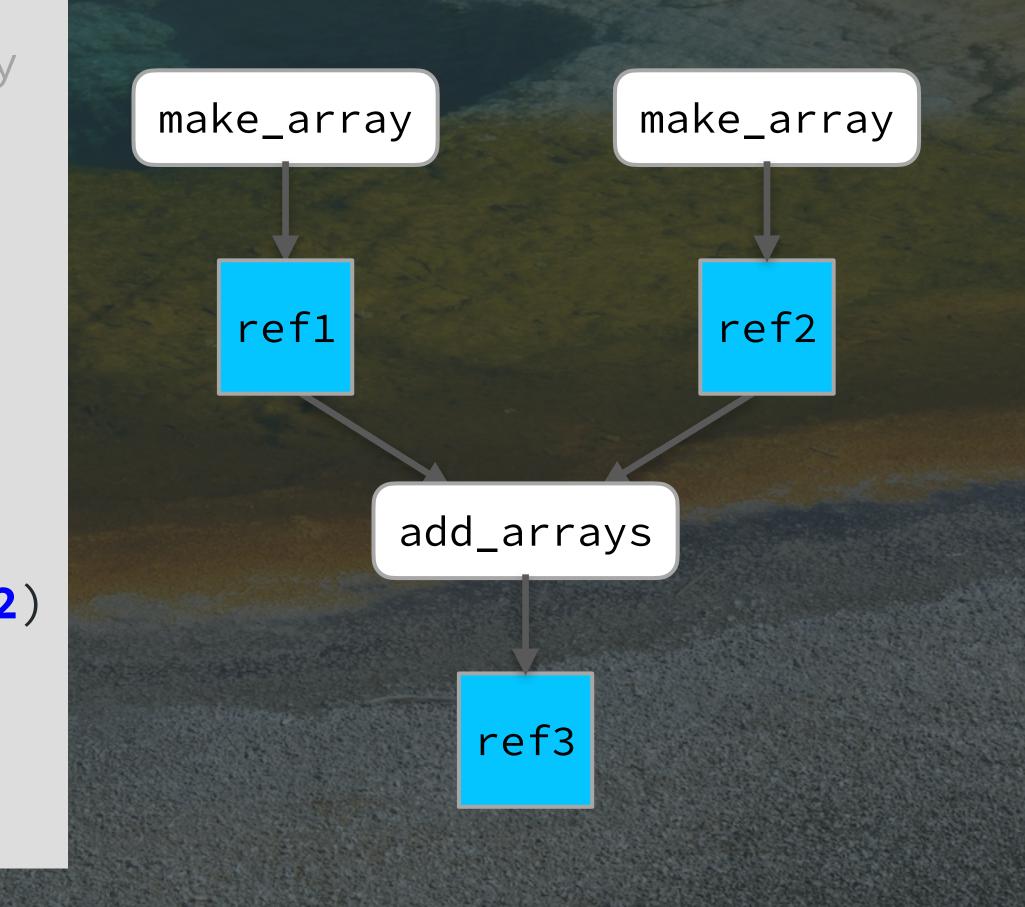
ref1 = make_array.remote(...)
ref2 = make_array.remote(...)

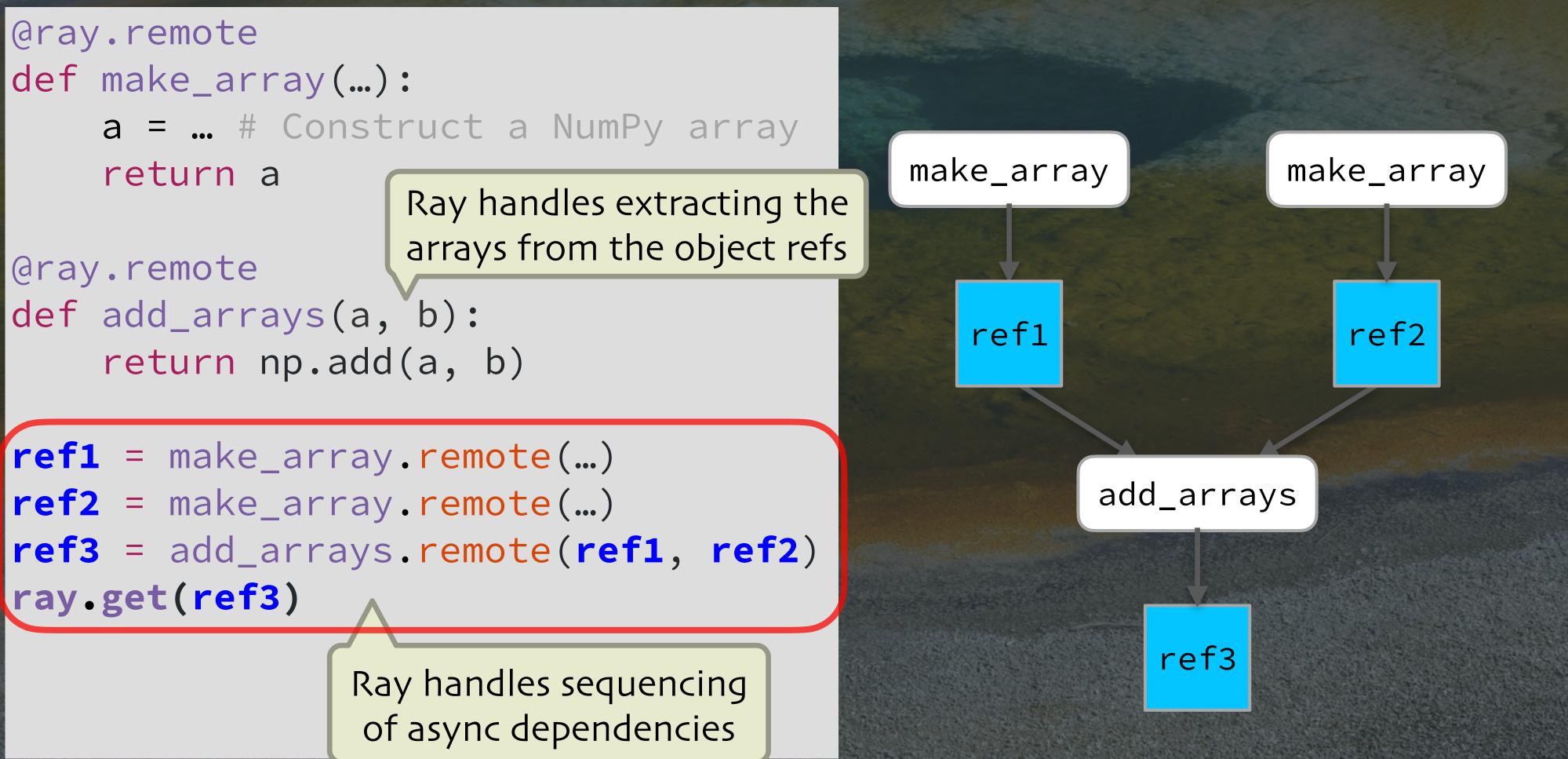

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...)

- ref2 = make_array.remote(...)
- ref3 = add_arrays.remote(ref1, ref2)





```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...) ref2 = make_array.remote(...) ref3 = add_arrays.remote(ref1, ref2) ray.get(ref3)

What about distributed state?

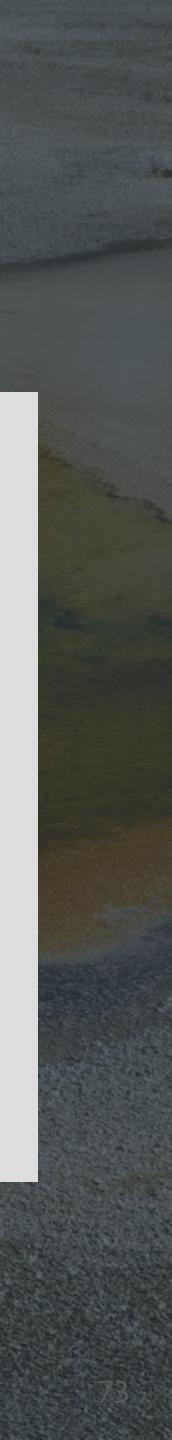

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Classes -> Actors

class Counter(object):
 def __init__(self):
 self.value = 0
 def increment(self):
 self.value += 1
 return self.value

The Python classes you love...



```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

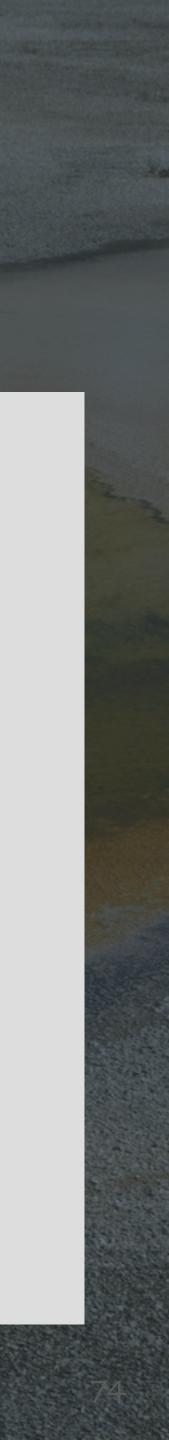
ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Classes -> Actors

@ray.remote

class Counter(object): def __init__(self): self.value = 0 def increment(self): self.value += 1 return self.value def get_count(self): return self.value

You need a "getter" method to read the state.



```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

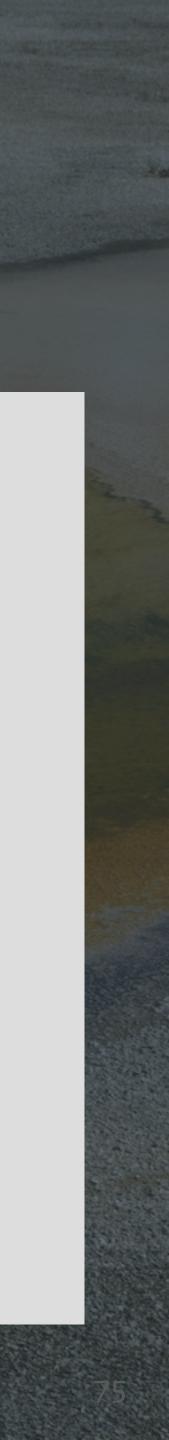
```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Classes -> Actors

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def increment(self):
 self.value += 1
 return self.value
 def get_count(self):
 return self.value

c = Counter.remote()
ref4 = c.increment.remote()
ref5 = c.increment.remote()
ray.get([ref4, ref5]) # [1, 2]



```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...)
ref2 = make_array.remote(...)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Classes -> Actors

@ray.remote(num_gpus=1)
class Counter(object):
 def __init__(self):
 self.value = 0
 def increment(self):
 self.value += 1
 return self.value
 def get_count(self):
 return self.value

c = Counter.remote()
ref4 = c.increment.remote()
ref5 = c.increment.remote()
ray.get([ref4, ref5]) # [1, 2]

Optional configuration specifications

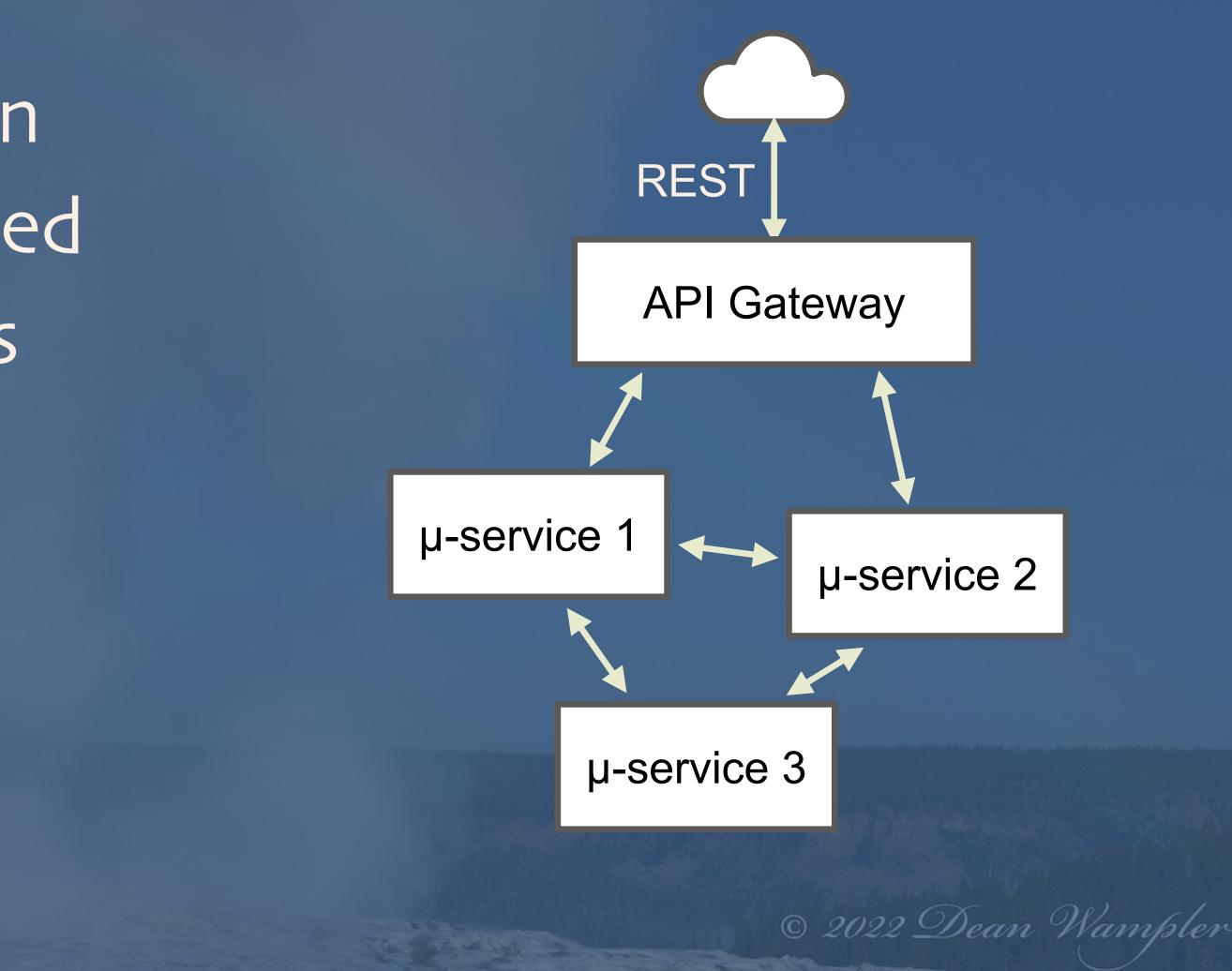
Other Uses of Ray: Microservices

© 2022 Dean Wampler

What Are Microservices?

They partition the domain Conway's Law - Embraced \bigcirc Separate responsibilities \bigcirc • Separate management

0000

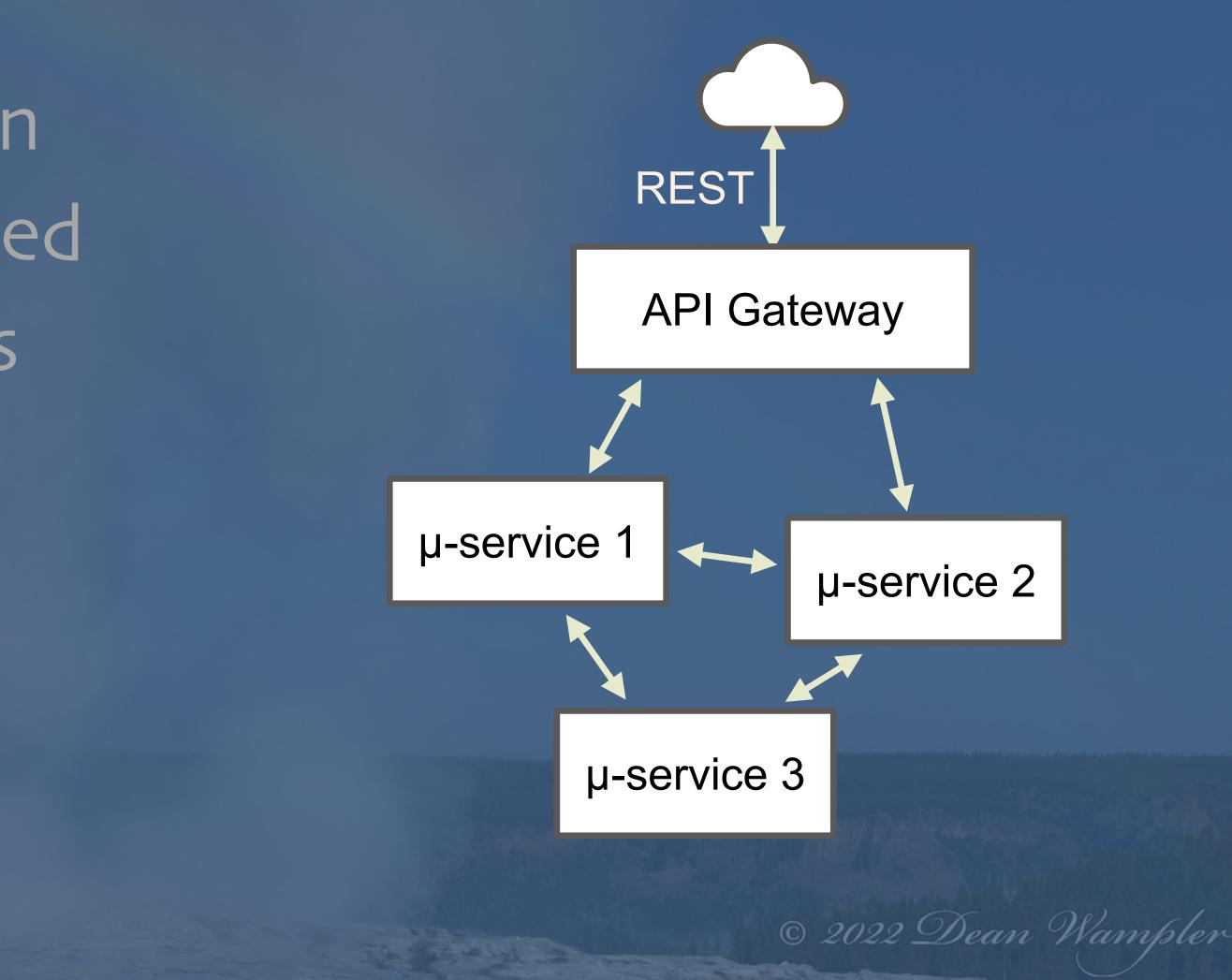


What Are Microservices?

• They partition the domain Conway's Law - Embraced \bigcirc Separate responsibilities \bigcirc Separate management

<u><u></u></u>

What we mostly care about for today's talk, the "Ops in DevOps"

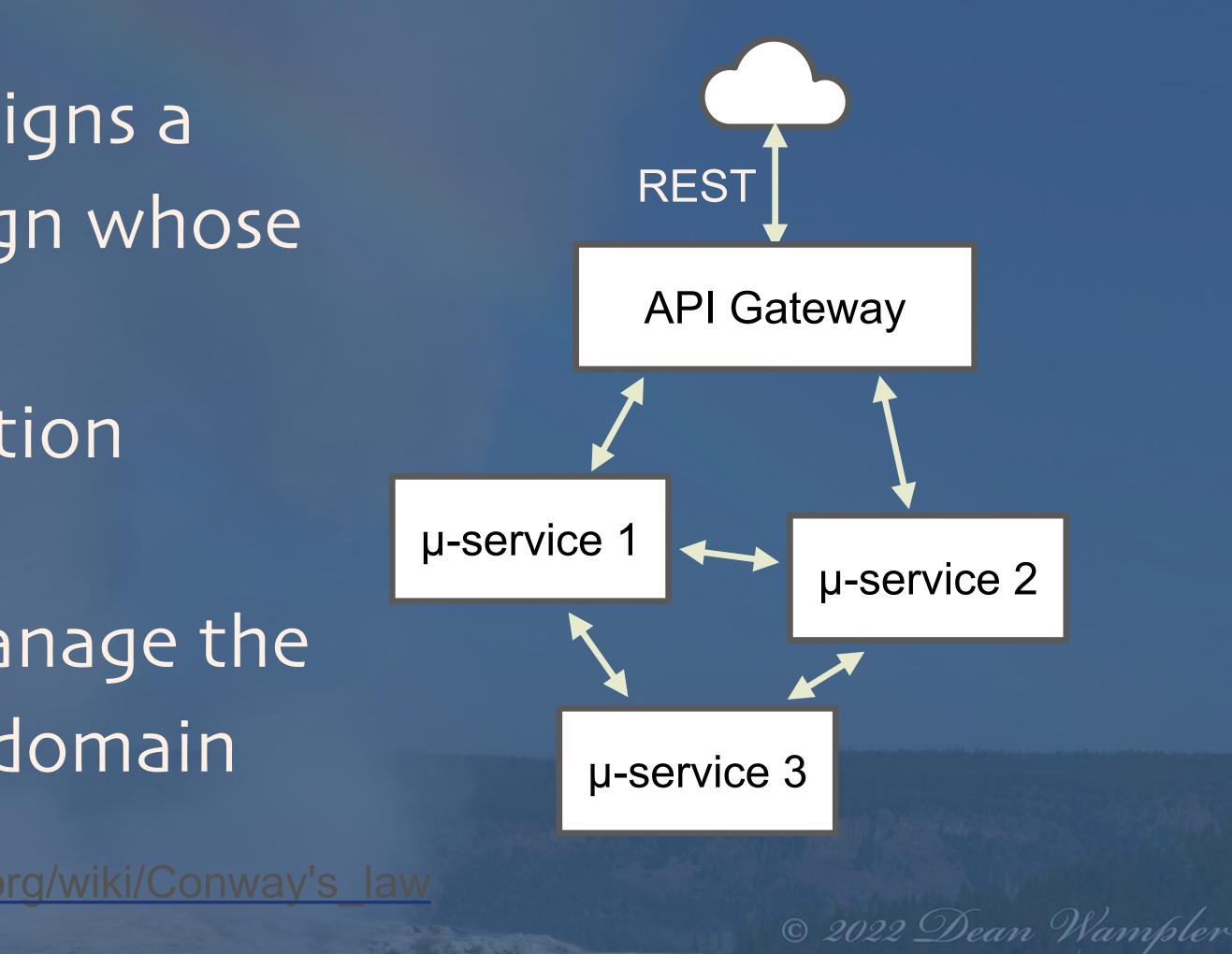


Conway's Law - Embraced

• "Any organization that designs a system will produce a design whose structure is a copy of the organization's communication structure"

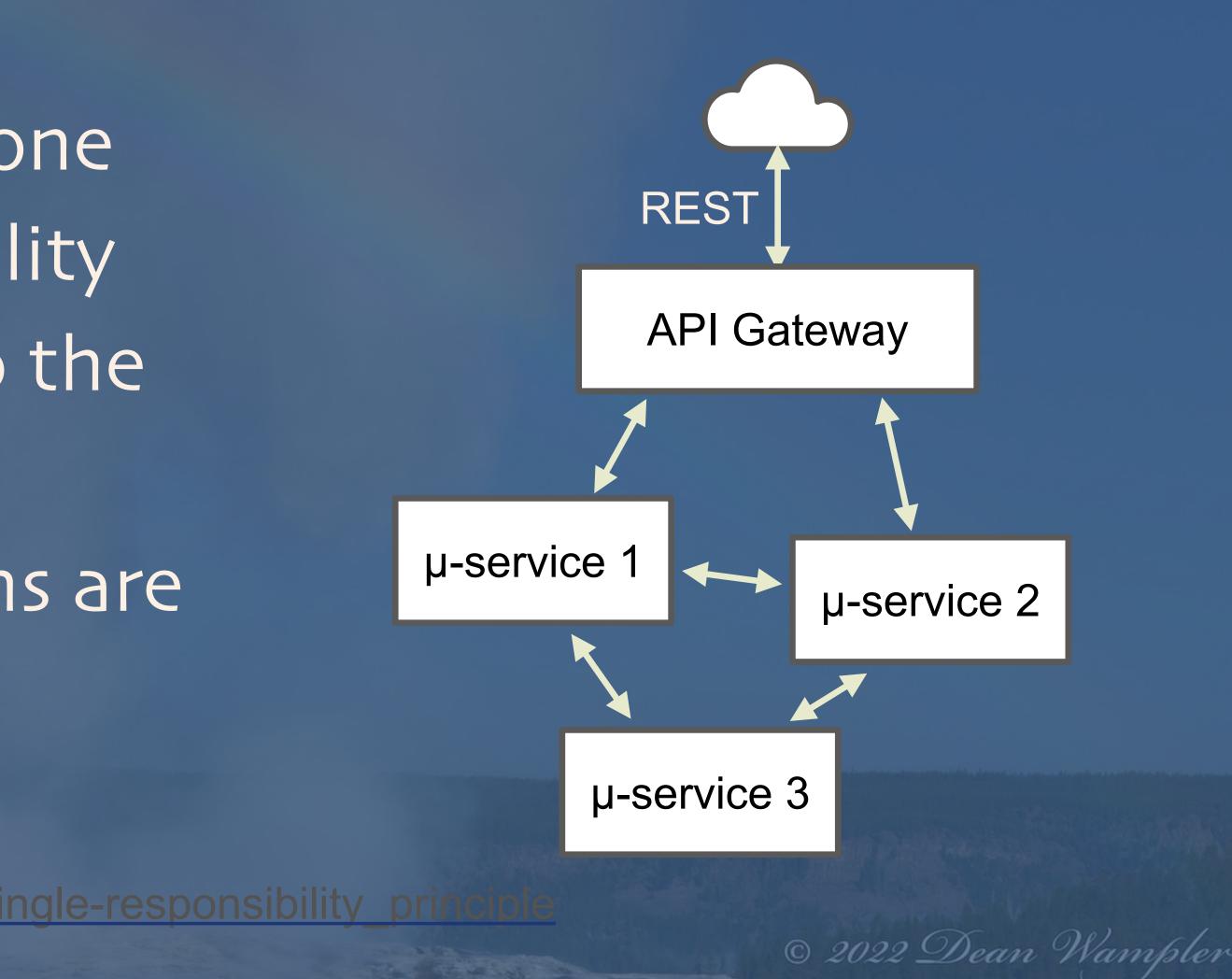
• Let each team own and manage the services for its part of the domain

<u><u></u></u>



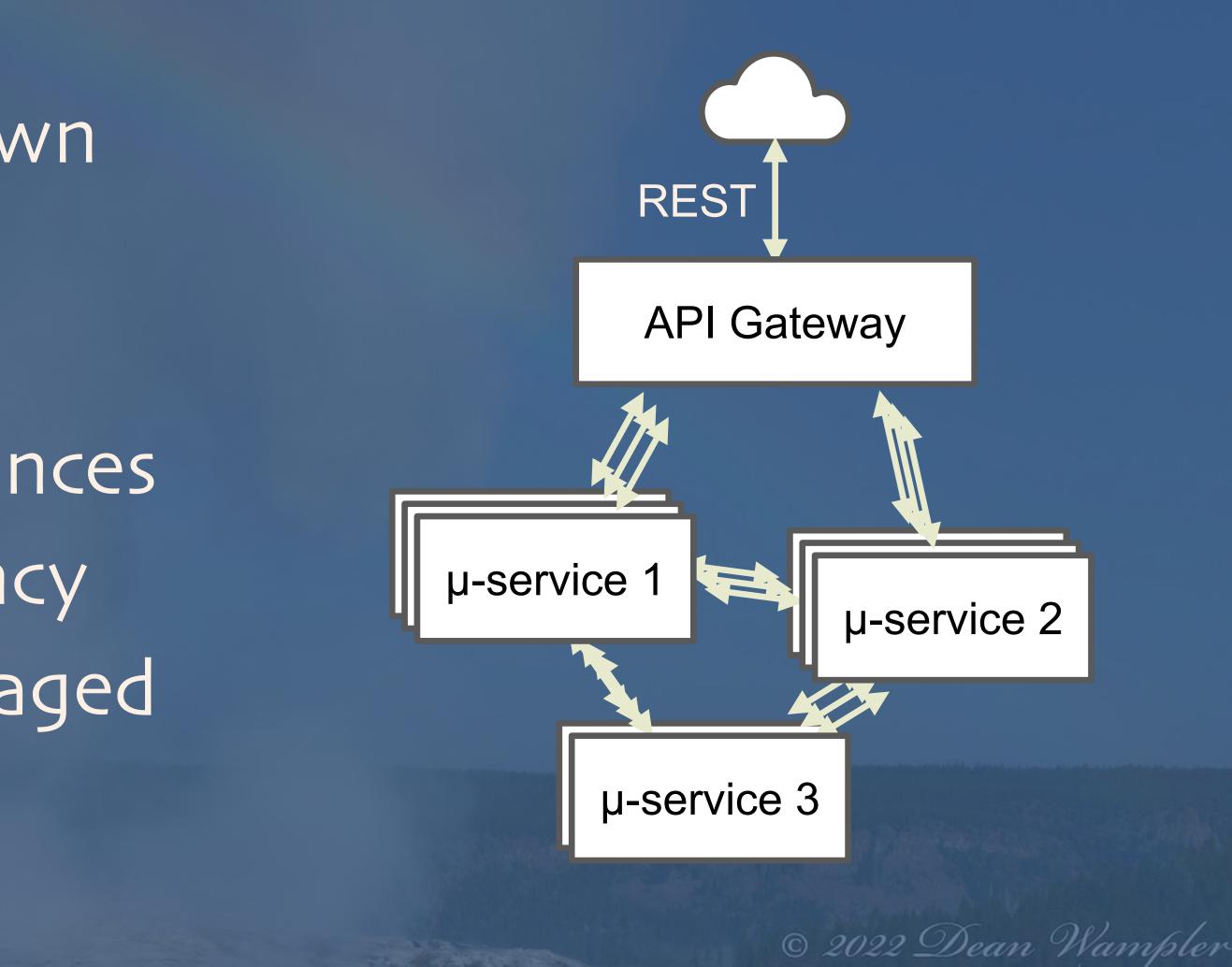
Separate Responsibilities

• Each microservice does "one thing", a single responsibility with minimal coupling to the other microservices • (Like, hopefully, the teams are organized, too...)



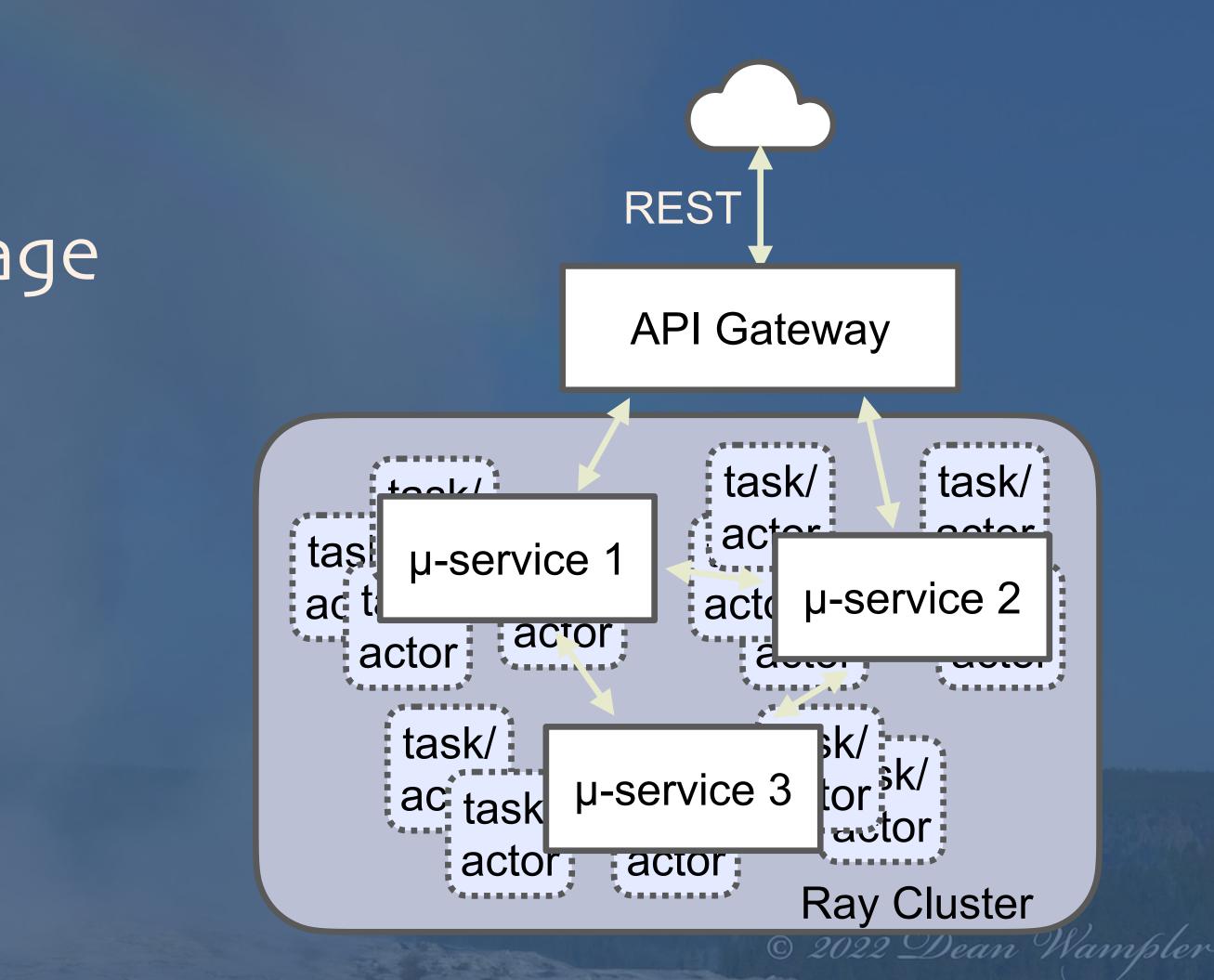
Separate Management

• Each team manages its own instances • Each microservice has a different number of instances for scalability and resiliency But they have to be managed explicitly **000**



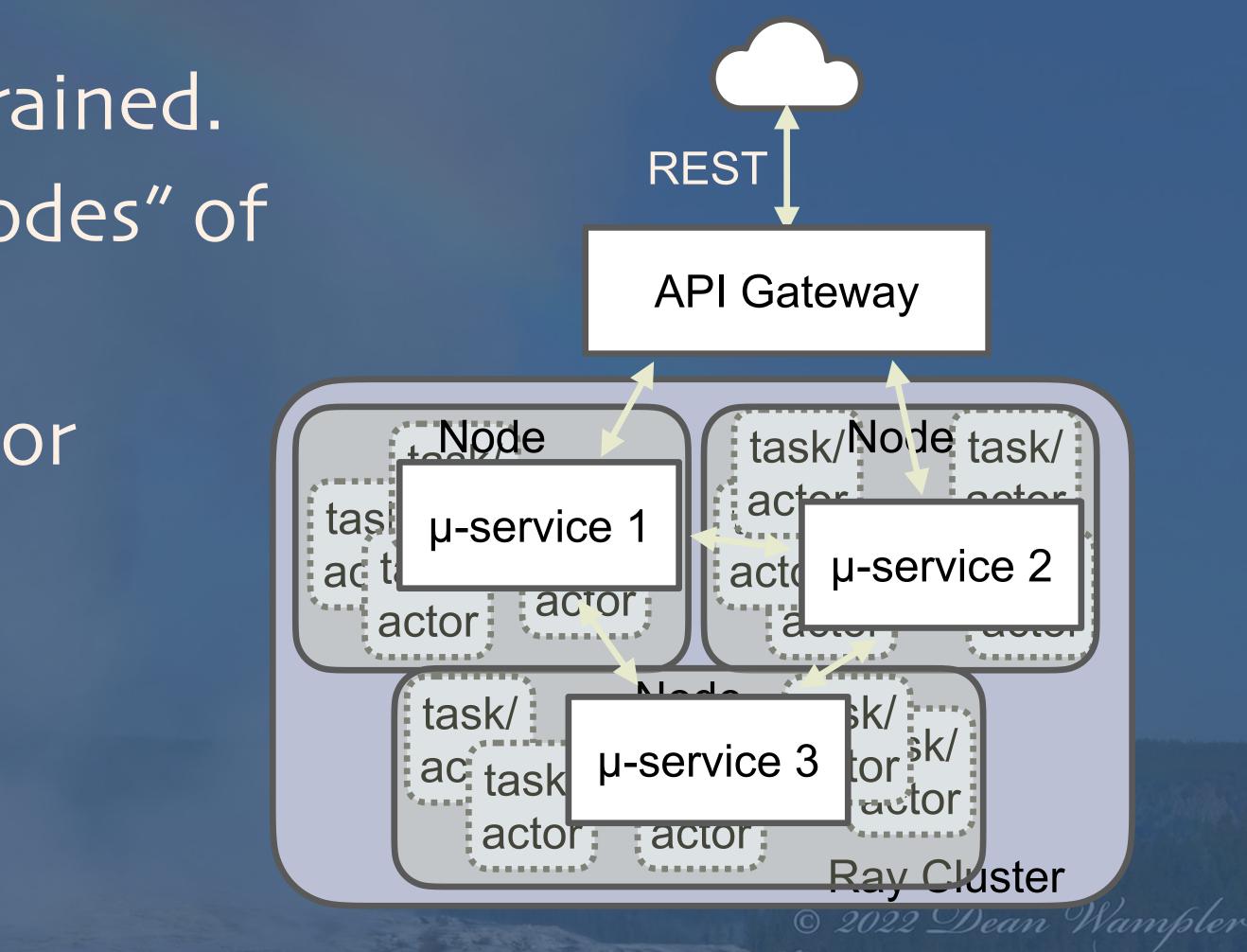
Management - Simplified

• With Ray, you have one "logical" instance to manage and Ray does the clusterwide scaling for you.



What about Kubernetes (and others...)?

Ray scaling is very fine grained. It operates within the "nodes" of coarse-grained managers Containers, pods, VMs, or \bigcirc physical machines



Hyper Parameter Tuning with Ray Tune



Hyper Parameter Tuning - Ray Tune

Ray Data

ETL

Streaming

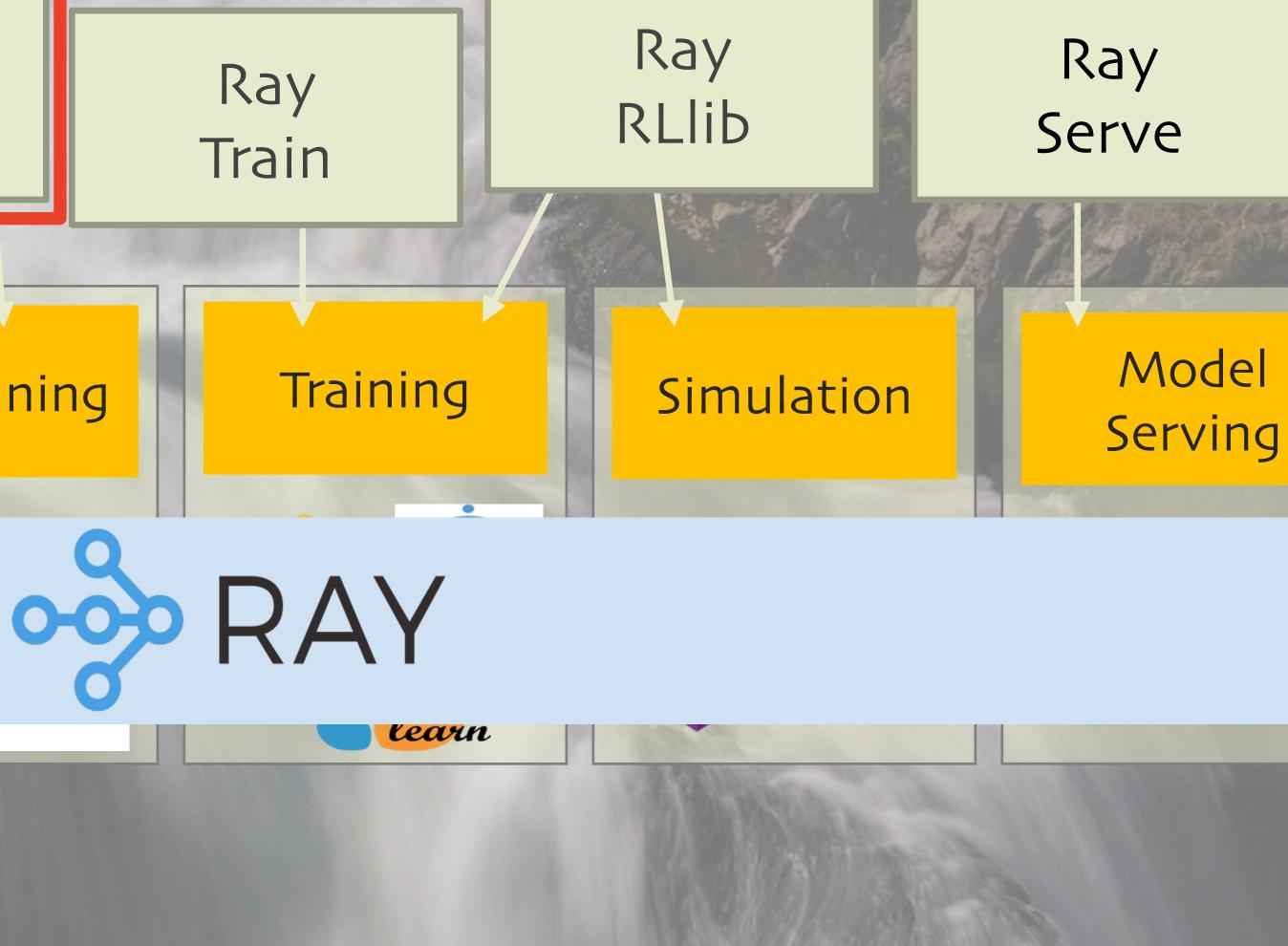
HPO Tuning

Ray

Tune

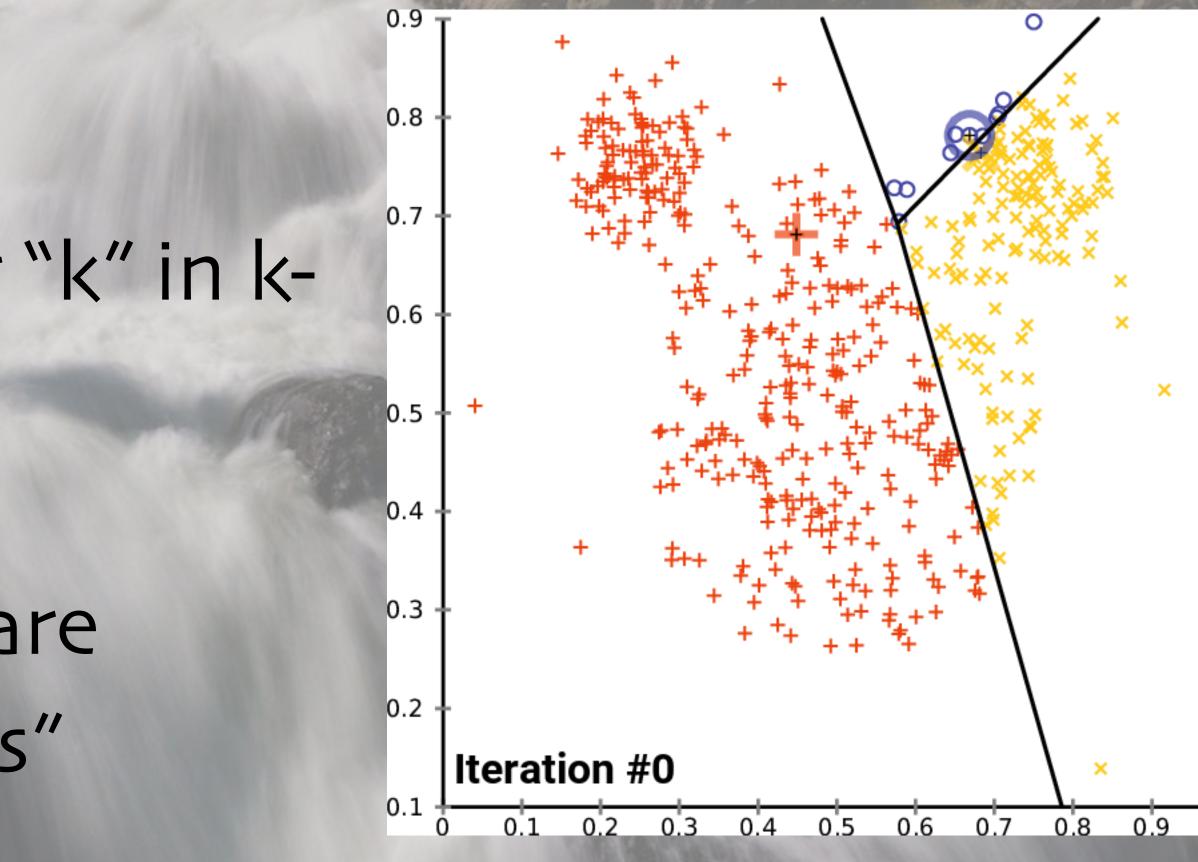
Framework for distributed Python (and other languages...)

Domain-specific libraries for each subsystem



What Is Hyper Parameter Tuning (or Optimization - HPO)?

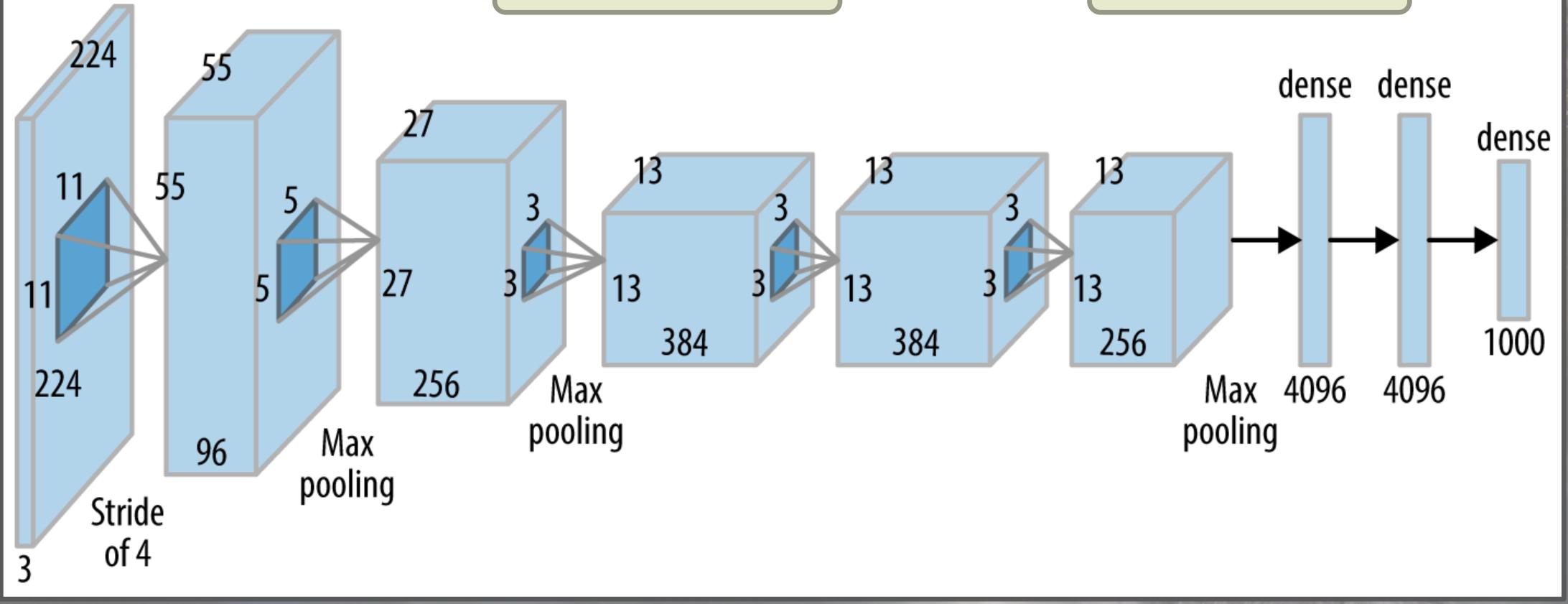
Trivial example:
What's the best value for "k" in k-means??
k is a "hyperparameter"
The resulting clusters are defined by "parameters"



credit: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

Nontrivial Example - Neural Networks

How many layers? What kinds of layers?



0-0-0

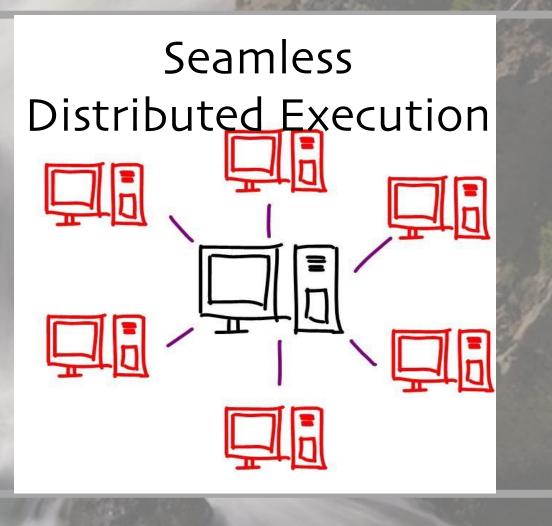
Every number shown is a hyperparameter!

Tune is Built with Deep Learning as a Priority

Resource Aware Scheduling

Simple API for new algorithms

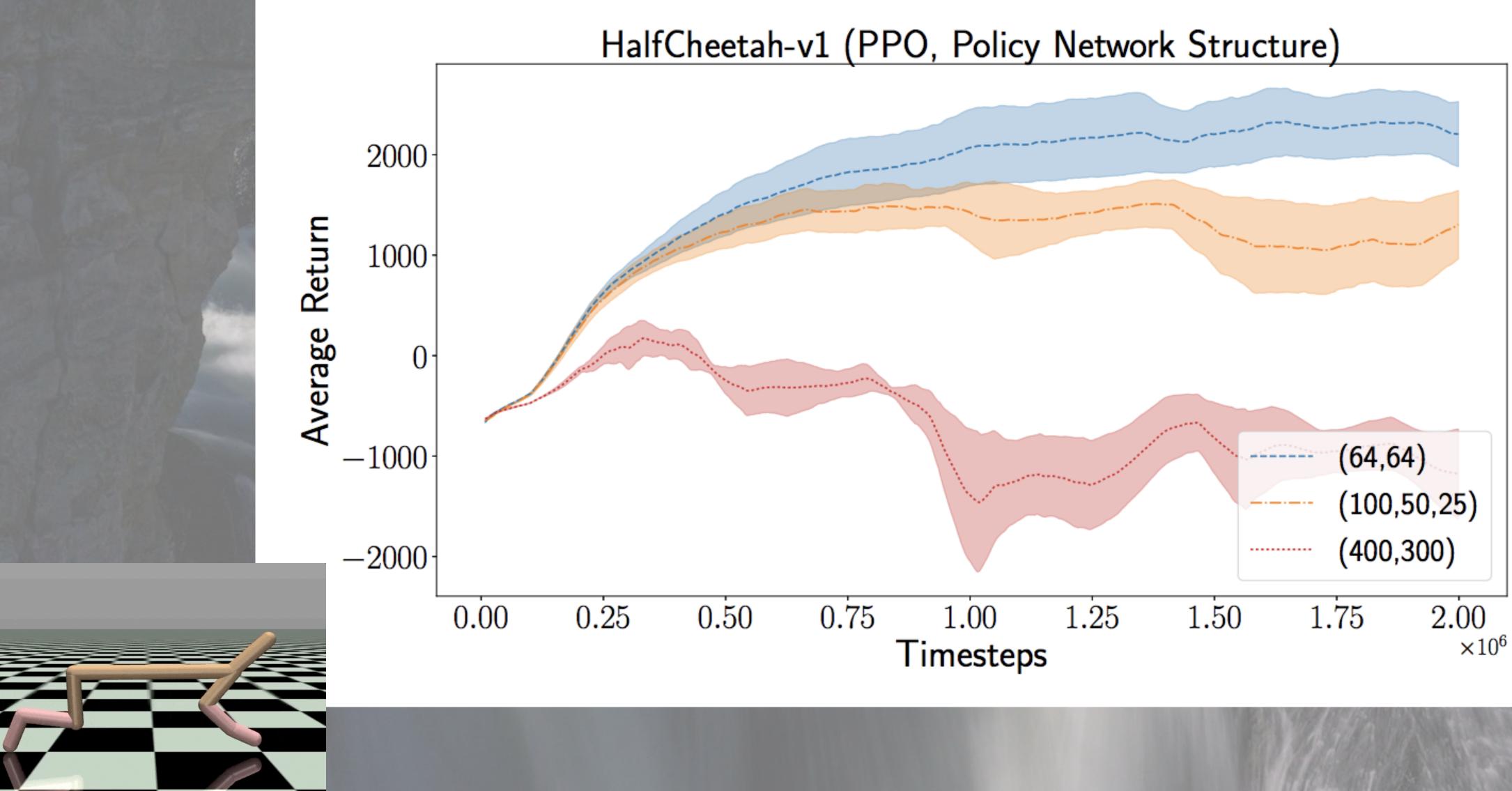
class TrialScheduler: def on_result(self, trial, result): ... def choose_trial_to_run(self): ...



Framework Agnostic

tune.io

Hyper Parameters Are Important for Performance



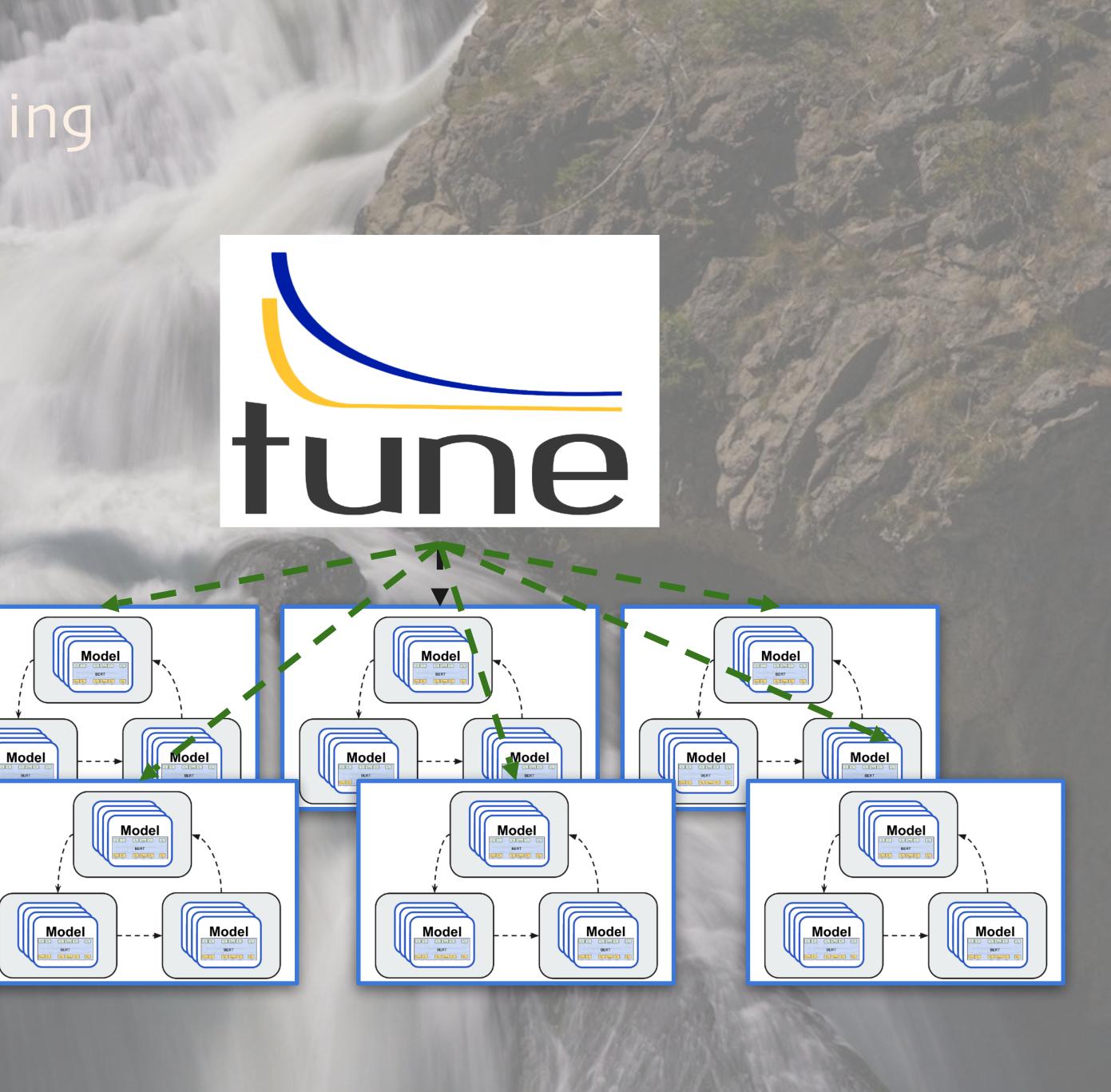
Why We Need a Framework for Tuning Hyper Parameters

We want the best model

Resources are expensive

Model training is timeconsuming

Tuning + Distributed Training



Native Integration with TensorBoard HParams

TensorBo	oard SCALA	RS HPARAMS	
Hyperparame ✓ activation ✓ relu		TABLE VIEW	
✓ tanh ✓ width Min		Color by ray/tune/neg_mean_l	
-infinity _{Max}		width Linear	<u>h</u>
+infinitv		O Logarithmic O Quantile	(
	iterations_since_res		
Min -infinity	Max +infinity		activation
ray/tune/mean_loss			
Min -infinity	Max +infinity		
ray/tune/neg_mean_loss			
Min -infinity	Max +infinity		
ray/tune/time_since_restore			
Min -infinity	Max +infinity		relu
<u>Status</u>			

PARALLEL COORDINATES VIEW

SCATTER PLOT MATRIX VIEW

