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...

Times Change...
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Today’s 
applications:

•Are networked,

•Have graphical 
and “service” 
interfaces,
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Today’s 
applications:

•Persist data,

•Must be resilient 
and secure,

•Must scale,
7flickr.com/photos/jerryjohn
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Today’s 
applications:

•… and must do 
all that by Friday.
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Polyglot or
 Multilingual: 

many languages
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Poly-paradigm or
 Multiparadigm:

many modularity 
paradigms
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Thesis: 
modern problems 

are poorly served by 
“Monocultures”
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monocultures => “monoglot” and “mono-paradigm” programming.
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Mono-
paradigm:

Object-Oriented 
Programming:

right for all 
requirements?
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Is one language
best for all domains?

Monolingual
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domains: e.g., the problem domain for the app (usually an object model), the security model, the network/web topology, the 
relational or other data model, ...



Symptoms of 
Monocultures

• Why is there so much XML in my Java?

• Why do I have similar code for persistence, 
transactions, security, etc. scattered all over my 
code base?
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Symptoms of 
Monocultures

• How can I scale my application to internet scales?

• Why is my application so hard to extend?

• Why can’t I respond quickly when requirements 
change?
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switch (elementItem)
{
    case "header1:SearchBox" :
    {
        __doPostBack('header1:goSearch','');
        break;
    }
    case "Text1":
    {
        window.event.returnValue=false;
        window.event.cancel = true;
        document.forms[0].elements[n+1].focus();
        break;
    } ...

thedailywtf.com

Pervasive Symptom:

Too much 

code!
16
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Let’s examine some 
common problems 
with PPP solutions:
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Change 
is slow 

and painful.
Problem #1

flickr.com/photos/arrrika 18

Monday, June 14, 2010



Symptoms
• Features take too long to 
implement.

•We can’t react fast enough 
to change. 

•Uses want to customize the 
system themselves.
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Solution
Application

Kernel of Components

User Scripts Built-in Scripts

(C Components) + (Lisp scripts) = Emacs

20

Monday, June 14, 2010



Components + Scripts 
=

Applications
see John Ousterhout, IEEE Computer, March ’98
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Kernel Components
•Statically-typed language:

•C, C++, Java, C#, ...

•Compiled for speed, efficiency. 

•Access OS services, 3rd-party 
libraries. 

•Lower developer productivity.
22
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Scripts
•Dynamically-typed language:

•Ruby, Lisp, JavaScript, Lua, ... 

• Interpreted for agility.

•Performance less important.

•Glue together components. 

•Raise developer productivity. 
23
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In practice, the divide between components and scripts is not so distinct.



In practice, 
the boundaries between 
components and scripts 

are not so distinct...
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Other Examples:

•UNIX/Linux + shells.

•Also find, make, grep, ...

•Have their own DSLs.
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C++/Lua Examples:

• Adobe Lightroom

• 40-50% written in Lua. 

• Game Engines

26
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Lightroom: Lua API used for 3rd-party plugins.
Lots of games combine C++ and Lua, too.



Embedded Systems:

•Tektronix Oscilloscopes: C + 
Smalltalk.

• NRAO Telescopes: C + Python.

• Google Android: Linux + 
libraries (C) + Java.
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Other Examples:
Multilingual VM’s

• On the JVM:

• JRuby, Groovy, Jython, 
Scala.

• Ruby on Rails on JRuby.

28
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Another realization of C+S=A is to put several languages on the same VM, rather than using the OS as the component layer.



Other Examples:
Multilingual VM’s

• Dynamic Language Runtime 
(DLR).

• Ruby, Python, ... on 
the .NET CLR.

29
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Another realization of C+S=A is to put several languages on the same VM, rather than using the OS as the component layer.



<view-state id="displayResults" view="/searchResults.jsp">

 
 <render-actions>

 
 
 <bean-action bean="phonebook" method="search">

 
 
 
 <method-arguments>

 
 
 
 
 <argument expression="searchCriteria"/>

 
 
 
 </method-arguments>

 
 
 
 <method-result name="results" scope="flash"/>

 
 
 </bean-action>

 
 </render-actions>

 
 <transition on="select" to="browseDetails"/>

 
 <transition on="newSearch" to="enterCriteria"/>

 </view-state>
</flow>

XML in Java

Why not replace XML 
with JavaScript , Groovy 

or JRuby??
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De facto “scripting language” in Java.
Not an optimal choice:
- All data.
- No behavior (to speak of...).
- Verbose.



Benefits

• Optimize performance where it matters.

• Optimize productivity, extensibility, agility and 
end-user customization everywhere else.

Application

Kernel of Components

User Scripts Built-in Scripts

31
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This is an underutilized architecture.



Disadvantages
Application

Kernel of Components

User Scripts Built-in Scripts

32

• More complexity with 2+ languages.

• Interface between the layers.

• Splitting behavior between layers.

Monday, June 14, 2010

The complexity includes idioms, tools, and developer expertise for more than 1 language.



An underutilized 
architecture!

Application

Kernel of Components

User Scripts Built-in Scripts
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Parting Thought...

Why don’t Eclipse, IntelliJ, etc. 
have built-in scripting engines?
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Parting Thought...

Cell phone makers are 
drowning in C++.

(One reason the IPhone 
and Android are interesting.)

35
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I don’t 
know what 
my code is 

doing.

flickr.com/photos/dominic99

Problem #2
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The intent
 of our code

is lost 
in the noise.
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Symptoms

•New team members have a 
long learning curve.

•The system breaks when we 
change it.

•Translating requirements to code 
is error prone.
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Solution #1

Write 
less code!

You’re welcome.
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Less Code
• Means problems are smaller:

• Maintenance

• Duplication

• Testing

• Performance

• etc.
40
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How to Write
Less Code

• Root out duplication. 

• Use economical designs.

• Functional vs. Object-Oriented?

• Use economical languages.

41
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Solution #2

Separate 
implementation details 
from business logic.
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Domain Specific 
Languages

Make the code read like 
“structured” domain prose.
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Example DSLinternal {
  case extension
    when 100...200
      callee = User.find_by_extension extension
      unless callee.busy? then dial callee
      else
        voicemail extension

    when 111 then join 111

    when 888 
      play weather_report('Dallas, Texas')

    when 999
      play %w(a-connect-charge-of 22 
         cents-per-minute will-apply)
      sleep 2.seconds
      play 'just-kidding-not-upset'
      check_voicemail
  end
}

Adhearsion
=

Ruby DSL
+

Asterisk
+

Jabber/XMPP
+
...
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PBX = Private Branch Exchange, the telephony exchange that serves a business or other office, etc.



DSL Advantages
• Code looks like domain prose:

• Is easier to understand by 
everyone,

• Is easier to align with the 
requirements,

• Is more succinct.
45
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DSL Disadvantages

46

Many people are 
poor API designers.

DSLs are harder to design.
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DSL Disadvantages

47

DSLs can be hard to 
implement, test, and debug.
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Brueghel the Elder

A DSL Tower of Babel?
48
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Not too many of this examples yet, but one comes to mind: mocking (for testing) frameworks in Ruby, BDD tools in several 
languages.



Parting Thought...

Perfection is achieved, 
not when there is nothing left to add, 

but when there is nothing left to remove.
 

-- Antoine de Saint-Exupery
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He wrote “The Little Prince”, among other books. He was an aviator who disappeared over the Mediterranean in 1944, flying for 
Free French Forces. 



Parting Thought #2...

Everything should be made as simple 
as possible, but not simpler.

 
-- Albert Einstein
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Corollary:

Entia non sunt multiplicanda 
praeter necessitatem.

-- Occam’s Razor
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a.k.a. “Law of Parsimony” or “Law of Succinctness”. Paraphrased translation.



Corollary:

All other things being equal, 
the simplest solution is the best.

-- Occam’s Razor
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a.k.a. “Law of Parsimony” or “Law of Succinctness”. Paraphrased translation.



We have 
code duplication 
everywhere.

Problem #3

deanwampler
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Symptoms

• Persistence logic is embedded 
in every “domain” class.

• Error handling and logging is 
inconsistent.

Cross-Cutting Concerns.
54
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Solution

Aspect-Oriented 
Programming

55
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Removing Duplication

• In order, use:

• Object or functional decomposition.

• DSLs.

• Aspects.
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Make sure your object and functional decomposition is right first, then use DSLs appropriately. Finally, use aspects.



An Example...
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class BankAccount
	 attr_reader :balance
   
	 def  credit(amount)
    @balance += amount
  end
	 def  debit(amount)
    @balance -= amount
  end
  … 
end 

Clean Code

58
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But, real applications need:
def BankAccount
	 attr_reader :balance 
	 def  credit(amount)
    ...
  end
	 def  debit(amount)  
    ...
  end
end 

Transactions

Persistence

Security

59
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def credit(amount)
  raise “…” if unauthorized()
  save_balance = @balance
  begin
    begin_transaction()
    @balance += amount
    persist_balance(@balance)
  … 

So credit becomes…

60
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  …
  rescue => error
    log(error)
    @balance = saved_balance
  ensure
    end_transaction()
  end
end

61
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We’re mixing multiple domains,

Transactions

Persistence

Security

with fine-grained intersections.

“Problem Domain”

“tangled” code

“scattered” logic
62
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In principle, I can reason about transactions, etc. in isolation, but in reality, the code for transactions is scattered over the whole 
system. Similarly, the once-clean domain model code is tangled with code from the other concerns.
Objects don’t prevent this problem (in most cases).



Objects alone don’t 
prevent tangling.
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Aspect-Oriented 
Programming:

restore modularity for 
cross-cutting concerns.
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Aspects restore modularity by
encapsulating the intersections.

Transactions

Persistence

Security

Transaction
Aspect

Persistence
Aspect

Security
Aspect

65

See “extra” slides
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If you have used the 
Spring Framework, 

you have 
used aspects.
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Parting Thought...

Metaprogramming can be used 
for some aspect-like functionality.

DSLs can solve some 
cross-cutting concerns, by localizing
behaviors expressed by the DSL.
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Problem #4

flickr.com/photos/wolfro54

Our service 
must be 

available 24x7 
and highly 
scalable.
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Symptoms

• Only one of our developers 
really knows how to write 
thread-safe code.

• The system freezes every few 
weeks or so.

69
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Solution

Functional 
Programming
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(At least, it’s one solution...)



Functional Programming

y = sin(x)

71

Modeled after mathematics.
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Functional Programming

y = sin(x)

72

Values are immutable.
Variables are assigned once.
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Functional Programming

y = sin(x)

73

Functions are side-effect free.
Functions don’t alter state.
The result depends solely 

on the arguments.
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Functional Programming: 
Concurrency Is Easier

74

No writes, so no synchronization.
Hence, no locks, semaphores, mutexes...

y = sin(x)

Monday, June 14, 2010



Functional Programming: 
Reasoning is Easier

75

Without side effects, 
functions are easier to test, understand, ...

y = sin(x)

and reuse!
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Which fits your needs?

Object Oriented

76

Account

deposit(...)
withdraw(...)

CheckingAccount

deposit(...)
withdraw(...)

SavingsAccount

deposit(...)
withdraw(...)

??

deposit(...)
withdraw(...)

Monday, June 14, 2010

Do operations vary significantly, depending on data type or ...



list map

fold/

reduce

filter

Which fits your needs?

Functional

77
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… or do operations more or less work the same independent of the data type?
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What if 
you’re 

doing cloud 
computing?

78 deanwampler

E.g., is map-reduce 
object-oriented
or functional?
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FP Code: 
more declarative
than imperative.

79

F(n) = F(n-1) + F(n-2)
where: F(0) = 0 and F(1) = 1

0, 1, 1, 2, 3, 5, 8, 13, ... 

Monday, June 14, 2010

The Fibonacci Sequence.
I tell the system what I want (e.g., what are the relationships between data, the constraints, etc.) and let the system figure out 
how to do it.



… and so are DSLs.

class Customer < ActiveRecord::Base 
has_many :accounts

 validates_uniqueness_of :name,
    :on => create,
    :message => ‘Evil twin!’
end

80
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By hiding the implementation details, we have much more leeway in implementing aspect behavior, etc.



A Few
Functional Languages
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Erlang

• Ericsson Functional Language.

• For distributed, reliable, soft real-time, 
highly concurrent systems.

• Used in telecom switches.

• 9-9’s reliability for AXD301 switch.

82
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Erlang

• No mutable variables and side effects.

• Uses the actor model of concurrency.

• All IPC is optimized message passing.

• Let it fail philosophy.

• Very lightweight and fast processes.

• Lighter than most OS threads.
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Scala

• Hybrid: object and functional.

• Targets the JVM and .NET.

• “Endorsed” by James Gosling at JavaOne.

• Could be the most popular 
replacement for Java.

84
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...

Times Change...
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Clojure

• Functional, with principled support for 
mutability.

• Targets the JVM and .NET.

• Best buzz?

• Too many good ideas to name here...

86
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Functional Languages in 
Industry

• Erlang

• CouchDB, Basho Riak, and Amazon’s 
Simple DB.

• GitHub

• Jabber/XMPP server ejabberd.

87
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Functional Languages in 
Industry

• OCaml

• Jane Street Capital

• Scala

• Twitter

• LinkedIn

• Clojure

• Flightcaster
88
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Parting Thought...

Which is better:
A hybrid object-functional language 

for everything?
An object language for some code and
a functional language for other code?

e.g., Scala vs. Java + Erlang?? 

89
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Scala is more complex than “mono-paradigm” languages, so it’s harder to master. However, using multiple languages has it’s 
own challenges.



Polyglot and Poly-paradigm
Programming (PPP)

Recap:
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Disadvantages of PPP

• N tool chains, languages, libraries, 
“ecosystems”, idioms, ...

• Impedance mismatch between tools.

• Different meta-models.

• Overhead of calls between languages.

91
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Advantages of PPP

• Can use the best tool for a particular job.

• Can minimize the amount of code 
required.

• Can keep code closer to the domain 
using DSLs.

• Encourages thinking about architecture.

92

Monday, June 14, 2010



Is This New?
• Functional Programming Comes of Age.

• Dr. Dobbs, 1994

• Scripting: Higher Level Programming for 
the 21st Century.

• IEEE Computer, 1998

• In Praise of Scripting: Real Programming 
Pragmatism.

• IEEE Computer, 2008
Monday, June 14, 2010



Why go mainstream now?

• Rapidly increasing pace of development,

➔ Scripting (dynamic languages), DSLs.

• Pervasive concurrency (e.g., Multicore CPUs)

➔ Functional programming.

• Cross-cutting concerns 

➔ Aspect-oriented programming.

94
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Thank You!

• dean@deanwampler.com

• Watch for the IEEE Software 
special issue, Sept/Oct 2010.

• polyglotprogramming.com

95

Monday, June 14, 2010

mailto:dean@deanwampler.com
mailto:dean@deanwampler.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


Extra Slides
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• Ruby

• Aquarium

• Facets

• AspectR

Aspect-Oriented Tools

• Java

• AspectJ

• Spring AOP

• JBoss AOP

shameless plug
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Options for Java and Ruby. Some other languages have AOP toolkits.



I would like to write…

Before returning the balance, read the 
current value from the database.

Before accessing the BankAccount, 
authenticate and authorize the user.

After setting the balance, write the 
current value to the database.

98
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I would like to write…

Before returning the balance, read the 
current value from the database.

Before accessing the BankAccount, 
authenticate and authorize the user.

After setting the balance, write the 
current value to the database.
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require ‘aquarium’
class BankAccount
  …
  after :writing => :balance \
      do |context, account, *args|
    persist_balance account
  end
  …

reopen class 

“event” to trigger on

Aquarium

aquarium.rubyforge.org100

new behavior

use aquarium lib.
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def credit(amount)
  @balance += amount
end

Back to clean code

101
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