
Polyglot and
Poly-paradigm
Programming

Dean Wampler
dean@deanwampler.com

@deanwampler

1

Monday, June 14, 2010

http://twitter.com/deanwampler
http://twitter.com/deanwampler
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2

Co-author,
Programming

Scala

programmingscala.com

Monday, June 14, 2010

3

Guest Editor,
IEEE Software

Special Issue on
Multi-paradigm Programming

computer.org/software

Monday, June 14, 2010

4

Monday, June 14, 2010

...

Times Change...

Monday, June 14, 2010

Today’s
applications:

•Are networked,

•Have graphical
and “service”
interfaces,

flickr.com/photos/jerryjohn 6

Monday, June 14, 2010

Today’s
applications:

•Persist data,

•Must be resilient
and secure,

•Must scale,
7flickr.com/photos/jerryjohn

Monday, June 14, 2010

Today’s
applications:

•… and must do
all that by Friday.

8flickr.com/photos/jerryjohn
Monday, June 14, 2010

Polyglot or
 Multilingual:

many languages

9

Monday, June 14, 2010

Poly-paradigm or
 Multiparadigm:

many modularity
paradigms

10

Monday, June 14, 2010

Thesis:
modern problems

are poorly served by
“Monocultures”

11

Monday, June 14, 2010

monocultures => “monoglot” and “mono-paradigm” programming.

flickr.com/photos/deanwampler

Mono-
paradigm:

Object-Oriented
Programming:

right for all
requirements?

12

Monday, June 14, 2010

twitter.com/photos/watchsmart

Is one language
best for all domains?

Monolingual

13

Monday, June 14, 2010

domains: e.g., the problem domain for the app (usually an object model), the security model, the network/web topology, the
relational or other data model, ...

Symptoms of
Monocultures

• Why is there so much XML in my Java?

• Why do I have similar code for persistence,
transactions, security, etc. scattered all over my
code base?

14

Monday, June 14, 2010

Symptoms of
Monocultures

• How can I scale my application to internet scales?

• Why is my application so hard to extend?

• Why can’t I respond quickly when requirements
change?

15

Monday, June 14, 2010

switch (elementItem)
{
 case "header1:SearchBox" :
 {
 __doPostBack('header1:goSearch','');
 break;
 }
 case "Text1":
 {
 window.event.returnValue=false;
 window.event.cancel = true;
 document.forms[0].elements[n+1].focus();
 break;
 } ...

thedailywtf.com

Pervasive Symptom:

Too much

code!
16

Monday, June 14, 2010

Let’s examine some
common problems
with PPP solutions:

17

Monday, June 14, 2010

Change
is slow

and painful.
Problem #1

flickr.com/photos/arrrika 18

Monday, June 14, 2010

Symptoms
• Features take too long to
implement.

•We can’t react fast enough
to change.

•Uses want to customize the
system themselves.

19

Monday, June 14, 2010

Solution
Application

Kernel of Components

User Scripts Built-in Scripts

(C Components) + (Lisp scripts) = Emacs

20

Monday, June 14, 2010

Components + Scripts
=

Applications
see John Ousterhout, IEEE Computer, March ’98

21

Monday, June 14, 2010
Pronunciation: OH-stir-howt

Kernel Components
•Statically-typed language:

•C, C++, Java, C#, ...

•Compiled for speed, efficiency.

•Access OS services, 3rd-party
libraries.

•Lower developer productivity.
22

Monday, June 14, 2010

Scripts
•Dynamically-typed language:

•Ruby, Lisp, JavaScript, Lua, ...

• Interpreted for agility.

•Performance less important.

•Glue together components.

•Raise developer productivity.
23

Monday, June 14, 2010

In practice, the divide between components and scripts is not so distinct.

In practice,
the boundaries between
components and scripts

are not so distinct...

24

Monday, June 14, 2010

Other Examples:

•UNIX/Linux + shells.

•Also find, make, grep, ...

•Have their own DSLs.

25

Monday, June 14, 2010

C++/Lua Examples:

• Adobe Lightroom

• 40-50% written in Lua.

• Game Engines

26

Monday, June 14, 2010

Lightroom: Lua API used for 3rd-party plugins.
Lots of games combine C++ and Lua, too.

Embedded Systems:

•Tektronix Oscilloscopes: C +
Smalltalk.

• NRAO Telescopes: C + Python.

• Google Android: Linux +
libraries (C) + Java.

27

Monday, June 14, 2010

Other Examples:
Multilingual VM’s

• On the JVM:

• JRuby, Groovy, Jython,
Scala.

• Ruby on Rails on JRuby.

28

Monday, June 14, 2010

Another realization of C+S=A is to put several languages on the same VM, rather than using the OS as the component layer.

Other Examples:
Multilingual VM’s

• Dynamic Language Runtime
(DLR).

• Ruby, Python, ... on
the .NET CLR.

29

Monday, June 14, 2010

Another realization of C+S=A is to put several languages on the same VM, rather than using the OS as the component layer.

<view-state id="displayResults" view="/searchResults.jsp">

 <render-actions>

 <bean-action bean="phonebook" method="search">

 <method-arguments>

 <argument expression="searchCriteria"/>

 </method-arguments>

 <method-result name="results" scope="flash"/>

 </bean-action>

 </render-actions>

 <transition on="select" to="browseDetails"/>

 <transition on="newSearch" to="enterCriteria"/>

 </view-state>
</flow>

XML in Java

Why not replace XML
with JavaScript , Groovy

or JRuby??

30

Monday, June 14, 2010

De facto “scripting language” in Java.
Not an optimal choice:
- All data.
- No behavior (to speak of...).
- Verbose.

Benefits

• Optimize performance where it matters.

• Optimize productivity, extensibility, agility and
end-user customization everywhere else.

Application

Kernel of Components

User Scripts Built-in Scripts

31

Monday, June 14, 2010

This is an underutilized architecture.

Disadvantages
Application

Kernel of Components

User Scripts Built-in Scripts

32

• More complexity with 2+ languages.

• Interface between the layers.

• Splitting behavior between layers.

Monday, June 14, 2010

The complexity includes idioms, tools, and developer expertise for more than 1 language.

An underutilized
architecture!

Application

Kernel of Components

User Scripts Built-in Scripts

33

Monday, June 14, 2010

Parting Thought...

Why don’t Eclipse, IntelliJ, etc.
have built-in scripting engines?

34

Monday, June 14, 2010

Parting Thought...

Cell phone makers are
drowning in C++.

(One reason the IPhone
and Android are interesting.)

35

X
were

Monday, June 14, 2010

I don’t
know what
my code is

doing.

flickr.com/photos/dominic99

Problem #2

Monday, June 14, 2010

The intent
 of our code

is lost
in the noise.

37

Monday, June 14, 2010

Symptoms

•New team members have a
long learning curve.

•The system breaks when we
change it.

•Translating requirements to code
is error prone.

38

Monday, June 14, 2010

Solution #1

Write
less code!

You’re welcome.

39

Monday, June 14, 2010

Less Code
• Means problems are smaller:

• Maintenance

• Duplication

• Testing

• Performance

• etc.
40

Monday, June 14, 2010

How to Write
Less Code

• Root out duplication.

• Use economical designs.

• Functional vs. Object-Oriented?

• Use economical languages.

41

Monday, June 14, 2010

Solution #2

Separate
implementation details
from business logic.

42

Monday, June 14, 2010

Domain Specific
Languages

Make the code read like
“structured” domain prose.

43

Monday, June 14, 2010

Example DSLinternal {
 case extension
 when 100...200
 callee = User.find_by_extension extension
 unless callee.busy? then dial callee
 else
 voicemail extension

 when 111 then join 111

 when 888
 play weather_report('Dallas, Texas')

 when 999
 play %w(a-connect-charge-of 22
 cents-per-minute will-apply)
 sleep 2.seconds
 play 'just-kidding-not-upset'
 check_voicemail
 end
}

Adhearsion
=

Ruby DSL
+

Asterisk
+

Jabber/XMPP
+
...

44

Monday, June 14, 2010

PBX = Private Branch Exchange, the telephony exchange that serves a business or other office, etc.

DSL Advantages
• Code looks like domain prose:

• Is easier to understand by
everyone,

• Is easier to align with the
requirements,

• Is more succinct.
45

Monday, June 14, 2010

DSL Disadvantages

46

Many people are
poor API designers.

DSLs are harder to design.

Monday, June 14, 2010

DSL Disadvantages

47

DSLs can be hard to
implement, test, and debug.

Monday, June 14, 2010

Brueghel the Elder

A DSL Tower of Babel?
48

Monday, June 14, 2010

Not too many of this examples yet, but one comes to mind: mocking (for testing) frameworks in Ruby, BDD tools in several
languages.

Parting Thought...

Perfection is achieved,
not when there is nothing left to add,

but when there is nothing left to remove.

-- Antoine de Saint-Exupery

49

Monday, June 14, 2010

He wrote “The Little Prince”, among other books. He was an aviator who disappeared over the Mediterranean in 1944, flying for
Free French Forces.

Parting Thought #2...

Everything should be made as simple
as possible, but not simpler.

-- Albert Einstein

50

Monday, June 14, 2010

Corollary:

Entia non sunt multiplicanda
praeter necessitatem.

-- Occam’s Razor

51

Monday, June 14, 2010

a.k.a. “Law of Parsimony” or “Law of Succinctness”. Paraphrased translation.

Corollary:

All other things being equal,
the simplest solution is the best.

-- Occam’s Razor

52

Monday, June 14, 2010

a.k.a. “Law of Parsimony” or “Law of Succinctness”. Paraphrased translation.

We have
code duplication
everywhere.

Problem #3

deanwampler

Monday, June 14, 2010

Symptoms

• Persistence logic is embedded
in every “domain” class.

• Error handling and logging is
inconsistent.

Cross-Cutting Concerns.
54

Monday, June 14, 2010

Solution

Aspect-Oriented
Programming

55

Monday, June 14, 2010

Removing Duplication

• In order, use:

• Object or functional decomposition.

• DSLs.

• Aspects.

56

Monday, June 14, 2010

Make sure your object and functional decomposition is right first, then use DSLs appropriately. Finally, use aspects.

An Example...

57

Monday, June 14, 2010

class BankAccount
	 attr_reader :balance

	 def credit(amount)
 @balance += amount
 end
	 def debit(amount)
 @balance -= amount
 end
 …
end

Clean Code

58

Monday, June 14, 2010

But, real applications need:
def BankAccount
	 attr_reader :balance
	 def credit(amount)
 ...
 end
	 def debit(amount)
 ...
 end
end

Transactions

Persistence

Security

59

Monday, June 14, 2010

def credit(amount)
 raise “…” if unauthorized()
 save_balance = @balance
 begin
 begin_transaction()
 @balance += amount
 persist_balance(@balance)
 …

So credit becomes…

60

Monday, June 14, 2010

 …
 rescue => error
 log(error)
 @balance = saved_balance
 ensure
 end_transaction()
 end
end

61

Monday, June 14, 2010

We’re mixing multiple domains,

Transactions

Persistence

Security

with fine-grained intersections.

“Problem Domain”

“tangled” code

“scattered” logic
62

Monday, June 14, 2010

In principle, I can reason about transactions, etc. in isolation, but in reality, the code for transactions is scattered over the whole
system. Similarly, the once-clean domain model code is tangled with code from the other concerns.
Objects don’t prevent this problem (in most cases).

Objects alone don’t
prevent tangling.

63

Monday, June 14, 2010

Aspect-Oriented
Programming:

restore modularity for
cross-cutting concerns.

64

Monday, June 14, 2010

Aspects restore modularity by
encapsulating the intersections.

Transactions

Persistence

Security

Transaction
Aspect

Persistence
Aspect

Security
Aspect

65

See “extra” slides
Monday, June 14, 2010

If you have used the
Spring Framework,

you have
used aspects.

66

Monday, June 14, 2010

Parting Thought...

Metaprogramming can be used
for some aspect-like functionality.

DSLs can solve some
cross-cutting concerns, by localizing
behaviors expressed by the DSL.

67

Monday, June 14, 2010

Problem #4

flickr.com/photos/wolfro54

Our service
must be

available 24x7
and highly
scalable.

Monday, June 14, 2010

Symptoms

• Only one of our developers
really knows how to write
thread-safe code.

• The system freezes every few
weeks or so.

69

Monday, June 14, 2010

Solution

Functional
Programming

70

Monday, June 14, 2010

(At least, it’s one solution...)

Functional Programming

y = sin(x)

71

Modeled after mathematics.

Monday, June 14, 2010

Functional Programming

y = sin(x)

72

Values are immutable.
Variables are assigned once.

Monday, June 14, 2010

Functional Programming

y = sin(x)

73

Functions are side-effect free.
Functions don’t alter state.
The result depends solely

on the arguments.

Monday, June 14, 2010

Functional Programming:
Concurrency Is Easier

74

No writes, so no synchronization.
Hence, no locks, semaphores, mutexes...

y = sin(x)

Monday, June 14, 2010

Functional Programming:
Reasoning is Easier

75

Without side effects,
functions are easier to test, understand, ...

y = sin(x)

and reuse!

Monday, June 14, 2010

Which fits your needs?

Object Oriented

76

Account

deposit(...)
withdraw(...)

CheckingAccount

deposit(...)
withdraw(...)

SavingsAccount

deposit(...)
withdraw(...)

??

deposit(...)
withdraw(...)

Monday, June 14, 2010

Do operations vary significantly, depending on data type or ...

list map

fold/

reduce

filter

Which fits your needs?

Functional

77

Monday, June 14, 2010

… or do operations more or less work the same independent of the data type?

flickr.com/photos/deanwampler

What if
you’re

doing cloud
computing?

78 deanwampler

E.g., is map-reduce
object-oriented
or functional?

Monday, June 14, 2010

FP Code:
more declarative
than imperative.

79

F(n) = F(n-1) + F(n-2)
where: F(0) = 0 and F(1) = 1

0, 1, 1, 2, 3, 5, 8, 13, ...

Monday, June 14, 2010

The Fibonacci Sequence.
I tell the system what I want (e.g., what are the relationships between data, the constraints, etc.) and let the system figure out
how to do it.

… and so are DSLs.

class Customer < ActiveRecord::Base
has_many :accounts

 validates_uniqueness_of :name,
 :on => create,
 :message => ‘Evil twin!’
end

80

Monday, June 14, 2010

By hiding the implementation details, we have much more leeway in implementing aspect behavior, etc.

A Few
Functional Languages

81

Monday, June 14, 2010

Erlang

• Ericsson Functional Language.

• For distributed, reliable, soft real-time,
highly concurrent systems.

• Used in telecom switches.

• 9-9’s reliability for AXD301 switch.

82

Monday, June 14, 2010

Erlang

• No mutable variables and side effects.

• Uses the actor model of concurrency.

• All IPC is optimized message passing.

• Let it fail philosophy.

• Very lightweight and fast processes.

• Lighter than most OS threads.

83

Monday, June 14, 2010

Scala

• Hybrid: object and functional.

• Targets the JVM and .NET.

• “Endorsed” by James Gosling at JavaOne.

• Could be the most popular
replacement for Java.

84

Monday, June 14, 2010

...

Times Change...

Monday, June 14, 2010

Clojure

• Functional, with principled support for
mutability.

• Targets the JVM and .NET.

• Best buzz?

• Too many good ideas to name here...

86

Monday, June 14, 2010

Functional Languages in
Industry

• Erlang

• CouchDB, Basho Riak, and Amazon’s
Simple DB.

• GitHub

• Jabber/XMPP server ejabberd.

87

Monday, June 14, 2010

Functional Languages in
Industry

• OCaml

• Jane Street Capital

• Scala

• Twitter

• LinkedIn

• Clojure

• Flightcaster
88

Monday, June 14, 2010

Parting Thought...

Which is better:
A hybrid object-functional language

for everything?
An object language for some code and
a functional language for other code?

e.g., Scala vs. Java + Erlang??

89

Monday, June 14, 2010

Scala is more complex than “mono-paradigm” languages, so it’s harder to master. However, using multiple languages has it’s
own challenges.

Polyglot and Poly-paradigm
Programming (PPP)

Recap:

90

Monday, June 14, 2010

Disadvantages of PPP

• N tool chains, languages, libraries,
“ecosystems”, idioms, ...

• Impedance mismatch between tools.

• Different meta-models.

• Overhead of calls between languages.

91

Monday, June 14, 2010

Advantages of PPP

• Can use the best tool for a particular job.

• Can minimize the amount of code
required.

• Can keep code closer to the domain
using DSLs.

• Encourages thinking about architecture.

92

Monday, June 14, 2010

Is This New?
• Functional Programming Comes of Age.

• Dr. Dobbs, 1994

• Scripting: Higher Level Programming for
the 21st Century.

• IEEE Computer, 1998

• In Praise of Scripting: Real Programming
Pragmatism.

• IEEE Computer, 2008
Monday, June 14, 2010

Why go mainstream now?

• Rapidly increasing pace of development,

➔ Scripting (dynamic languages), DSLs.

• Pervasive concurrency (e.g., Multicore CPUs)

➔ Functional programming.

• Cross-cutting concerns

➔ Aspect-oriented programming.

94

Monday, June 14, 2010

Thank You!

• dean@deanwampler.com

• Watch for the IEEE Software
special issue, Sept/Oct 2010.

• polyglotprogramming.com

95

Monday, June 14, 2010

mailto:dean@deanwampler.com
mailto:dean@deanwampler.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Extra Slides

96

Monday, June 14, 2010

• Ruby

• Aquarium

• Facets

• AspectR

Aspect-Oriented Tools

• Java

• AspectJ

• Spring AOP

• JBoss AOP

shameless plug

97

Monday, June 14, 2010

Options for Java and Ruby. Some other languages have AOP toolkits.

I would like to write…

Before returning the balance, read the
current value from the database.

Before accessing the BankAccount,
authenticate and authorize the user.

After setting the balance, write the
current value to the database.

98

Monday, June 14, 2010

I would like to write…

Before returning the balance, read the
current value from the database.

Before accessing the BankAccount,
authenticate and authorize the user.

After setting the balance, write the
current value to the database.

99

Monday, June 14, 2010

require ‘aquarium’
class BankAccount
 …
 after :writing => :balance \
 do |context, account, *args|
 persist_balance account
 end
 …

reopen class

“event” to trigger on

Aquarium

aquarium.rubyforge.org100

new behavior

use aquarium lib.

Monday, June 14, 2010

def credit(amount)
 @balance += amount
end

Back to clean code

101

Monday, June 14, 2010

