
MapReduce
and Its

Discontents

TechMesh	
 London	
 2012
December	
 5,	
 2012
dean@deanwampler.com	

polyglotprogramming.com/talks

1

Monday, April 22, 13

Beyond MapReduce: it’s been a useful technology, but has a “first generation” feel. What’s
next?

Copyright © Dean Wampler, 2011-2013, All Rights Reserved. Photos can only be used with
permission. Otherwise, the content is free to use.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:dean@deanwampler.com?subject=About%20your%20MapReduce%20presentation
mailto:dean@deanwampler.com?subject=About%20your%20MapReduce%20presentation
https://twitter.com/deanwampler
https://twitter.com/deanwampler
http://polyglotprogramming.com/talks
http://polyglotprogramming.com/talks

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

About	
 Me...

Dean Wampler,
 Jason Rutherglen &

 Edward Capriolo

Hive
Programming

Dean Wampler

Functional
Programming

for Java Developers

dean@deanwampler.com
@deanwampler
github.com/deanwampler

Monday, April 22, 13

My books and contact information.

http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/9780596155964.do
http://shop.oreilly.com/product/9780596155964.do
http://shop.oreilly.com/product/9780596155964.do
http://twitter.com/deanwampler
http://twitter.com/deanwampler
https://github.com/deanwampler
https://github.com/deanwampler

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Big	
 Data
Data	
 so	
 big	
 that	

tradiKonal	
 soluKons	
 are	

too	
 slow,	
 too	
 small,	
 or	

too	
 expensive	
 to	
 use.

3

Hat tip: Bob Korbus

Monday, April 22, 13

It’s a buzz word, but generally associated with the problem of data sets too big to manage
with traditional SQL databases. A parallel development has been the NoSQL movement that is
good at handling semistructured data, scaling, etc.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved4

3	
 Trends

Monday, April 22, 13
Three trends influence my thinking...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved5

Data	
 Size	
 ⬆

Monday, April 22, 13
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved6

Formal	
 Schemas	
 ⬇

Monday, April 22, 13
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved7

Data-­‐Driven	
 Programs	
 ⬆

Monday, April 22, 13
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some
engineering towards for the specific problem, as you might expect...)

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved8

Big	
 Data
Architectures

Monday, April 22, 13
What should software architectures look like for these kinds of systems?

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved9

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Monday, April 22, 13
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved10

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Monday, April 22, 13
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved11

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

• Focus on:

• Lists

• Maps

• Sets

• Trees

• ...

Monday, April 22, 13
But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich
transformations into those libraries, transformations that are composable to implement business logic.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved12

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Monday, April 22, 13
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved13

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Monday, April 22, 13
In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing”
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling
ML and related algorithms.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved14

• Data Size ⬆

• Formal
Schema ⬇

• Data-Driven
Programs ⬆

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Monday, April 22, 13
And this structure better fits the trends I outlined at the beginning of the talk.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved15

• MapReduce

• Distributed FS

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Monday, April 22, 13
And MapReduce + a distributed file system, like Hadoop’s MapReduce and HDFS, fit this model.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved16

What	
 Is
MapReduce?

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

MapReduce	
 in	
 Hadoop

Let’s	
 look	
 at	
 a	

MapReduce	
 algorithm:	

WordCount.

(The	
 Hello	
 World	
 of	
 big	
 data…)

17

Monday, April 22, 13
Let’s walk through the “Hello World” of MapReduce, the Word Count algorithm, at a conceptual level. We’ll see actual code shortly!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input Mappers Sort,
Shuffle

Reducers

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

Output

There is a
Reduce phase

reduce 1
there 2
uses 1

We	
 need	
 to	
 convert	

the	
 Input	

into	
 the	
 Output.

Monday, April 22, 13

Four input documents, one left empty, the others with small phrases (for simplicity…). The word count
output is on the right (we’ll see why there are three output “documents”). We need to get from the input
on the left-hand side to the output on the right-hand side.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input Mappers Sort,
Shuffle

Reducers

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

Output

There is a
Reduce phase

reduce 1
there 2
uses 1

Monday, April 22, 13

Here is a schematic view of the steps in Hadoop MapReduce. Each Input file is read by a single
Mapper process (default: can be many-to-many, as we’ll see later).
The Mappers emit key-value pairs that will be sorted, then partitioned and “shuffled” to the reducers,
where each Reducer will get all instances of a given key (for 1 or more values).
Each Reducer generates the final key-value pairs and writes them to one or more files (based on the
size of the output).

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers

There is a
Reduce phase (n, "…")

20

Monday, April 22, 13

Each document gets a mapper. All data is organized into key-value pairs; each line will be a
value and the offset position into the file will be the key, which we don’t care about. I’m
showing each document’s contents in a box and 1 mapper task (JVM process) per document.
Large documents might get split to several mapper tasks.
The mappers tokenize each line, one at a time, converting all words to lower case and
counting them...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers

There is a
Reduce phase (n, "…")

(hadoop, 1)
(uses, 1)
(mapreduce, 1)

(there, 1)
(is, 1)
(a, 1)
(reduce, 1)
(phase, 1)

(there, 1)
(is, 1)
(a, 1)
(map, 1)
(phase, 1)

21

Monday, April 22, 13

The mappers emit key-value pairs, where each key is one of the words, and the value is the
count. In the most naive (but also most memory efficient) implementation, each mapper
simply emits (word, 1) each time “word” is seen. However, this is IO inefficient!
Note that the mapper for the empty doc. emits no pairs, as you would expect.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

Reducers

There is a
Reduce phase (n, "…")

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

22

Monday, April 22, 13

The mappers themselves don’t decide to which reducer each pair should be sent. Rather, the
job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle
phase, where the key-value pairs in each mapper are sorted by key (that is locally, not
globally) and then the pairs are routed to the correct reducer, on the current machine or
other machines.
Note how we partitioned the reducers, by first letter of the keys. (By default, MR just hashes
the keys and distributes them modulo # of reducers.)

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (n, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

23

Monday, April 22, 13

The reducers are passed each key (word) and a collection of all the values for that key (the
individual counts emitted by the mapper tasks). The MR framework creates these collections
for us.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (n, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

reduce 1
there 2
uses 1

Output

Monday, April 22, 13

The final view of the WordCount process flow. The reducer just sums the counts and writes the output.
The output files contain one line for each key (the word) and value (the count), assuming we’re using
text output. The choice of delimiter between key and value is up to you, but tab is common.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

There is a
Map phase

Hadoop uses
MapReduce

Input

(n, "…")

(n, "…")

(n, "")

Mappers Sort,
Shuffle

(a, [1,1]),
(hadoop, [1]),

(is, [1,1])

(map, [1]),
(mapreduce, [1]),

(phase, [1,1])

Reducers

There is a
Reduce phase (n, "…")

(reduce, [1]),
(there, [1,1]),

(uses, 1)

(hadoop, 1)

(uses, 1)
(mapreduce, 1)

(is, 1), (a, 1)

(there, 1)

(there, 1),
(reduce, 1)

(phase,1)

(map, 1),(phase,1)

(is, 1), (a, 1)

0-9, a-l

m-q

r-z

map 1
mapreduce 1
phase 2

a 2
hadoop 1
is 2

reduce 1
there 2
uses 1

Output

Map:

• Transform one input to 0-N
outputs.

Reduce:

• Collect multiple inputs into
one output.

Monday, April 22, 13

To recap, a “map” transforms one input to one output, but this is generalized in MapReduce to be one
to 0-N. The output key-value pairs are distributed to reducers. The “reduce” collects together multiple
inputs with the same key into

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

History of
MapReduce

26

Monday, April 22, 13

Let’s review where MapReduce came from and its best-known, open-source incarnation,
Hadoop.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

How	
 would	
 you	

index	
 the	
 web?

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

How	
 would	
 you	

index	
 the	
 web?

Monday, April 22, 13

Did Google search the entire web in 0.26 seconds to find these ~49M results?

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

You	
 ask	
 a	
 phrase	
 and	

the	
 search	
 engine	
 finds	

the	
 best	
 match	
 in	

billions	
 of	
 web	
 pages.

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Actually,	
 Google	

computes	
 the	
 index	

that	
 maps	
 terms	
 to	

pages	
 in	
 advance.

Google’s famous Page Rank algorithm.

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

In	
 the	
 early	
 2000s,	

Google	
 invented	
 server	

infrastructure	
 to	
 support	

PageRank,	
 etc...

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Google	
 File	
 System
for	
 Storage

2003

Monday, April 22, 13

A distributed file system provides horizontal scalability and resiliency when file blocks are
duplicated around the cluster.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

MapReduce
for	
 ComputaKon

2004

Monday, April 22, 13

The compute model for processing all that data is MapReduce. It handles lots of boilerplate,
like breaking down jobs into tasks, distributing the tasks around the cluster, monitoring the
tasks, etc. You write your algorithm to the MR programming model.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

About	
 this	
 Kme,	
 Doug	

CuBng,	
 the	
 creator	
 of	
 	

Lucene,	
 and	
 Mike	

Cafarella	
 was	
 working	

on	
 Nutch...

Monday, April 22, 13

Lucene is an open-source text search engine. Nutch is an open source web crawler.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

They	
 started	
 clean-­‐
room	
 versions	
 of	

MapReduce	
 and	
 GFS...

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

By	
 2006	
 ,	
 they	
 became	

part	
 of	
 a	
 separate	
 	

Apache	
 project,	

called	
 Hadoop.

Monday, April 22, 13

The name comes from a toy, stuffed elephant that Cutting’s son owned at the time.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Benefits	
 of	

MapReduce

37

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

The	
 best	
 way	
 to	

approach	
 Big	
 Data	
 is	
 to	

scale	
 Horizontally.

Monday, April 22, 13

We can’t build vertical systems big enough and if we could, they would cost a fortune!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Hadoop	
 Design	
 Goals

And	
 parallelize	
 execuMon,	

run	
 on	
 server-­‐class,	

commodity	
 	
 hardware.

Maximize I/O

Performance!!

39

Monday, April 22, 13

Maximizing disk and network I/O is critical, because it’s the largest throughput bottleneck.
So, optimization is a core design goal of Hadoop (both MR and HDFS). It affects the features
and performance of everything in the stack above it, including high-level programming tools!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

By	
 design,	
 Hadoop	
 is	
 	

great	
 for	
 batch	
 mode	

data	
 crunching.

Monday, April 22, 13

… but less so for “real-time” event handling, as we’ll discuss...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

MapReduce
and its

Discontents

41

Monday, April 22, 13

Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

It’s	
 hard	
 to	
 implement	

many	
 Algorithms	

in	
 MapReduce.

#1

Monday, April 22, 13

Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc.,
the mapping from the algorithm to the implementation is not trivial at all. In fact,
implementing algorithms in MR is now a specialized body of knowledge...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

For	
 Hadoop	
 in	

parKcularly,	

the	
 Java	
 API	
 is
hard	
 to	
 use.

#2

Monday, April 22, 13

The Hadoop Java API is even more verbose and tedious to use than it should be.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved44

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

Monday, April 22, 13
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your
face. In the next several slides, notice which colors dominate. In this slide, it’s green for types (classes), with relatively few yellow functions that implement actual
operations.
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce
code in this API gets complex and tedious very fast!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved45

Use Cascading (Java)

(SoluKon	
 #1a)

Monday, April 22, 13
Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Data	
 flows	
 consist	
 of	
 	

source	
 and	
 sink	
 Taps	

connected	
 by	
 Pipes.

Cascading	
 Concepts

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Flow
Pipe ("word count assembly")

Each(Regex)

HDFS
Tap

(source)

line

Tap
(sink)

GroupBy
words

Every(Count)
word count

Word	
 Count

47

Monday, April 22, 13

Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved48

import org.cascading.*;
...
public class WordCount {
 public static void main(String[] args) {
 String inputPath = args[0];
 String outputPath = args[1];
 Properties properties = new Properties();
 FlowConnector.setApplicationJarClass(properties, Main.class);

 Scheme sourceScheme = new TextLine(new Fields("line"));
 Scheme sinkScheme = new TextLine(new Fields("word", "count"));
 Tap source = new Hfs(sourceScheme, inputPath);
 Tap sink = new Hfs(sinkScheme, outputPath, SinkMode.REPLACE);

 Pipe assembly = new Pipe("wordcount");

 String regex = "(?<!\\pL)(?=\\pL)[^]*(?<=\\pL)(?!\\pL)";
 Function function = new RegexGenerator(new Fields("word"), regex);
 assembly = new Each(assembly, new Fields("line"), function);
 assembly = new GroupBy(assembly, new Fields("word"));
 Aggregator count = new Count(new Fields("count"));
 assembly = new Every(assembly, count);

 FlowConnector flowConnector = new FlowConnector(properties);
 Flow flow = flowConnector.connect("word-count", source, sink, assembly);
 flow.complete();
 }
}

Monday, April 22, 13
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate,
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just
mention some highlights.
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved49

Use	
 Scalding (Scala)

(SoluKon	
 #1b)

Monday, April 22, 13
Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for
writing MapReduce jobs. https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed
previously and we’ll revisit shortly.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved50

import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
 TextLine(args("input"))
 .read
 .flatMap('line -> 'word) {
 line: String => line.trim.toLowerCase.split("\\W+")
 }
 .groupBy('word) { group => group.size('count) }
 }
 .write(Tsv(args("output")))
}

That’s It!!

Monday, April 22, 13
This Scala code is almost pure domain logic with very little boilerplate. There are a few minor differences in the implementation. You don’t explicitly specify the
“Hfs” (Hadoop Distributed File System) taps. That’s handled by Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization
approach here, where I split on anything that isn’t a “word character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little
time writing it, testing it, etc.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Crunch	
 (Java)	
 &
Scrunch	
 (Scala)

• Scoobi	
 (Scala)

• ...

Other	
 Improved	
 APIs:

51

Monday, April 22, 13

See https://github.com/cloudera/crunch.
Others include Scoobi (http://nicta.github.com/scoobi/) and Spark, which we’ll discuss next.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved52

Use	
 Spark (Scala)

(SoluKon	
 #2)

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Distributed computing
with in-memory caching.

• Up to 30x faster than
MapReduce.

Spark	
 is	
 a	
 Hadoop	

MapReduce	
 alternaKve:

53

Monday, April 22, 13

See http://www.spark-project.org/
Why isn’t it more widely used? 1) lack of commercial support, 2) only recently emerged out of
academia.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Originally designed for
machine learning
applications.

Spark	
 is	
 a	
 Hadoop	

MapReduce	
 alternaKve:

54

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved55

object WordCountSpark {
 def main(args: Array[String]) {
 val file = spark.textFile(args(0))
 val counts = file.flatMap(line => line.split("\\W+"))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 counts.saveAsTextFile(args(1))
 }
}

Also that’s it!
Note it’s similar to the MapReduce API,

but far more concise.

Monday, April 22, 13
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare
minimum.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved56

Use	
 Hive,	
 Shark,	
 or	
 Impala

(SoluKon	
 #3)

Monday, April 22, 13
Using SQL when you can! Here are 3 options.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Hive: SQL on top of MapReduce.

• Shark: Hive ported to Spark.

• Impala: HiveQL with new, faster
back end.

	
 Use	
 SQL	
 when	
 you	
 can!

57

Monday, April 22, 13

See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark,
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. Impala is very new. It doesn’t yet support all Hive
features.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved58

CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs' INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+')) AS word FROM docs) w
GROUP BY word
ORDER BY word;

Word Count, again…
… in HiveQL

SQL!

Monday, April 22, 13
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs
table, etc., etc.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• HiveQL front end.

• C++ and Java back end.

• Provides up to 100x performance
improvement!

• Developed by Cloudera.

	
 Impala

59

Monday, April 22, 13

See http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html. However, this was just announced a few ago (at the time of
this writing), so it’s not production ready quite yet...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

It’s	
 not	
 suitable	
 for	

“real-­‐Mme”

event	
 processing.

#3

Monday, April 22, 13

For typical web/enterprise systems, “real-time” is up to 100s of milliseconds, so I’m using
the term broadly (but following common practice in this industry). True real-time systems,
such as avionics, have much tighter constraints.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Storm!
Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Storm	
 implements	

reliable,	
 distributed	

“real-­‐Mme”
event	
 processing.

Monday, April 22, 13

http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created
Cascalog, the Clojure wrapper around Cascading with added Datalog (logic programming)
features.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Spout

Bolt

Bolt

Bolt

BoltSpout

Monday, April 22, 13

In Storm terminology, Spouts are data sources and bolts are the event processors. There are
facilities to support reliable message handling, various sources encapsulated in Sprouts and
various targets of output. Distributed processing is baked in from the start.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Databases?

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Since databases are designed for
fast, transactional updates,
consider a database for
event processing.

	
 SQL	
 	
 or	
 NoSQL	

Databases?

65

Monday, April 22, 13

Use a SQL database unless you need the scale and looser schema of a NoSQL database!

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

It’s	
 not	
 ideal	
 for	

graph	
 processing.

#4

Monday, April 22, 13

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Google invented MapReduce,

• … but MapReduce is not ideal
for Page Rank and other graph
algorithms.

	
 Google’s	
 Page	
 Rank

67

Monday, April 22, 13

Recall that PageRank is the famous algorithm invented by Sergey Brin and Larry Page to index
the web. It’s the foundation of Google’s search engine.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• 1 MR job for each
iteration that updates
all n nodes/edges.

• Graph saved to disk
after each iteration.

• ...

Why	
 not	
 MapReduce?

C

E

A

D

F

B

68

Monday, April 22, 13

The presentation http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-
largescale-graph-processing
itemizes all the major issues with using MR to implement graph algorithms.
In a nutshell, a job with a map and reduce phase is waaay to course-grained...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved69

Use	
 Graph	
 Processing

(SoluKon	
 #4)

Monday, April 22, 13
A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Pregel: New graph framework for
Page Rank.

• Bulk, Synchronous Parallel (BSP).

• Graphs are first-class citizens.

• Efficiently processes updates...

	
 Google’s	
 Pregel

70

Monday, April 22, 13

Pregel is the name of the river that runs through the city of Königsberg, Prussia (now called
Kaliningrad, Ukraine). 7 bridges crossed the river in the city (including to 5 to 2 islands
between river branches). Leonhard Euler invented graph theory when we analyzed the
question of whether or not you can cross all 7 bridges without retracing your steps (you
can’t).

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

• Apache Giraph.

• Apache Hama.

• Aurelius Titan.

	
 Open-­‐source	

AlternaKves

All are
somewhat
immature.

71

Monday, April 22, 13

http://incubator.apache.org/giraph/
http://hama.apache.org/
http://thinkaurelius.github.com/titan/
None is very mature nor has extensive commercial support.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved72

A Manifesto...

Monday, April 22, 13
To bring this altogether, I think we have opportunities for a better way...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Hadoop is the
Enterprise Java Beans

 of our time.

Monday, April 22, 13
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count).
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…)
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Stop using Java!

Monday, April 22, 13
Java has taken us a long way and the JVM remains one of our most valuable tools. But the language is really wrong language for data purposes and
its continued use by Big Data vendors is slowing down overall progress, as well as application developer productivity, IMHO. Java emphasizes the
wrong abstractions, objects instead of mathematically-inspired functional programming constructs, and Java encourages inflexible bloat because
it’s verbose compared to more modern alternatives and objects (at least class-based ones…) are far less reusable and flexible than people realize.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved75

Functional Languages
improve Big Data

productivity!
Monday, April 22, 13
Why is Functional Programming better for Big Data? The work we do with data is inherently mathematical transformations and FP is inspired by
math. Hence, it’s naturally a better fit, much more so than object-oriented programming. And, modern languages like Scala, Clojure, Erlang, F#,
OCaml, and Haskell are more concise and better at eliminating boilerplate, while still providing excellent performance.

Note that one reason SQL has succeeded all these years is because it is also inspired by math, e.g., set theory.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Functional Collections.
Monday, April 22, 13
We already have the right model in the collection APIs that come with functional languages. They are far better engineered for intuitive data
transformations. They provide the right abstractions and hide boilerplate. In fact, they make it relatively easy to optimize implementations for
parallelization. The Scala collections offer parallelization with a tiny API call. Spark and Cascading transparently distribute collections across a
cluster.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Erlang, Akka:
Actor-based,
Distributed

Computation

Fine Grain
Compute Models.

Monday, April 22, 13
We can start using new, more efficient compute models, like Spark, Pregel, and Impala today. Of course, you have to consider maturity, viability,
and support issues in large organizations. So if you want to wait until these alternatives are more mature, then at least use better APIs for Hadoop!
For example, Erlang is a very mature language with the Actor model backed in. Akka is a Scala distributed computing model based on the Actor
model of concurrency. It exposes clean, low-level primitives for robust, distributed services (e.g., Actors), upon which we can build flexible big data
systems that can handle soft real time and batch processing efficiently and with great scalability.

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

Final Thought:

78

Monday, April 22, 13
A final thought about Big Data...

Copyright	
 ©	
 2011-­‐2013,	
 Dean	
 Wampler,	
 All	
 Rights	
 Reserved

QuesKons?

79

TechMesh	
 London	
 2012
December	
 5,	
 2012

@deanwampler
dean@deanwampler.com

Monday, April 22, 13

All pictures Copyright © Dean Wampler, 2011-2013, All Rights Reserved. All other content is
free to use, but attribution is requested.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://twitter.com/deanwampler
http://twitter.com/deanwampler
mailto:dean@deanwampler.com?subject=About%20your%20MapReduce%20talk
mailto:dean@deanwampler.com?subject=About%20your%20MapReduce%20talk

