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Beyond MapReduce: it’s been a useful technology, but has a “first generation” feel. What’s 
next?
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Big	
  Data
Data	
  so	
  big	
  that	
  

tradiKonal	
  soluKons	
  are	
  
too	
  slow,	
  too	
  small,	
  or	
  
too	
  expensive	
  to	
  use.

3

Hat tip: Bob Korbus

Monday, April 22, 13

It’s a buzz word, but generally associated with the problem of data sets too big to manage 
with traditional SQL databases. A parallel development has been the NoSQL movement that is 
good at handling semistructured data, scaling, etc.
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3	
  Trends

Monday, April 22, 13
Three trends influence my thinking...
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Data	
  Size	
  ⬆

Monday, April 22, 13
Data volumes are obviously growing… rapidly.
Facebook now has over 600PB (Petabytes) of data in Hadoop clusters!
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Formal	
  Schemas	
  ⬇

Monday, April 22, 13
There is less emphasis on “formal” schemas and domain models, i.e., both relational models of data and OO models, because data schemas and 
sources change rapidly, and we need to integrate so many disparate sources of data. So, using relatively-agnostic software, e.g., collections of 
things where the software is more agnostic about the structure of the data and the domain, tends to be faster to develop, test, and deploy. Put 
another way, we find it more useful to build somewhat agnostic applications and drive their behavior through data...
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Data-­‐Driven	
  Programs	
  ⬆

Monday, April 22, 13
This is the 2nd generation “Stanley”, the most successful self-driving car ever built (by a Google-Stanford) team. Machine learning is growing in 
importance. Here, generic algorithms and data structures are trained to represent the “world” using data, rather than encoding a model of the 
world in the software itself. It’s another example of generic algorithms that produce the desired behavior by being application agnostic and data 
driven, rather than hard-coding a model of the world. (In practice, however, a balance is struck between completely agnostic apps and some 
engineering towards for the specific problem, as you might expect...)
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Big	
  Data
Architectures

Monday, April 22, 13
What should software architectures look like for these kinds of systems?
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Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational 
Mapping

Other, Object-
Oriented 

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Monday, April 22, 13
Traditionally, we’ve kept a rich, in-memory domain model requiring an ORM to convert persistent data into the model. This is resource overhead and complexity we can’t afford in big data 
systems. Rather, we should treat the result set as it is, a particular kind of collection, do the minimal transformation required to exploit our collections libraries and classes representing some 
domain concepts (e.g., Address, StockOption, etc.), then write functional code to implement business logic (or drive emergent behavior with machine learning algorithms…)

The toJSON methods are there because we often convert these object graphs back into fundamental structures, such as the maps and arrays of JSON so we can send them to the browser!
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But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with 
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich 
transformations into those libraries, transformations that are composable to implement business logic.
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But the traditional systems are a poor fit for this new world: 1) they add too much overhead in computation (the ORM layer, etc.) and memory (to store the objects). Most of what we do with 
data is mathematical transformation, so we’re far more productive (and runtime efficient) if we embrace fundamental data structures used throughout (lists, sets, maps, trees) and build rich 
transformations into those libraries, transformations that are composable to implement business logic.
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In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it 
easier to write smaller, focused services that we compose and deploy as appropriate.
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In a broader view, object models tend to push us towards centralized, complex systems that don’t decompose well and stifle reuse and optimal deployment scenarios. FP code makes it 
easier to write smaller, focused services that we compose and deploy as appropriate. Each “ProcessN” could be a parallel copy of another process, for horizontal, “shared-nothing” 
scalability, or some of these processes could be other services…
Smaller, focused services scale better, especially horizontally. They also don’t encapsulate more business logic than is required, and this (informal) architecture is also suitable for scaling 
ML and related algorithms.
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And this structure better fits the trends I outlined at the beginning of the talk.
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And MapReduce + a distributed file system, like Hadoop’s MapReduce and HDFS, fit this model. 
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Let’s walk through the “Hello World” of MapReduce, the Word Count algorithm, at a conceptual level. We’ll see actual code shortly!
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Four input documents, one left empty, the others with small phrases (for simplicity…). The word count 
output is on the right (we’ll see why there are three output “documents”). We need to get from the input 
on the left-hand side to the output on the right-hand side.
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Here is a schematic view of the steps in Hadoop MapReduce. Each Input file is read by a single 
Mapper process (default: can be many-to-many, as we’ll see later). 
The Mappers emit key-value pairs that will be sorted, then partitioned and “shuffled” to the reducers, 
where each Reducer will get all instances of a given key (for 1 or more values).
Each Reducer generates the final key-value pairs and writes them to one or more files (based on the 
size of the output).
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Each document gets a mapper. All data is organized into key-value pairs; each line will be a 
value and the offset position into the file will be the key, which we don’t care about. I’m 
showing each document’s contents in a box and 1 mapper task (JVM process) per document. 
Large documents might get split to several mapper tasks.
The mappers tokenize each line, one at a time, converting all words to lower case and 
counting them...
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The mappers emit key-value pairs, where each key is one of the words, and the value is the 
count. In the most naive (but also most memory efficient) implementation, each mapper 
simply emits (word, 1) each time “word” is seen. However, this is IO inefficient!
Note that the mapper for the empty doc. emits no pairs, as you would expect.
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The mappers themselves don’t decide to which reducer each pair should be sent. Rather, the 
job setup configures what to do and the Hadoop runtime enforces it during the Sort/Shuffle 
phase, where the key-value pairs in each mapper are sorted by key (that is locally, not 
globally) and then the pairs are routed to the correct reducer, on the current machine or 
other machines.
Note how we partitioned the reducers, by first letter of the keys. (By default, MR just hashes 
the keys and distributes them modulo # of reducers.) 
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The reducers are passed each key (word) and a collection of all the values for that key (the 
individual counts emitted by the mapper tasks). The MR framework creates these collections 
for us.
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The final view of the WordCount process flow. The reducer just sums the counts and writes the output.
The output files contain one line for each key (the word) and value (the count), assuming we’re using 
text output. The choice of delimiter between key and value is up to you, but tab is common.
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To recap, a “map” transforms one input to one output, but this is generalized in MapReduce to be one 
to 0-N. The output key-value pairs are distributed to reducers. The “reduce” collects together multiple 
inputs with the same key into
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Let’s review where MapReduce came from and its best-known, open-source incarnation, 
Hadoop.
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Did Google search the entire web in 0.26 seconds to find these ~49M results?
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A distributed file system provides horizontal scalability and resiliency when file blocks are 
duplicated around the cluster.
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The compute model for processing all that data is MapReduce. It handles lots of boilerplate, 
like breaking down jobs into tasks, distributing the tasks around the cluster, monitoring the 
tasks, etc. You write your algorithm to the MR programming model.
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Lucene is an open-source text search engine. Nutch is an open source web crawler.
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The name comes from a toy, stuffed elephant that Cutting’s son owned at the time.



Copyright	
  ©	
  2011-­‐2013,	
  Dean	
  Wampler,	
  All	
  Rights	
  Reserved

Benefits	
  of	
  
MapReduce

37

Monday, April 22, 13



Copyright	
  ©	
  2011-­‐2013,	
  Dean	
  Wampler,	
  All	
  Rights	
  Reserved

The	
  best	
  way	
  to	
  
approach	
  Big	
  Data	
  is	
  to	
  

scale	
  Horizontally.

Monday, April 22, 13

We can’t build vertical systems big enough and if we could, they would cost a fortune!
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Maximizing disk and network I/O is critical, because it’s the largest throughput bottleneck. 
So, optimization is a core design goal of Hadoop (both MR and HDFS). It affects the features 
and performance of everything in the stack above it, including high-level programming tools!
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… but less so for “real-time” event handling, as we’ll discuss...
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Is MapReduce the end of the story? Does it meet all our needs? Let’s look at a few problems...
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Even word count is not “obvious”. When you get to fancier stuff like joins, group-bys, etc., 
the mapping from the algorithm to the implementation is not trivial at all. In fact, 
implementing algorithms in MR is now a specialized body of knowledge...
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The Hadoop Java API is even more verbose and tedious to use than it should be.
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import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase 
    implements Mapper<LongWritable, Text, Text, IntWritable> {

  static final IntWritable one  = new IntWritable(1);
  static final Text word = new Text;   // Value will be set in a non-thread-safe way!

  @Override
  public void map(LongWritable key, Text valueDocContents, 
          OutputCollector<Text, IntWritable> output, Reporter reporter) {
      String[] tokens = valueDocContents.toString.split("\\s+");
      for (String wordString: tokens) {
        if (wordString.length > 0) {
          word.set(wordString.toLowerCase);
          output.collect(word, one);
        }
      }
    }
}

class Reduce extends MapReduceBase 
    implements Reducer[Text, IntWritable, Text, IntWritable] {

  public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts, 
             OutputCollector<Text, IntWritable> output, Reporter reporter) {
    int totalCount = 0;
    while (valuesCounts.hasNext) {
      totalCount += valuesCounts.next.get;
    }
    output.collect(keyWord, new IntWritable(totalCount));
  }
}

Monday, April 22, 13
This is intentionally too small to read and we’re not showing the main routine, which doubles the code size. The algorithm is simple, but the framework is in your 
face. In the next several slides, notice which colors dominate. In this slide, it’s green for types (classes), with relatively few yellow functions that implement actual 
operations. 
The main routine I’ve omitted contains boilerplate details for configuring and running the job. This is just the “core” MapReduce code. In fact, Word Count is not 
too bad, but when you get to more complex algorithms, even conceptually simple ideas like relational-style joins and group-bys, the corresponding MapReduce 
code in this API gets complex and tedious very fast!
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Cascading is a Java library that provides higher-level abstractions for building data processing pipelines with concepts familiar from SQL such as a 
joins, group-bys, etc. It works on top of Hadoop’s MapReduce and hides most of the boilerplate from you.
See http://cascading.org.
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Schematically, here is what Word Count looks like in Cascading. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details.
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import org.cascading.*;
...
public class WordCount {
  public static void main(String[] args) {
    String inputPath  = args[0];
    String outputPath = args[1];
    Properties properties = new Properties();
    FlowConnector.setApplicationJarClass( properties, Main.class );

    Scheme sourceScheme = new TextLine( new Fields( "line" ) );
    Scheme sinkScheme = new TextLine( new Fields( "word", "count" ) );
    Tap source = new Hfs( sourceScheme, inputPath );
    Tap sink   = new Hfs( sinkScheme, outputPath, SinkMode.REPLACE );

    Pipe assembly = new Pipe( "wordcount" );

    String regex = "(?<!\\pL)(?=\\pL)[^ ]*(?<=\\pL)(?!\\pL)";
    Function function = new RegexGenerator( new Fields( "word" ), regex );
    assembly = new Each( assembly, new Fields( "line" ), function );
    assembly = new GroupBy( assembly, new Fields( "word" ) );
    Aggregator count = new Count( new Fields( "count" ) );
    assembly = new Every( assembly, count );

    FlowConnector flowConnector = new FlowConnector( properties );
    Flow flow = flowConnector.connect( "word-count", source, sink, assembly);
    flow.complete();
  }
}

Monday, April 22, 13
Here is the Cascading Java code. It’s cleaner than the MapReduce API, because the code is more focused on the algorithm with less boilerplate, 
although it looks like it’s not that much shorter. HOWEVER, this is all the code, where as previously I omitted the setup (main) code. See http://
docs.cascading.org/cascading/1.2/userguide/html/ch02.html for details of the API features used here; we won’t discuss them here, but just 
mention some highlights. 
Note that there is still a lot of green for types, but at least the API emphasizes composing behaviors together.
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Scalding is a Scala “DSL” (domain-specific language) that wraps Cascading providing an even more intuitive and more boilerplate-free API for 
writing MapReduce jobs.  https://github.com/twitter/scalding
Scala is a new JVM language that modernizes Java’s object-oriented (OO) features and adds support for functional programming, as we discussed 
previously and we’ll revisit shortly.
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import com.twitter.scalding._

class WordCountJob(args: Args) extends Job(args) {
  TextLine( args("input") )
    .read
    .flatMap('line -> 'word) {
      line: String => line.trim.toLowerCase.split("\\W+") 
    }
    .groupBy('word) { group => group.size('count) }
  }
  .write(Tsv(args("output")))
}

That’s It!!

Monday, April 22, 13
This Scala code is almost pure domain logic with very little boilerplate. There are a few minor differences in the implementation. You don’t explicitly specify the 
“Hfs” (Hadoop Distributed File System) taps. That’s handled by Scalding implicitly when you run in “non-local” model. Also, I’m using a simpler tokenization 
approach here, where I split on anything that isn’t a “word character” [0-9a-zA-Z_].
There is little green, in part because Scala infers type in many cases. There is a lot more yellow for the functions that do real work!
What if MapReduce, and hence Cascading and Scalding, went obsolete tomorrow? This code is so short, I wouldn’t care about throwing it away! I invested little 
time writing it, testing it, etc.
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• Crunch	
  (Java)	
  & 
Scrunch	
  (Scala)

• Scoobi	
  (Scala)

• ...

Other	
  Improved	
  APIs:

51
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See https://github.com/cloudera/crunch.
Others include Scoobi (http://nicta.github.com/scoobi/) and Spark, which we’ll discuss next.
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Use	
  Spark (Scala)

(SoluKon	
  #2)

Monday, April 22, 13
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• Distributed computing 
with in-memory caching.

• Up to 30x faster than 
MapReduce.

Spark	
  is	
  a	
  Hadoop	
  
MapReduce	
  alternaKve:

53
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See http://www.spark-project.org/
Why isn’t it more widely used? 1) lack of commercial support, 2) only recently emerged out of 
academia.
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• Originally designed for 
machine learning 
applications.

Spark	
  is	
  a	
  Hadoop	
  
MapReduce	
  alternaKve:

54

Monday, April 22, 13
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object WordCountSpark {
  def main(args: Array[String]) {
    val file = spark.textFile(args(0))
    val counts = file.flatMap(line => line.split("\\W+"))
                     .map(word => (word, 1))
                     .reduceByKey(_ + _)
    counts.saveAsTextFile(args(1))
  }
}

Also that’s it!
Note it’s similar to the MapReduce API, 

but far more concise.

Monday, April 22, 13
This spark example is actually closer in a few details, i.e., function names used, to the original Hadoop Java API example, but it cuts down boilerplate to the bare 
minimum.
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Use	
  Hive,	
  Shark,	
  or	
  Impala

(SoluKon	
  #3)

Monday, April 22, 13
Using SQL when you can! Here are 3 options.
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• Hive: SQL on top of MapReduce.

• Shark: Hive ported to Spark.

• Impala: HiveQL with new, faster 
back end.

	
  Use	
  SQL	
  when	
  you	
  can!

57
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See http://hive.apache.org/ or my book for Hive, http://shark.cs.berkeley.edu/ for shark, 
and http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html for Impala. Impala is very new. It doesn’t yet support all Hive 
features.
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CREATE TABLE docs (line STRING);
LOAD DATA INPATH '/path/to/docs' INTO TABLE docs;

CREATE TABLE word_counts AS
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+')) AS word FROM docs) w
GROUP BY word
ORDER BY word;

Word Count, again…
… in HiveQL

SQL!

Monday, April 22, 13
This is how you could implement word count in Hive. We’re using some Hive built-in functions for tokenizing words in each “line”, the one “column” in the docs 
table, etc., etc.
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• HiveQL front end.

• C++ and Java back end.

• Provides up to 100x performance 
improvement!

• Developed by Cloudera.

	
  Impala

59
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See http://www.cloudera.com/content/cloudera/en/products/cloudera-enterprise-core/
cloudera-enterprise-RTQ.html. However, this was just announced a few ago (at the time of 
this writing), so it’s not production ready quite yet...
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It’s	
  not	
  suitable	
  for	
  
“real-­‐Mme”

event	
  processing.

#3

Monday, April 22, 13

For typical web/enterprise systems, “real-time” is up to 100s of milliseconds, so I’m using 
the term broadly (but following common practice in this industry). True real-time systems, 
such as avionics, have much tighter constraints.
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Storm!
Monday, April 22, 13
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Storm	
  implements	
  
reliable,	
  distributed	
  

“real-­‐Mme”
event	
  processing.

Monday, April 22, 13

http://storm-project.net/ Created by Nathan Marz, now at Twitter, who also created 
Cascalog, the Clojure wrapper around Cascading with added Datalog (logic programming) 
features.
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Spout

Bolt

Bolt

Bolt

BoltSpout

Monday, April 22, 13

In Storm terminology, Spouts are data sources and bolts are the event processors. There are 
facilities to support reliable message handling, various sources encapsulated in Sprouts and 
various targets of output. Distributed processing is baked in from the start.
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Databases?
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• Since databases are designed for 
fast, transactional updates, 
consider a database for         
event processing.

	
  SQL	
  	
  or	
  NoSQL	
  
Databases?

65
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Use a SQL database unless you need the scale and looser schema of a NoSQL database!
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It’s	
  not	
  ideal	
  for	
  
graph	
  processing.

#4

Monday, April 22, 13
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• Google invented MapReduce,

• … but MapReduce is not ideal 
for Page Rank and other graph 
algorithms. 

	
  Google’s	
  Page	
  Rank

67
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Recall that PageRank is the famous algorithm invented by Sergey Brin and Larry Page to index 
the web. It’s the foundation of Google’s search engine.
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• 1 MR job for each 
iteration that updates 
all n nodes/edges.

• Graph saved to disk 
after each iteration.

• ...

Why	
  not	
  MapReduce?

C

E

A

D

F

B

68
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The presentation http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-
largescale-graph-processing
itemizes all the major issues with using MR to implement graph algorithms.
In a nutshell, a job with a map and reduce phase is waaay to course-grained...
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Use	
  Graph	
  Processing

(SoluKon	
  #4)

Monday, April 22, 13
A good summary presentation: http://www.slideshare.net/shatteredNirvana/pregel-a-system-for-largescale-graph-processing
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• Pregel: New graph framework for 
Page Rank.

• Bulk, Synchronous Parallel (BSP).

• Graphs are first-class citizens.

• Efficiently processes updates... 

	
  Google’s	
  Pregel

70
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Pregel is the name of the river that runs through the city of Königsberg, Prussia (now called 
Kaliningrad, Ukraine). 7 bridges crossed the river in the city (including to 5 to 2 islands 
between river branches). Leonhard Euler invented graph theory when we analyzed the 
question of whether or not you can cross all 7 bridges without retracing your steps (you 
can’t).
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• Apache Giraph.

• Apache Hama.

• Aurelius Titan.

	
  Open-­‐source	
  
AlternaKves

All are 
somewhat 
immature.

71
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http://incubator.apache.org/giraph/
http://hama.apache.org/
http://thinkaurelius.github.com/titan/
None is very mature nor has extensive commercial support.
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A Manifesto...

Monday, April 22, 13
To bring this altogether, I think we have opportunities for a better way...
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Hadoop is the 
Enterprise Java Beans

 of our time.

Monday, April 22, 13
I worked with EJBs a decade ago. The framework was completely invasive into your business logic. There were too many configuration options in 
XML files. The framework “paradigm” was a poor fit for most problems (like soft real time systems and most algorithms beyond Word Count). 
Internally, EJB implementations were inefficient and hard to optimize, because they relied on poorly considered object boundaries that muddled 
more natural boundaries. (I’ve argued in other presentations and my “FP for Java Devs” book that OOP is a poor modularity tool…) 
The fact is, Hadoop reminds me of EJBs in almost every way. It’s a 1st generation solution that mostly works okay and people do get work done 
with it, but just as the Spring Framework brought an essential rethinking to Enterprise Java, I think there is an essential rethink that needs to 
happen in Big Data, specifically around Hadoop. The functional programming community, is well positioned to create it...



Copyright	
  ©	
  2011-­‐2013,	
  Dean	
  Wampler,	
  All	
  Rights	
  Reserved

Stop using Java!

Monday, April 22, 13
Java has taken us a long way and the JVM remains one of our most valuable tools. But the language is really wrong language for data purposes and 
its continued use by Big Data vendors is slowing down overall progress, as well as application developer productivity, IMHO. Java emphasizes the 
wrong abstractions, objects instead of mathematically-inspired functional programming constructs, and Java encourages inflexible bloat because 
it’s verbose compared to more modern alternatives and objects (at least class-based ones…) are far less reusable and flexible than people realize.
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Functional Languages
improve Big Data 

productivity!
Monday, April 22, 13
Why is Functional Programming better for Big Data? The work we do with data is inherently mathematical transformations and FP is inspired by 
math. Hence, it’s naturally a better fit, much more so than object-oriented programming. And, modern languages like Scala, Clojure, Erlang, F#, 
OCaml, and Haskell are more concise and better at eliminating boilerplate, while still providing excellent performance.

Note that one reason SQL has succeeded all these years is because it is also inspired by math, e.g., set theory.
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Functional Collections.
Monday, April 22, 13
We already have the right model in the collection APIs that come with functional languages. They are far better engineered for intuitive data 
transformations. They provide the right abstractions and hide boilerplate. In fact, they make it relatively easy to optimize implementations for 
parallelization. The Scala collections offer parallelization with a tiny API call. Spark and Cascading transparently distribute collections across a 
cluster.
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Erlang, Akka:
Actor-based, 
Distributed 

Computation

Fine Grain
Compute Models.

Monday, April 22, 13
We can start using new, more efficient compute models, like Spark, Pregel, and Impala today. Of course, you have to consider maturity, viability, 
and support issues in large organizations. So if you want to wait until these alternatives are more mature, then at least use better APIs for Hadoop! 
For example, Erlang is a very mature language with the Actor model backed in. Akka is a Scala distributed computing model based on the Actor 
model of concurrency. It exposes clean, low-level primitives for robust, distributed services (e.g., Actors), upon which we can build flexible big data 
systems that can handle soft real time and batch processing efficiently and with great scalability.
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Final Thought:

78
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A final thought about Big Data...
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QuesKons?
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