
How Functional Programming
Changes Developer Practices

dean@deanwampler.com
@deanwampler

1Agile 2011, August 11, 2011

The Haystack, Oregon

polyglotprogramming.com/talks

Friday, April 12, 13

Adapted from my longer tutorial at github.com/deanwampler/Presentations/BetterProgrammingThroughFP.
All photos © 2010 Dean Wampler, unless other noted. Most of my photos are here: http://www.flickr.com/photos/
deanwampler/. Most are from the Oregon coast. Some are from the San Francisco area. A few are from other places I’ve visited
over the years.

(The Haystack, Cannon Beach, Oregon)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2

programmingscala.compolyglotprogramming.com/
fpjava

Dean Wampler

Functional
Programming

for Java Developers

Friday, April 12, 13

I got interested in FP about 5 years ago when everyone was talking about it. I decided it was time to learn myself and I expected
to pick up some good ideas, but otherwise remain primarily an “object-oriented developer”. Actually, it caused me to rethink my
views and now I tend to use FP more than OOP. This tutorial explains why.

http://programmingscala.com
http://programmingscala.com
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava

3

•The problems of our time.

•What is Functional
Programming?

•Better reusability.

•Better concurrency.

•Better objects.

Friday, April 12, 13

Outline. I won’t have time to talk about concurrency. See my github.com/deanwampler/Presentations/
BetterProgrammingThroughFP tutorial for more details.

(Nehalem State Park, Oregon)

The problems
of our time.

4

Nehalem State Park, Oregon

Friday, April 12, 13

What problems motivate the need for change, for which Functional Programming is well suited?

(Nehalem State Park, Oregon)

Concurrency

San Francisco Bay
Friday, April 12, 13

Concurrency is the reason people started discussing FP, which had been primarily an academic area of interest. FP has useful
principles that make concurrency more robust and easier to write.

(San Francisco Bay)

We’re
Drowning
in Data.

...
Friday, April 12, 13

Not just these big companies, but many organizations have lots of data they want to analyze and exploit.

(San Francisco)

We need better
modularity.

Mud, Death Hollow Trail, Utah

Friday, April 12, 13

I will argue that objects haven’t been the modularity success story we expected 20 years ago, especially in terms of reuse. I’m
referring to having standards that actually enable widespread interoperability, like electronics, for example. I’ll argue that object
abstractions are too high-level and too open-ended to work well.

(Mud near Death Hollow in Utah.)

We need
better
agility.

Half Dome, Yosemite NP

Friday, April 12, 13

Schedules keep getting shorter. The Internet weeded out a lot of process waste, like Big Documents Up Front, UML design, etc.
From that emerged XP and other forms of Agile. But schedules and turnaround times continue to get shorter.

(Ascending the steel cable ladder up the back side of Half Dome, Yosemite National Park)

We need a return
to simplicity.

Maligne Lake, Jasper Nat. Park

Friday, April 12, 13

Every now and then, we need to stop, look at what we’re doing, and remove the cruft we’ve accumulated. If you’re a Java
programmer, recall how efforts like the Spring Framework forced a rethinking of J2EE. I claim that a lot of the code we write,
specifically lots of object middleware, is cruft. Functional programming isn’t *simple*, but in my view it reflects a refocusing on
core principles and minimally-sufficient design.

(Maligne Lake, Near Jasper National Park, Jasper, Alberta)

What is Functional
Programming?

10Nehalem State Park, Oregon
Friday, April 12, 13

This is rich field, so I can’t cover everything. I’ll mention the things that I believe are most useful to know for beginners and
those curious about FP.

(Nehalem State Park, Oregon)

11

Functional
Programming
is inspired by
Mathematics.

Friday, April 12, 13

FP follows the “rules” for the behavior of functions, variables, and values in mathematics. Everything else falls out from there...

What is Functional
Programming?

12

Immutable
Values

Friday, April 12, 13

First, values in FP are immutable, but variables that point to different values, aren’t.

13

Immutable Values

y = sin(x)

x and y are variables.
Once you assign a value to x,
you fix the value assigned to y.

1 = sin(π/2)

Friday, April 12, 13

First, values in FP are immutable, but variables that point to different values, aren’t.

(At dusk flying over the Midwest - lightened)

14

Immutable Values

y = sin(x)

You can start over with new values
assigned to the same variables.

But you never modify the values, themselves.
Friday, April 12, 13

15

Immutable Values

π += 1

What would that mean?

Friday, April 12, 13

This would make no sense.

16

Immutable Values

If a value is immutable,
synchronizing access is no longer necessary!

Concurrency becomes far easier.
Friday, April 12, 13

Of course, you don’t need functional programming to make values immutable.

What is Functional
Programming?

17

Side-effect
free

functions
Friday, April 12, 13

Math functions don’t have side effects. They don’t change object or global state. All work is returned and assigned to y.

18

y = sin(x)

sin(x) does not change state anywhere!

Functions

Friday, April 12, 13

Math functions don’t have side effects. They don’t change object or global state. All work is returned and assigned to y.

19

We can replace sin(π/2) with 1.

1 = sin(π/2)

Referential
Transparency

We can replace 1 with sin(π/2)!
Functions and values are interchangeable

Friday, April 12, 13

A crucial implication of functions without side effects us that functions and values are interchangeable. A mundane benefit is
that it’s easy to for an implementation to cache previous work for a given input value, for efficiency. But there are more profound
benefits.

20

y = sin(x)

sin(x) can be used anywhere.
I don’t have to worry about the

context where it’s used

Functions

Friday, April 12, 13

This makes testing, reuse, and concurrency much easier if I don’t have to worry about external state modifications.

What is Functional
Programming?

21

First-class
functions

Friday, April 12, 13

22

First Class: values that can be assigned to
variables, pass to and from functions.

First Class Functions

i = 1
l = List.new(i, …)
f = lambda do |x|
 puts "Hello, #{x}!"
end

Lambda is a common name for functions.
Friday, April 12, 13

 A “thing” is first class in a language if you can use it as a value, which means you can assign it to variables, pass it as an
argument to a function and return it from a function. In Ruby, objects, even classes are first class. Methods are not. Lambdas are
ruby’s way of defining anonymous functions (A second mechanism, Procs, is similar).
The term “lambda” comes from Lambda Calculus, a mathematical formalism developed in the ‘30s that explored how functions
should work. The lambda symbol was used to represent anonymous functions.

23

We’ll see the power
of First-class functions

in a moment...
We’ll see how first-class functions let us build

modular, composable, and reusable tools.

Friday, April 12, 13

Better
Reusability

24

Nehalem State Park, Oregon

Friday, April 12, 13

(Nehalem State Park, Oregon)

25

Lists

Better
Reusability

Friday, April 12, 13

I want to make the case that functional concepts lead to better modularity than objects.
Let’s look at one of the functional data structures, List, which we’ve already looked at a bit, but we need to explore further.

26

List
class List
 attr_reader :head, :tail
 def initialize(head, tail)
 @head = head
 @tail = tail
 end
 …
end

Head is the first element.
Tail is itself a List.

Friday, April 12, 13

So, don’t use attr_accessor or attr_writer in Ruby.
If you don’t like dynamic typing, at least appreciate the compact, clean syntax.

27

Ruby

list = List.new(1,
 List.new(2,
 List.new(3, EMPTY)))

We need a special tail to terminate a List.
Friday, April 12, 13

Creating a list (we’ll see less verbose syntax later)
How should we terminate this list?? What should the special tail EMPTY be?? We’ll come back to that.

28

List (cont.)

class List
 …
 def to_s
 "(#{head},#{tail})"
 end
 …
end

Friday, April 12, 13

Note that to_s is recursive, because tail is a list and tail.to_s is called!

29

class List
 …
 EMPTY = List.new(nil,nil)
 def EMPTY.head
 raise "EMPTY list has no head!!"
 end
 def EMPTY.tail
 EMPTY
 end
 def EMPTY.to_s
 "()"
 end
end

A separate object to
represent empty.

Friday, April 12, 13

We declare a *constant* named EMPTY, of type List. We use nil for the head and tail, but they will never be referenced, because
we redefine the head method for this “singleton” object to raise an exception, while tail simply returns EMPTY itself! We also
define to_s to return “()”.
By overriding the methods on the instance, we’ve effectively given it a unique type.
(There’s a more short-hand syntax for redefining these methods, but for simplicity, I’ll just use the syntax shown.)
NOTE: It would be reasonable for EMPTY.tail to throw an exception like head throws.

30

class List
 …
 def to_s
 "(#{head},#{tail})"
 end
 …
 def EMPTY.to_s; "()"; end
 …
end List.to_s is recursive, but

EMPTY.to_s will terminate the
recursion with no conditional test!

Friday, April 12, 13

No conditional test is required in to_s to terminate the recursion. It is not an infinite recursion, though, because all lists end with
EMPTY, which will terminate the recursion.
We’ve replaced a conditional test with structure, which is actually a classic OO refactoring.

31

List.to_s

puts List.new(1,
 List.new(2,
 List.new(3, EMPTY)

=> "(1,(2,(3,())))"

Friday, April 12, 13

32

Lists are represented
by two types:

List and EMPTY.

Friday, April 12, 13

For functional linked lists, only two types are used to represent all of them, List and EMPTY. That let us use the structural
difference to manage recursion without conditional tests, among other benefits. We used nil to declare EMPTY, but never used
those values.

33

filter, map, fold

Better
Reusability

Friday, April 12, 13

Let’s look at the 3 fundamental operations on data structures and understand their power.

34

Filter, map, fold

filter Return a new collection with
some elements removed.

map Return a new collection with
each element transformed.

fold Compute a new result by
accumulating each element.

All take a function argument.
Friday, April 12, 13

The function argument tells each method what to do.

35

In Ruby...

filter find_all

map map

fold inject

Friday, April 12, 13

These names are not always used in different languages. Java doesn’t even have these concepts in its collections! However, some
3rd-party libraries provide them.

36

Add map to List

def map(&f)
 t = tail.map(&f)
 List.new(f.call(head), t)
end
def EMPTY.map(&f); self; end

f.call(head) converts
head into something new.

f takes one arg, each item,
and returns a new value for

the new list.

Friday, April 12, 13

Add map first, because it’s the easiest. Note that we will show the implementations for both List and EMPTY together, to compare
and contrast and to make the behavior of the recursion clear.

37

Example of map

list = … # 1,2,3,4
lm = list.map {|x| x*x}
puts "list: #{list}"
puts "lm: #{lm}"
=> list: (1,(2,(3,(4,()))))
=> lm: (1,(4,(9,(16,()))))

Friday, April 12, 13

Demonstrate mapping a list of 4 integers to their squares. Note that we didn’t modify the original list.

38

Add filter to List

def filter(&f)
 t = tail.filter(&f)
 f.call(head) ?
 List.new(head, t) : t
end
def EMPTY.filter(&f); self; end

f.call(head) returns
true or false (keep or discard)

f takes one arg, each item,
and returns true or false.

Friday, April 12, 13

f.call(head) returns true if we keep the element or false if we discard it. If true, we return a new list with head and whatever t is.
Otherwise, we just return t.

39

Example of filter

list = … # 1,2,3,4
lf = list.filter {|x| x%2==1}
puts "list: #{list}"
puts "lf: #{lf}"
=> list: (1,(2,(3,(4,()))))
=> lf: (1,(3,()))

Friday, April 12, 13

Demonstrate filtering a list of 4 integers to create a new list with just the odd values. Note that we didn’t modify the original list.

40

There are two folds:
foldl (left) and
foldr (right).

Friday, April 12, 13

There are two folds because of the way they group the elements as they parse them, either grouping from the left or the right,
as we’ll see.

41

Add foldl to List

def foldl(accum, &f)
 tail.foldl(
 f.call(accum, head), &f)
end
def EMPTY.foldl(accum,&f)
 accum
end tail.foldl(…) is called after

calling f.call(…)

accum is the
accumulator.

f takes two args, accum
and each item, and

returns a new accum.

Friday, April 12, 13

Foldl calls tail.foldl after calling f.call(accum, head). Note that it “groups” the accum with the first element, then works down the
list.

42

Add foldr to List

def foldr(accum, &f)
 f.call(head,
 tail.foldr(accum, &f))
end
def EMPTY.foldr(accum,&f)
 accum
end tail.foldr(…) is called

before calling f.call(head,…)

f takes two args, each
item and accum, and
returns a new accum.

Friday, April 12, 13

Foldr calls tail.foldr before calling f.call(head,accum). Note that it “groups” the accum with the last element (because head isn’t
handled until the whole recursion finishes!), so it works down to the end of the list first, then builds the accumulator on the way
back up.
Note that the arguments to f are reversed compared to foldl. We’ll see why this is useful in a moment.

43

Example of foldl

ll = list.foldl(0) {|s,x| s+x}
lls= list.foldl("0") {|s,x|
 "(#{s}"+#{x})"
}
puts "ll: #{ll}"
puts "lls: #{lls}"
=> ll: 10
=> lls: ((((0+1)+2)+3)+4)

Friday, April 12, 13

Sum the list using foldl and also build a string that shows us who it proceeded!

44

Example of foldr

lr = list.foldr(0) {|x,s| x+s}
lrs= list.foldr("0") {|x,s|
 "(#{x}"+#{s})"
}
puts "lr: #{lr}"
puts "lrs: #{lrs}"
=> lr: 10
=> lrs: (1+(2+(3+(4+0))))

Friday, April 12, 13

Sum the list using foldr and also build a string that shows us who it proceeded! Note that the block has the x and s args reversed
compared to foldl! This is conventional so the accumulator shows up in the last position, as shown in the string.

45

Compare foldl, foldr

foldl: ((((0+1)+2)+3)+4) == 10
foldr: (1+(2+(3+(4+0)))) == 10

The sums are the same,
but the strings are not!

Addition is commutative and associative.

Friday, April 12, 13

Compare the left recursion with the right recursion. Note that reversing the block args for foldr resulted in this clearly formatted
string showing the right recursion. This is why people like to use that convention.
The additions were the same because + is commutative, but the string formation isn’t, as the two strings are different!

46

Try subtraction

foldl: (((0-1)-2)-3)-4) == -10
foldr: 1-(2-(3-(4-0)))) == -2

Substitute - for +.
Subtraction is neither

commutative nor associative.

Friday, April 12, 13

If you substitute - for +, you’ll also get different results.

Better
Reusability

47

Modularity

Friday, April 12, 13

Let’s look at one of the functional data structures, List, which we’ve already looked at a bit, but we need to explore further.

48

filter, map and fold
as modules...

Friday, April 12, 13

So, we looked at these. What’s the big deal?? They are excellent examples of why functional programming is the right approach
for building truly modular systems...

49

A Good Module:
interface Single responsibility, clear

abstraction, hides internals

composable Easily combines with other
modules to build up
behavior

reusable Can be reused in many
contexts

Friday, April 12, 13

Here are some of the qualities you expect of a good “module”. It exposes an interface that focuses on one “task”. The use of the
abstraction is clear, with well defined states and transitions, and it’s easy to understand how to use it. The implementation is
encapsulated.
You can compose this module with others to create more complex behaviors.
The composition implies reusability! Recall that it’s hard to reuse anything with side effects. Mutable state is also problematic if
the module is shared.

50

Group email addresses

addrs = List.make(
"Dean@GMAIL.COM",
"bob@yahoo.com",
"tom@Spammer.COM",
"pete@YAHOO.COM",
"bill@gmail.com")

Let’s convert to lower case, filter out
spammers, and group the users by address…

Exercise: implement
List.make

Friday, April 12, 13

Let’s group a “huge” list of email address.

mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM

51

Group email addresses
grouped = addrs.map {|x|
 x.downcase
}.filter {|x|
 x !~ /spammer.com$/
}.foldl({}) {|grps,x|
 name, addr = x.split('@')
 l = grps[addr] || List::EMPTY
 grps[addr] = List.new(name,l)
 grps
}

Friday, April 12, 13

We first map each string to lower case, then remove the strings that end with “spammer.com”, using a regular expression, and
finally fold over the remaining items. The fold takes an empty hash map {} as the initial value. We split each string on ‘@’, then
initialize the list of names for that address, if not already initialized. Now we create a new list, adding the name, and reassign to
the hash map. Finally, the block has to return the hash map for the next pass (or the end of the foldl).
Note: there is mutation of the hash map going on, but it is local to this thread!

52

Group email addresses

…
grouped.each {|key,value|
 puts "#{key}: #{value}"
}
=> yahoo.com: (pete,(bob,()))
=> gmail.com: (bill,(dean,()))

We calculated this grouping
in 10 lines of code!!

Friday, April 12, 13

For nice output, iterate over the hash map with “each” and print each key-value pair on its own line.

53

If we had
GroupedEmailAddresses

objects,
how much more code

would be required?
Friday, April 12, 13

10 lines of code, reusing filter, map, and fold vs. how much custom, one-off code?

54

How much more
development time

would be required?

Friday, April 12, 13

How much time would you spend implementing the custom solution?

55

filter, map, and fold
are ideal modules.

Each has a clear abstraction,
composes with others,

and is reusable.

Friday, April 12, 13

What makes them so modularity is their stability, clear abstraction, near infinite composability to build higher-order
abstractions, which implies reusability!

56

filter, map, and fold
are combinators.

Friday, April 12, 13

The term “combinator” is a technical term in FP. For our purposes, these functions take other functions as arguments, which is
how they are adapted to different purposes, and they combine with each other to build up more sophisticated “calculators”.

Better Objects
57

The Haystack, Oregon

Friday, April 12, 13

Better Objects
58

Immutable
Values

Friday, April 12, 13

59

Immutable values
are better for

concurrency and they
minimize obscure
bugs because of

side effects.
Friday, April 12, 13

If you must do multithreaded programming, it’s far easier if your values are immutable, because there is nothing that requires
synchronized access. Also, obscure bugs from “non-local” side effects are avoided.

60

 Immutability tools
• final or constant variables.

• No field “setter” methods.

• Methods have no side effects.

• Methods return new objects.

• (Persistent data structures.)

Friday, April 12, 13

These techniques help you achieve immutability in any language. Persistent data structures let you make “copies” of big data
structures efficiently. (See my tutorial for details about them…)

Better Objects
61

TDD

Friday, April 12, 13

62

Test Driven Development
(including refactoring)

is still useful in FP,
but there are changes.

Friday, April 12, 13

If you must do multithreaded programming, it’s far easier if your values are immutable, because there is nothing that requires
synchronized access. Also, obscure bugs from “non-local” side effects are avoided.

63

First, you tend to use
more experimentation

in your REPL
and less test first.

Friday, April 12, 13

It’s somewhat like working out a math problem. You experiment in your Read Eval Print Loop (interactive interpreter), working
out how an algorithm should go. They you commit it to code and write tests afterwards to cover all cases and provide the
automated regression suite. The test-driven design process seems to fit less well, but other people may disagree!

64

Testing Money
class Money
 PRECISION = 0.00001
 attr_reader value
 def initialize value
 @value = round(value)
 end

 def round value
 # return rounded to ? digits
 end
 …
end

Friday, April 12, 13

Money is a good domain class to implement as a “functional” type, because it has well-defined semantics and supports several
algebraic operations!
The round method rounds the value to the desired PRECISION. I picked 5 decimal places, even though we normally only show at
most a tenth of a penny...

65

Testing Money

 …
 def add other
 v = other.instance_of?(Money) ?
 other.value : other
 Money.new(value + v)
 end
 …
end

Friday, April 12, 13

The add method tests the value to see if it’s another Money or a (assumption) a float. It returns a new Money (of course!)

66

Imaginary RSpec
describe "Money addition" do
 money_gen = Generator.new do
 Money(-100.0) to Money(100.0)
 end
…

Define a “generator” that
generates a random sample

of instances between the
ranges shown.

Friday, April 12, 13

RSpec is a popular Ruby testing framework in the style of Behavior Driven Development (BDD). I am showing fictitious extensions
to illustrate a particular functional approach - testing properties that should hold for all instances. So it’s less about “testing by
example” and (as much as is possible) testing universal properties.

We start by defining a function that can generate N random sample instances within an arbitrary range.

67

Imaginary RSpec
describe "Money addition" do
 money_gen = Generator.new do
 Money(-100.0) to Money(100.0)
 end
 property "is commutative" do
 money_gen.make_pairs do |m1,m2|
 m1.add(m2).should_be_close(
 m2.add(m1), Money::PRECISION)
 end
 end
end

verify that addition is
commutative!

Friday, April 12, 13

In our fictitious RSpec extensions, we verify the property that addition is commutative. We ask the “money_gen” to create some
random set of pairs, passed to the block, and we verify that m1+m2 == m2+m1 within the allowed precision.

68

Test Driven Development
becomes

property verification.

Friday, April 12, 13

Of course, you’ll still write a lot of conventional OO-style tests, too.

69

Refactoring?
grouped = addrs.map {|x|
 x.downcase
}.filter {|x|
 x !~ /spammer.com$/
}.foldl({}) {|grps,x|
 name, addr = x.split('@')
 l = grps[addr] || List::EMPTY
 grps[addr] = List.new(name,l)
 grps
} How might you

refactor this code?
Friday, April 12, 13

Remember how we grouped email addresses? What is refactoring like in such a world?

70

Recall
grouped = addrs.map {|x|
 x.downcase
}.filter {|x|
 x !~ /spammer.com$/
}.foldl({}) {|grps,x|
 name, addr = x.split('@')
 l = grps[addr] || List::EMPTY
 grps[addr] = List.new(name,l)
 grps
}

Extract Function?

Friday, April 12, 13

We could extract some of these blocks into Ruby “procs” that we pass in to the methods. This would make the code less dense
and provide opportunities for generalization (e.g., pluggable spam address filters).
We can also do traditional refactoring of some of the lines in the foldl block. However, let’s avoid premature refactoring! If the
extracted function is never used anywhere else, don’t extract it, unless clarity is a problem.

Better Objects
71

OO
Middleware

Friday, April 12, 13

72

In a highly-concurrent
world, do we really

want a middle?

Friday, April 12, 13

73

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Process 1 Process 2 Process 3

Which Scales Better?

or

Friday, April 12, 13

If we funnel everything through a faithfully-reproduced domain object model, our services will be bigger, harder to decompose
into smaller pieces, and less scalable. *Modeling* our domain to understand it is one thing, but implementing it in code needs to
be rethought. The compelling power of combinators and functional data structures are about as efficient and composable as
possible. It’s easier to compose focused, stateless services that way and scale horizontally.

74

What about ORM?

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Object-
Relational
Mapping

Other Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Other Logic

Database

Query

SQL

Result Set

1

2

or

Question Object-Relational Mapping
Friday, April 12, 13

What if your business logic just worked with the collections returned from your database driver? It’s true that some of these
collections, like Java’s ResultSet, don’t have the powerful combinators we’ve been discussing, but those “methods” could be
added as static service methods in a helper class.
The question to ask is this: does the development and runtime overhead of converting to and from objects justify the benefits?

75

Object middleware,
including ORM, isn’t
bad. It just has costs

like everything else...

Friday, April 12, 13

Just remember that every design decision has costs, so evaluate those costs with a clear head...

Recap

Nehalem State Park, Oregon

Friday, April 12, 13

(Nehalem State Park, Oregon)

Concurrency

San Francisco Bay
Friday, April 12, 13

Concurrency is the reason people started discussing FP, which had been primarily an academic area of interest. FP has useful
principles that make concurrency more robust and easier to write.

(San Francisco Bay)

We’re
Drowning
in Data.

...

Friday, April 12, 13

Not just these big companies, but many organizations have lots of data they want to analyze and exploit.

(San Francisco)

We need better
modularity.

Mud, Death Hallow Trail, Utah

Friday, April 12, 13

I will argue that objects haven’t been the modularity success story we expected 20 years ago, especially in terms of reuse.

(Mud near Death Hollow in Utah.)

We need
better
agility.

Half Dome, Yosemite NP

Friday, April 12, 13

Schedules keep getting shorter. The Internet weeded out a lot of process waste, lot Big Documents Up Front, UML design, etc.
From that emerged XP and other forms of Agile. But schedules and turnaround times continue to get shorter.

(Ascending the steel cable ladder up the back side of Half Dome, Yosemite National Park)

We need a return
to simplicity.

Maligne Lake, Jasper Nat. Park

Friday, April 12, 13

Every now and then, we need to stop, look at what we’re doing, and remove the cruft we’ve accumulated. I claim that a lot of the
code we write, specifically lots of object middleware, is cruft.

(Maligne Lake, Near Jasper National Park, Jasper, Alberta)

Dean Wampler

Functional
Programming

for Java Developers

Thank You!

• dean@deanwampler.com

• @deanwampler

• polyglotprogramming.com/talks

Friday, April 12, 13

mailto:dean@deanwampler.com
mailto:dean@deanwampler.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

