
How Will AI
Change Software?

© 2023-2026, Dean Wampler, except where noted.

Dean Wampler, Ph.D.
The AI Alliance

dwampler@thealliance.ai
January 14, 2026

aialliance.org deanwampler.com/talks

mailto:dwampler@thealliance.ai
https://aialliance.org
http://deanwampler.com/talks

Outline (1/3)

•First, about the AI Alliance

•How do you use AI today? Probably two ways:
1.Adding new capabilities to your apps that

were previously not possible.
2.Accelerating your productivity.

Outline (2/3)

1.Adding new capabilities to your apps that
were previously not possible.
•Is this actually working?
•Why are PoCs not transitioning to

production?

Outline (3/3)

2.Accelerating your productivity.
•Today, we speed up “old” ways of working.
•How might AI fundamentally change SW
Engineering?

2. Data & Models 3. Safety & Governance1. Agents

These project areas:
the-ai-alliance.github.io/

195+ organizations in 25+
countries accelerating open

innovation and adoption of AI

aialliance.org

https://the-ai-alliance.github.io/
https://aialliance.org

Outline (2/3)

1.Adding new capabilities to your apps that
were previously not possible.
•Is this actually working?
•Why are PoCs not transitioning to

production?

1. Adding new capabilities to your apps
that were previously not possible.

Is this working?

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf

https://fortune.com/2024/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/

https://eprnews.com/mit-report-reveals-shocking-95-failure-rate-for-corporate-ai-projects-686740/

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://fortune.com/2024/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/
https://eprnews.com/mit-report-reveals-shocking-95-failure-rate-for-corporate-ai-projects-686740/

Is this working?

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf

https://fortune.com/2024/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/

https://eprnews.com/mit-report-reveals-shocking-95-failure-rate-for-corporate-ai-projects-686740/

“…the core issue isn’t the quality of AI
models themselves, but rather the `learning

gap’ for both tools and organizations…”

“Generic tools like ChatGPT excel for
individuals because of their flexibility, but

they stall in enterprise use since they don’t
learn from or adapt to workflows,”

— Aditya Challapally

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://fortune.com/2024/08/18/mit-report-95-percent-generative-ai-pilots-at-companies-failing-cfo/
https://eprnews.com/mit-report-reveals-shocking-95-failure-rate-for-corporate-ai-projects-686740/

Is this working?

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf https://ucb-mast.notion.site/

Recent academic work
from UC Berkeley and
IBM Research on ways

agents fail.

https://mlq.ai/media/quarterly_decks/v0.1_State_of_AI_in_Business_2025_Report.pdf
https://ucb-mast.notion.site/

Is this working?

•Yes for …

•Personal productivity acceleration.

•… with careful supervision by the user.

•No for …

•Grandiose, autonomy projects.

What’s Preventing the Bigger
Projects from Working?

•Lots of things, but let’s focus on one under-
appreciated challenge:

How do software developers
test AI-enabled apps with the

same confidence they have
when testing traditional apps?

AI is non-deterministic.
How does that affect

testability?

Remember the TDD‡ loop?
Refactor:

Prepare for new feature,
using existing tests to

catch regressions

Write New Test:
For the feature to be

implemented

Make the Test Pass:
Implement the feature

New Feature

Testing is the
foundation of
this process!

‡ Test-Driven Development

What Do Developers Expect?

Developers expect software to be deterministic‡.
This helps ensure correctness, and reproducibility
enables automation that catches regressions:

• The same input → the same output.
• e.g., sin(π) = -1

• The output changes? Something broke!

‡ Distributed systems break this clean picture.

What Do Developers Expect?

Developers expect software to be deterministic‡.
This helps ensure correctness, and reproducibility
enables automation that catches regressions:

• The same input → the same output.
• e.g., sin(π) = -1

• The output changes? Something broke!

‡ Distributed systems break this clean picture.

Put another way, the
determinism makes it easier to
specify the system invariants.

What should remain true
before and after each step?

What Do Developers Expect?
Functional Programming gave us property-based
testing:

• E.g., QuickCheck, Hypothesis, ScalaCheck, …
• Hypothesis example:

https://github.com/deanwampler/tdd-hypothesis-example

https://www.cse.chalmers.se/~rjmh/QuickCheck/
https://hypothesis.readthedocs.io/en/latest/
https://scalacheck.org
https://github.com/deanwampler/tdd-hypothesis-example

What do we get with generative AI?
Generative models are stochastic‡:

• The same prompt → different output.
• chatgpt(“Write a poem”) → insanity

“Insanity is doing
the same thing
over and over

again and
expecting

different results.”
— not Einstein

‡Stochastic : described by a random
probability distribution, e.g., flipping

a coin, rolling dice, measuring the
temperature, …

What do we get with generative AI?

• Without determinism, how do you write
repeatable, reliable tests for AI apps?
• Does that new model perform better or worse

than the previous model?
• Did any regressions in behavior occur?

Generative models are stochastic‡:
• The same prompt → different output.

• chatgpt(“Write a poem”) → insanity

What do we get with generative AI?

• Without determinism, how do you write
repeatable, reliable tests for AI apps?
• Does that new model perform better or worse

than the previous model?
• Did any regressions in behavior occur?

Generative models are stochastic‡:
• The same prompt → different output.

• chatgpt(“Write a poem”) → insanityPut another way, the invariants
are much less clear and

therefore harder to define
programmatically and enforce.

But Data Scientists and AI Experts Are
Accustomed to Stochasticity

So, what should we developers do?

So, what should we developers do?

• Learn the evaluation and benchmark tools
and techniques used by data scientists, model
builders, and AI safety experts.

• Adapt those tools and techniques for use in
TDD and other testing methodologies.

Specifically…

•Leverage what you already know about
coupling and cohesion

•Use external tools for verification

•Scoped benchmarks - “unit benchmarks”

•Use an LLM as a judge

•Learn and use statistical techniques

For More Details

https://deanwampler.github.io/polyglotprogramming/papers/#Generative-AI-Should-We-Say-Goodbye-to-Deterministic-Testing

https://deanwampler.github.io/polyglotprogramming/papers/#Generative-AI-Should-We-Say-Goodbye-to-Deterministic-Testing

https://the-ai-alliance.github.io/ai-application-testing/

An AI Alliance project I lead to:
•Develop new developer testing

tools and techniques adopted
from data science.

•Teach developers how to use
them.

https://the-ai-alliance.github.io/ai-application-testing/

Outline (3/3)

2.Accelerating your productivity.
•Today, we speed up “old” ways of working.
•How might AI fundamentally change SW
Engineering?

2. Accelerating your productivity.

2. Accelerating your productivity.
•Using AI to speed up software tasks

•Generate unit tests

•Or the TDD way: code from unit tests 🤓

•Generate a PR to fix a small bug/change

•Gitflow processes

•…

2. Accelerating your productivity.
•Using AI to speed up knowledge work tasks

•Research a publicly-traded stock for investing

•Research the law for a court case

•Write a draft report

•Improve the grammar and spelling in a doc

•Screen resumés

•…

•Using AI to speed up knowledge work tasks

•Research a publicly-traded stock for investing

•Research the law for a court case

•Write a draft report

•Improve the grammar and spelling in a doc

•Screen resumés

•…

2. Accelerating your productivity.

These tasks predate AI; we just use AI to
accelerate them.

How will AI fundamentally change tasks
themselves?

How might AI fundamentally
change SW Engineering?

2. Accelerating your productivity.

Thinking about a new perspective?
•The Structure of Scientific Revolutions

•We prefer to adapt our current theory to
accommodate new data, rather than discard
the theory and start over.

•But sometimes, we need to restart from first
principles.

Will AI change software engineering in
more fundamental ways?

https://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions

How might AI fundamentally
change SW Engineering?

•Vibe Coding ➡ Vibe Engineering
•Spec-Driven Development

•TDD ➡ Continuous Tuning
•Source code becomes obsolete?

Vibe Coding ➡ Vibe Engineering

Vibe coding: Just prompt and if it looks good…

•The good: It allows non-coders to create code!
🎉

•The bad: It allows non-coders to create code!
🤦

Most results are
unmaintainable messes!

Vibe Coding ➡ Vibe Engineering
•Can we really create quality, maintainable code

just with prompts??

•Vibe engineering was coined half in jest by
Simon Willison

•… but with the serious intent of considering
what would be required for real software
engineering to be doable with “vibing” only.

https://simonwillison.net/2025/Oct/7/vibe-engineering/

https://simonwillison.net/2025/Oct/7/vibe-engineering/

Vibe Engineering
•Still requires

•Expertise about algorithms, architecture

•Careful review of work and fine-tuning the
prompts to get precisely what we want

•Working with AI tools is similar to working
with more junior humans…

•…
https://simonwillison.net/2025/Oct/7/vibe-engineering/

https://simonwillison.net/2025/Oct/7/vibe-engineering/

Vibe Engineering
•Still requires

•…

•We have to get very good at prompt
engineering to write specifications of what we
want.

https://simonwillison.net/2025/Oct/7/vibe-engineering/

“AI tools amplify existing expertise.”

https://simonwillison.net/2025/Oct/7/vibe-engineering/

Spec-Driven Development

•(A.k.a. Specification-Driven Development)

•An approach to principled, effective prompt
construction and how to use them.

•Uses separate “phases”, each with its own
prompt and corresponding tools.

https://the-ai-alliance.github.io/ai-application-testing/advanced-techniques/sdd/

https://the-ai-alliance.github.io/ai-application-testing/advanced-techniques/sdd/

GitHub’s SpecKit•Phases:

•Specify: Generate the specification (i.e.,
requirements)

•Plan: Add more technical details and generate a
high-level plan for the project.

•Tasks: Decompose the plan into fine-grained
tasks.

•Implement: Generate the app (with tests, …)
using the plan.

https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

GitHub’s SpecKit•Phases:

•Specify: Generate the specification (i.e.,
requirements)

•Plan: Add more technical details and generate a
high-level plan for the project.

•Tasks: Decompose the plan into fine-grained
tasks.

•Implement: Generate the app (with tests, …)
using the plan.

https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

“Instead of coding first and writing docs
later, in SDD, you start with a spec. This is a
contract for how your code should behave
and becomes the source of truth your tools

and AI agents use to generate, test, and
validate code. The result is less guesswork,
fewer surprises, and higher-quality code.”

— from the blog post (minor edits…)

https://github.blog/ai-and-ml/generative-ai/spec-driven-development-with-ai-get-started-with-a-new-open-source-toolkit/

Criticisms (1/2)

•Is this just the Waterfall
Process reborn?

•It has to be done
incrementally to succeed.

•TDD has a refactor step.
That needs to be
incorporated in the phases.

Requirements

Design

Implementation

Test

Criticisms (2/2)
•Will learning prompt engineering be harder than

just using the skills we already possess?

•Maybe, but the productivity boost might make
mastering prompt engineering worth it.

•Open-ended English is the worst possible API.

•Carefully engineered system and user prompt
templates will be essential.

TDD ➡ Continuous Tuning

What if we switch from testing for desired
behavior to tuning for desired behavior?

•We already tune models to improve domain-
specific knowledge, chatbot behavior, etc.

•Today: it’s only done during model creation.

•Tomorrow: continuously tune incrementally.

TDD ➡ Continuous Tuning

Refactor:
Prepare for new feature,
using existing tests to

catch regressions

Write New Executable
Specification:

For the feature to be
implemented

Make the Spec “Pass”:
“Vibe engineer” the new

feature

New Feature

Write new unit
benchmark, an

executable
specification

Changes to the TDD cycle (for model behaviors):

Keep tuning
until the

benchmark
passes

Use spec-driven
development!

We still need automated
tests generated and

executed.

Source code becomes obsolete?
After ~70+ years, we still use
source code!

•Will AI make it obsolete?

•We still need some sort of
“representation” of
execution constructs.

•Code still needs to be human
readable and debuggable.

https://en.wikipedia.org/wiki/COBOL

https://en.wikipedia.org/wiki/COBOL

How might this work?
•AI is good at knowing

common (best?) practices…

•E.g., the most common way
to sort lists seen in the
training data is probably the
best way (or at least good
enough).

How might this work?
•AI is good at “gluing” things together.

•E.g., Model Context Protocol (MCP)

•Discover APIs and figure out to invoke them
automatically.

https://modelcontextprotocol.io/docs/getting-started/intro

https://modelcontextprotocol.io/docs/getting-started/intro

Source code becomes obsolete?
•So, Vibe Engineering becomes

•Best practice component generation + MCP-
based service invocation + glue that integrates
them together?

•Today’s source code becomes assembly.

•It’s there, but few people need to understand
or manipulate it.

Questions?
aialliance.org
the-ai-alliance.github.io/

dwampler@thealliance.ai
Mastodon and Bluesky: @deanwampler

© 2023-2026, Dean Wampler, except where noted.

deanwampler.com/talksaialliance.org

https://aialliance.org
https://the-ai-alliance.github.io/
mailto:dwampler@thealliance.ai
http://deanwampler.com/talks
https://aialliance.org

