
Heresies and Dogmas in
Software Development

@deanwampler

CME Group Technology
Conference 2011

programmingscala.com polyglotprogramming.com/
fpjava

Dean Wampler

Functional
Programming

for Java Developers

http://programmingscala.com
http://programmingscala.com
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava

https://twitter.com/#!/stesla/status/11390744100

https://twitter.com/#!/stesla/status/11390744100
https://twitter.com/#!/stesla/status/11390744100

Goto

(Considered
Harmful)

http://twitter.com/bpettichord/status/10062856309

http://twitter.com/bpettichord/status/10062856309
http://twitter.com/bpettichord/status/10062856309

The Goto
A non-local jump, often to a label

while (true) {
 doSomeWork();
 if (hasMoreWork() == false)
 goto finished;
 wait(1000);
}
label finished;

“Go To Statement
Considered Harmful”

Edsger Dijkstra, Communications of the ACM 11 (3):
147–148 (March 1968).

http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Edsger_Dijkstra

“Go To Statement
Considered Harmful”

• Complicates analysis and verification
of program correctness, especially
loops.

“Go To Statement
Considered Harmful”

• Structured Programming replaces gotos
with:

• Sequence (i.e., sequential instructions)

• Repetition (e.g., loops)

• Selection (e.g., branches)

“Structured
Programming with
Go To Statements”

Donald Knuth,
Computing Surveys 6 (4): 261–301 (1974).

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth

Programmers found it difficult to
eliminate gotos.

“Structured
Programming with
Go To Statements”

Some code constructs are actually
simpler to understand with gotos.

breaking out of loops.

“Structured
Programming with
Go To Statements”

Some code with gotos was noticeably
faster.

“Structured
Programming with
Go To Statements”

Even Linus Torvalds has
defended gotos.

http://kerneltrap.org/node/553

http://kerneltrap.org/node/553
http://kerneltrap.org/node/553

Whither Gotos?

Heresy or Dogma?

Whither Gotos?

Can lead to spaghetti code.

Can also lead to fast, intuitive code.

Constructs like break are rebranded,
constrained gotos.

Whither Gotos?

Whether an idea is a
heresy or a dogma

depends on the
context.

Design
Before
Code

Wait! That building is
supposed to be square!

Capers Jones, Software Assessments, Benchmarks, and Best
Practices, Addison-Wesley, 2000

???

http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FAssessments-Benchmarks-Addison-Wesley-Information-Technology%2Fdp%2F0201485427%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1209056706%26sr%3D1-1&tag=clearblueyond-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FAssessments-Benchmarks-Addison-Wesley-Information-Technology%2Fdp%2F0201485427%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1209056706%26sr%3D1-1&tag=clearblueyond-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FAssessments-Benchmarks-Addison-Wesley-Information-Technology%2Fdp%2F0201485427%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1209056706%26sr%3D1-1&tag=clearblueyond-20&linkCode=ur2&camp=1789&creative=9325
http://www.amazon.com/gp/redirect.html?ie=UTF8&location=http%3A%2F%2Fwww.amazon.com%2FAssessments-Benchmarks-Addison-Wesley-Information-Technology%2Fdp%2F0201485427%3Fie%3DUTF8%26s%3Dbooks%26qid%3D1209056706%26sr%3D1-1&tag=clearblueyond-20&linkCode=ur2&camp=1789&creative=9325

If rework is expensive,
can we eliminate it by

deciding exactly
what to code

before we code it?

Agile Taught Us:

Requirements change is inevitable.

We learn the requirements while
building.

Agile Taught Us:

Reducing the cost of change to near
zero lets us defer decisions to the last
responsible moment.

Agile Taught Us:

Iterations eliminate risk in small chunks.

Design Before Code

Heresy or Dogma?

Design Before Code

Even building construction
is an adaptive process.

Design Before Code

Since software is virtual,
it is even more adaptable.

Design
Patterns

“A solution
to a problem
in a context.”

Obviously good, right?

“Are Design Patterns
Missing Language

Features?”

http://www.c2.com/cgi/wiki?
AreDesignPatternsMissingLanguageFeatures

http://www.c2.com/cgi/fullSearch
http://www.c2.com/cgi/fullSearch
http://www.c2.com/cgi/fullSearch
http://www.c2.com/cgi/fullSearch
http://www.c2.com/cgi/fullSearch
http://www.c2.com/cgi/fullSearch
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures
http://www.c2.com/cgi/wiki?AreDesignPatternsMissingLanguageFeatures

“Design Patterns in
Dynamic Languages”

Peter Norvig,
http://norvig.com/design-patterns/

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth
http://norvig.com/design-patterns/
http://norvig.com/design-patterns/

“Design Patterns in
Dynamic Languages”

“16 of the 23 patterns in Design Patterns were
'invisible or simpler' in Lisp.”

Some GoF patterns are
language features in
functional languages.

Iterator, Composite,
Command...

Other patterns are
(fortunately) eliminated.

Visitor

Functional programming
has its own patterns.

Fold, Monoid, Monad,
Iteratee, Arrows,...

“Programming with
Effects”

Graham Hutton,
http://www.cs.nott.ac.uk/~gmh/monads

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Donald_Knuth
http://www.cs.nott.ac.uk/~gmh/monads
http://www.cs.nott.ac.uk/~gmh/monads

“Programming with
Effects”

“Monads are an example of the idea of abstracting out a
common programming pattern as a definition.”

Design Patterns

Heresy or Dogma?

Design Patterns

The concept of
 patterns remains useful.

Specific examples
come and go.

CORBA vs. REST

Common Object
Request Broker

Architecture

• Objects are instantiated on the
server.

• Clients call methods on the objects.

• Messages are binary encoded.

REpresentational State
Transfer

• Resources are represented by
documents, etc.

• Client sends a request to initiate a
transfer from one state of the
resource to another.

• Platform neutral encoding: HTTP.

• But not limited to HTTP...

The difference between
abstracting the

essence of something
vs.

requiring the thing itself.

CORBA’s Flaws

• Every version change forces a global
upgrade.

• Binary changes!

• CORBA interfaces aren’t sufficient
as abstractions.

Objects are at the
wrong level of abstraction.

Objects are not
very modular.

Modularity

interface Single responsibility, clear
abstraction, hides internals.

composable Easily combines with other
modules to build up
behavior.

reusable Can be reused in many
contexts.

Modularity

Two successful modularity schemes:

Digital circuits.

HTTP.

Digital Circuits

Each wire: 0 or 1

32 together: 4 Billion unique values!

HTTP
9 “Request Methods”

GET, POST, HEAD, OPTIONS, ...

Text Oriented

Key-Value header fields.

Payload encoding - MIME type.

Reuse
Simple abstractions.

Low-level of abstraction.

Enable higher-level abstractions =>
protocols.

Unconstrained freedom
to create abstractions

undermines reuse.

Paradox of Objects

Abstraction boundary
is too high, without a
lower-level boundary.

Paradox of Objects

CORBA vs. REST

Heresy or Dogma?

CORBA vs. REST

REST/HTTP meets requirements for
modularity.

Low-level, simple abstraction.

Minimal coupling.

The constraints enable reuse.

CORBA vs. REST

CORBA isn’t modular.

High-level, ad-hoc abstractions.

Maximal coupling.

Object Middleware
and ORMs

In a highly concurrent
world, do we really

want a middle?

Which Scales Better?

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Process 1 Process 2 Process 3or

Implementing a
rich domain model

encourages
fewer, fatter services.

Object-Relational
Mapping

ORM Pros

• Mostly eliminate the need for SQL.

• Generate boilerplate code.

• Inefficient, but “good enough”.

ORM Cons

• Poor abstraction - don’t eliminate
SQL.

• Objects are a poor fit for relational
data.

• Not really efficient enough, especially
for “big data”.

http://seldo.com/weblog/2011/08/11/orm_is_an_antipattern

http://seldo.com/weblog/2011/08/11/orm_is_an_antipattern
http://seldo.com/weblog/2011/08/11/orm_is_an_antipattern

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
AbstractionsObject Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

or

Which Is Simpler?

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Functional data
structures

fit Relational
data.

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

LINQ and similar
tools minimize the
object-relational

impedance.

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Also, your
browser wants

JSON...

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Javascript stack:
Browser,

Node.js and
MongoDB/CouchDB.

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Uniform language
and data

representation.

Object Middleware and
ORMs

Heresy or Dogma?

Object Middleware and
ORMs

+ if your object model is
relatively stable.

+ for many OO languages.

Object Middleware and
ORMs

- if high performance is
essential.

- for functional languages.

Identifiers
with Spaces

Stupid Scala Trick...

scala> case class `My Class Has Spaces`(
 `some int`: Int)
defined class My$u0020Class$u0020Has
$u0020Spaces

scala> val `a value`=
 new `My Class Has Spaces`(1)
a value: My Class Has Spaces = My Class Has
Spaces(1)

scala> println(`a value`)
My Class Has Spaces(1)

blog.polyglotprogramming.com/2011/9/14/scala-identifiers-with-spaces

http://blog.polyglotprogramming.com/2011/9/14/scala-identifiers-with-spaces
http://blog.polyglotprogramming.com/2011/9/14/scala-identifiers-with-spaces

Identifiers with Spaces

Heresy or Dogma?

// JUnit tests:
@Test public static void
`delete(n) removes the nth item`() {
 …
}

Java Syntax

// Enums
enum ErrorCodes {
 `Not Found`,
 `Permission Denied`,
 `Corrupt Format`;
 `Get Off My Lawn`;
}

Sometimes,
whether it’s a
Dogma or a
Heresy is a
matter of
branding...

https://twitter.com/#!/jaykreps/status/23814156104769536

https://twitter.com/#!/jaykreps/status/23814156104769536
https://twitter.com/#!/jaykreps/status/23814156104769536

Thank You!

dean@deanwampler.com
@deanwampler

CME Group Technology
Conference 2011

Pictures from around Chicago.
© Dean Wampler

mailto:dean@deanwampler.com
mailto:dean@deanwampler.com

