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What We’ll Discuss



•Why streaming? Why now?
•How to choose technologies
•The impact streaming will have 
on your organization

What We’ll Discuss



Why Streaming?



Why Streaming?

•New opportunities that require 
streaming
•Media content is obviously one ;)

•Upgrading batch applications for 
competitive advantage





Real-time marketing 
based on behavior, 
location, inventory 
levels, product 
promotions, etc.

Real-time 
Personalization

Drive better business 
outcomes through real-
time risk, fraud 
detection, compliance, 
audit, governance, etc.

Real-time Financial 
ProcessesPredictive Analytics

Apply ML models to 
large volumes of device 
data to pre-empt failures 
/ outages

https://www.lightbend.com/customers 

Fast Data Use Cases

Real-time consumer 
and industrial Device 
and Supply Chain 
management at scale

IoT

Similar IoT 
Architectures

https://www.lightbend.com/customers


• ML models applied to device telemetry to 
detect anomalies

• Preemptive maintenance prevents 
potential failures that would impact users

Predictive Analytics



Predictive Analytics - Core Idea

Anomaly 
Detection: 

Model

Anomaly 
Handler

Telemetry 
Records

Probable  
Anomalies

Corrective 
Actions

Ingest telemetry from 
edge devices.

Train models to look for 
anomalies… and score 
incoming telemetry.

Handle anomaly: move 
activity off component, 
schedule maintenance 
window to replace it.
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Small data volume, 
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• Integration of Machine 
Learning/Artificial Intelligence 
with streaming is a common 
challenge right now



• Network overhead for telemetry ingestion 
too high?

• Model serving latency too long?
• Datacenter unavailable?

Challenges

• Idea: Serve models on 
the device!
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• Real-time consumer and industrial device 
and supply chain management at scale

Internet of Things
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When anomalies are 
detected, corrective actions 
are coordinated with the 
session microservices

Other uses of ML for this 
Starbucks scenario: 
serving coupons, making 
recommendations, 
projecting inventory 
demands, …

Edge-Scoring Example 
Architecture



Data	Center

Mini-batch,	Batch

SparkSessions

Streams

Storage

Device

Telemetry1

2. → Model Training
3. ← New models

2, 3

4. ← Model Storage
5. → Boot up, 
historical data

4, 5

Corrective 
Action

8

Spark

Microservice
Microservice
Microservice

Device	Session
Microservices

Persistence

Ka+a Cluster

Model Parameters6
Model 
Parameters7

Broker

Latency of telemetry ingest 
can be much longer now, as 
it’s only used for model 
training

Edge-Scoring Example 
Architecture
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Recap: Edge Serving



Real-time marketing 
based on behavior, 
location, inventory 
levels, product 
promotions, etc.

Real-time 
Personalization

Drive better business 
outcomes through real-
time risk, fraud 
detection, compliance, 
audit, governance, etc.

Real-time Financial 
ProcessesPredictive Analytics

Apply ML models to 
large volumes of device 
data to pre-empt failures 
/ outages

https://www.lightbend.com/customers 

Fast Data Use Cases

Real-time consumer 
and industrial Device 
and Supply Chain 
management at scale

IoT

Batch changed to streaming 
for competitive advantage

https://www.lightbend.com/customers


Technology Choices



Technology Choices

• More than “faster” Hadoop…
• New architectures that merge data 

processing with microservices



Recall Hadoop…



• Data warehouse replacement
• Historical analysis
• Interactive exploration
• Offline training  of machine learning 

models
• …
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submit to…
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Spark	jobs
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Worker	Node	#1

DiskDiskDiskDiskDisk

Node	
Manager

Data	Node

Master	Node

Resource	
Manager

Name	Node

…#2

Storage

Compute

Optimized for storing lots of data at 
rest, with subsequent processing, but 
not optimized for data in motion.

Resource Management



YARN

HDFS

MapReduce	jobs

Spark	jobs

…

Flume Sqoop

DBs

Worker	#1

DiskDiskDiskDiskDisk

Node	
Manager

Data	Node

Master

Resource	
Manager

Name	Node

…#2

Logs

• Hadoop is ideal for batch and 
interactive apps

• … but also constrained by that model



New Fast Data 
Architecture
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Go Node.js …

Flesh out earlier 
example architectures
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While YARN can 
be used, it’s not 
flexible enough 

for today’s 
dynamic 

workloads

Kubernetes and Mesos 
provide the job and 

resource management 
needed for dynamic, 

heterogenous work loads
Deploy in the 
cloud or on 

premise
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Go Node.js … “Events” - e.g., REST 
messages, sessions, 

alerts, …
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Go Node.js … “Events” - e.g., REST 
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“Streams” - one-way 
data flows, e.g., sockets 
or files, including logs, 

metrics, other 
telemetry, click 

streams, etc.
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Each has different volumes, velocities, latency 
characteristics, protocols, etc.

“Events” - e.g., REST 
messages, sessions, 

alerts, …

“Storage” - JDBC, async 
reads/writes to storage

“Streams” - one-way 
data flows, e.g., sockets 
or files, including logs, 

metrics, other 
telemetry, click 

streams, etc.
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Kafka: the data backplane. 
Deployed as a cluster of 
“Brokers” for scalability, 

resiliency.



Why Kafka?
Organized into 

topics

Ka#a

Partition 1

Partition 2

Topic A

Partition 1Topic B

Topics are partitioned, 
replicated, and 

distributed



Why Kafka?

Unlike queues, consumers 
don’t delete entries; Kafka 

manages their lifecycles

M Producers

N Consumers, 
who start 

reading where 
they want

Consumer  
1

(at offset 14)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Partition 1Topic B

Producer  
1 Producer  

2

Consumer  
2

(at offset 10)

writes

reads

Consumer  
3

(at offset 6)

earliest latest

Logs, not queues!



Using Kafka
Service 1

Log & 
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N * M links ConsumersProducers

Before:

Service 1

Log & 
Other Files

Internet

Services

Service 2

Service 3

Services

Services

N + M links ConsumersProducers

After:

Messy and fragile; 
what if “Service 1” 

goes down?

Simpler and more 
robust! Loss of Service 
1 means no data loss.

X X
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Go Node.js …

Lots of streaming engine options… why so many?



• Latency: how low?
• Volume per unit time: how high?
• Data processing: which kinds?
• Build, deploy, and manage services: what 

are your preferences?

You need choices
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Go Node.js …

Run as 
distributed 

services

You submit jobs, 
they are 

partitioned into 
tasks

The streaming engines 
form two groups:
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Go Node.js …

Libraries you 
embed in your 
microservices

The streaming engines 
form two groups:
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Go Node.js … New, low-latency 
Structured 
Streaming

Older mini-batch 
streaming

Full batch 
support (replaced 

MapReduce)Rich SQL and Machine 
Learning options.
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Go Node.js …

Richer streaming 
semantics, more 
mature low-latency 
support

Low latency 
Spark alternative. 
Also uses services 

to partition the 
data and tasks 
across a cluster
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Go Node.js …

Part of the rich 
Akka ecosystem 

for general 
microservices
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Go Node.js …

Kafka-centric 
library for 

common data 
processing tasks
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Go Node.js …

f
Standard APIs 

allow almost any 
storage you want
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Go Node.js …

Use your regular 
microservice 

tools…

… but why are 
microservices in 
this diagram??



1.The trend is to run everything in big 
clusters using Kubernetes or Mesos

• In the cloud or on-premise

Why Microservices in Fast Data?



2.If streaming gives you information 
faster…
• … you’ll want quick access to it in your 

other services!

Why Microservices in Fast Data?



3.Streaming raises the bar on data services
• Compared to batch services, long-running 

streaming services must be more:
• Scalable
• Resilient
• Flexible

Why Microservices in Fast Data?

https://www.reactivemanifesto.org/

FORM

MEANS

VALUE
Responsive

Resilient

Message Driven

Elastic



4.This leads to our last major point…

Why Microservices in Fast Data?



Organizational Impact



Organizational Impact

• Data engineers have to become good 
at highly-available microservices

• Microservice engineers have to 
become good at data

• … and Data scientists have to 
understand production issues



Some overlap in concerns, architecture

Big DataServices

The Past



Much more overlap

The Present

Microservices 
& Fast Data



Much more microservice focused?

The Future?

Microservices 
for Fast Data

Why? Since streams 
process data 
incrementally, there is 
less need for large-scale 
tools like Spark, Flink

… and using 
microservices for 
everything simplifies 
development, 
deployment, and 
operations



Lightbend 
Fast Data Platform

lightbend.com/fast-data-platform



lightbend.com/fast-data-platform

What we 
discussed

Plus 
management 

and 
monitoring 

tools
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