Executive Briefing: What You Need to Know about Fast Data

L B. T. B. A. MINING ST.

Dean Wampler, Ph.D. dean@lightbend.com @deanwampler polyglotprogramming.com/talks

© Dean Wampler & Lightbend, 2007-2018

Based on this report

go.lightbend.com/fast-dataarchitectures-for-streamingapplications-oreilly-2nd-edition

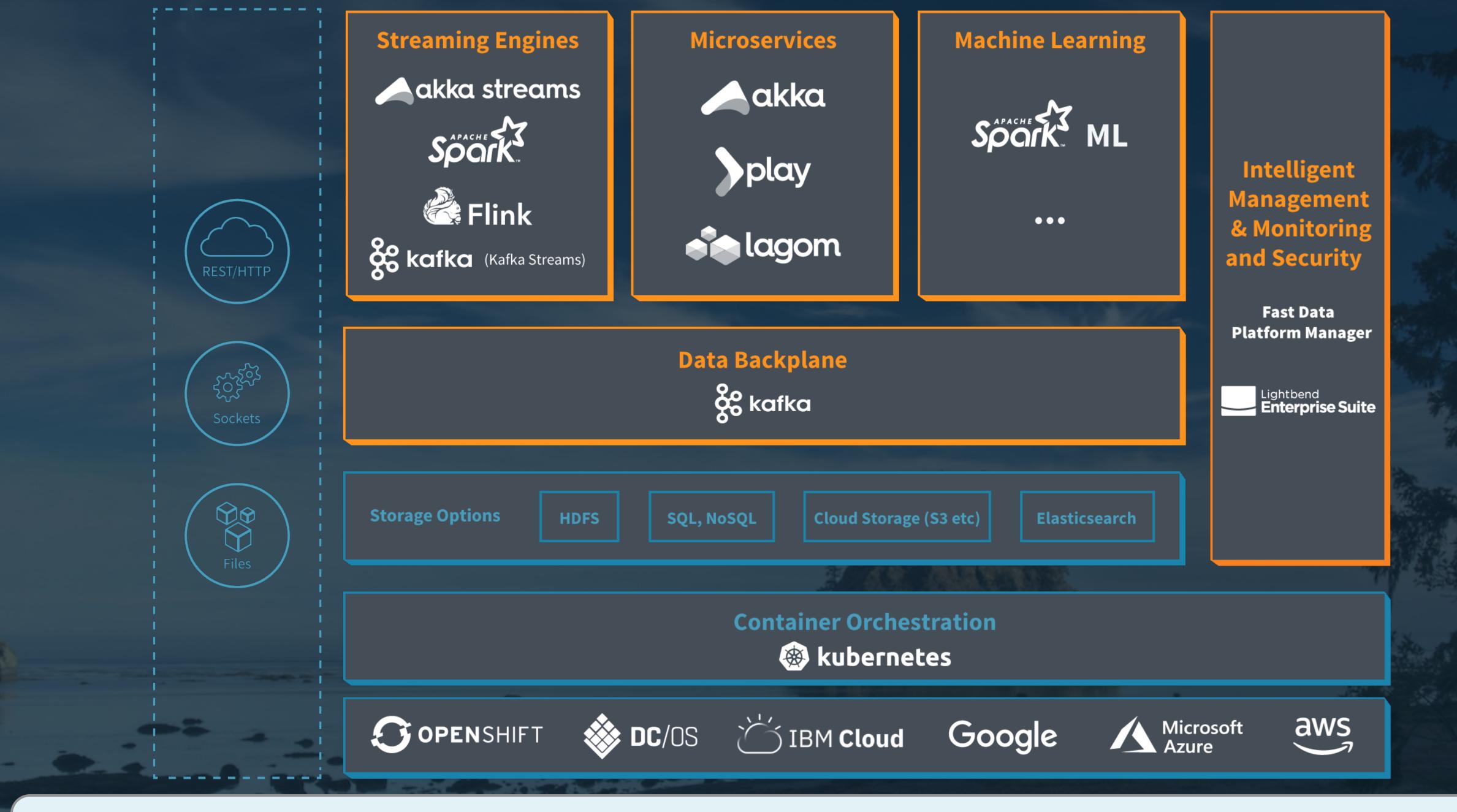
State President

O'REILLY®

Fast Data Architectures for Streaming Applications

Getting Answers Now from Data Sets that Never End

Dean Wampler



I lead the Lightbend Fast Data Platform project; streaming data and microservices

Why streaming? Why now? How to choose technologies The impact streaming will have on your organization

What We'll Discuss

New opportunities that require streaming Media content is obviously one ;) Upgrading batch applications for competitive advantage

Why Streaming?

Similar IoT Architectures

Predictive Analytics

Apply ML models to large volumes of device data to pre-empt failures / outages

IoT

Real-time consumer and industrial Device and Supply Chain management at scale

Hewlett Packard Enterprise

Fast Data Use Cases

Real-time Personalization

Real-time marketing based on behavior, location, inventory levels, product promotions, etc.

Real-time Financial Processes

Drive better business outcomes through realtime risk, fraud detection, compliance, audit, governance, etc.

https://www.lightbend.com/customers

Hewlett Packard Enterprise

• ML models applied to device telemetry to detect anomalies Preemptive maintenance prevents potential failures that would impact users

Predictive Analytics

Handle anomaly: move activity off component, schedule maintenance window to replace it.

Anomaly Handler

Corrective Actions

Predictive Analytics - Core Idea

Train models to look for anomalies... and score incoming telemetry.

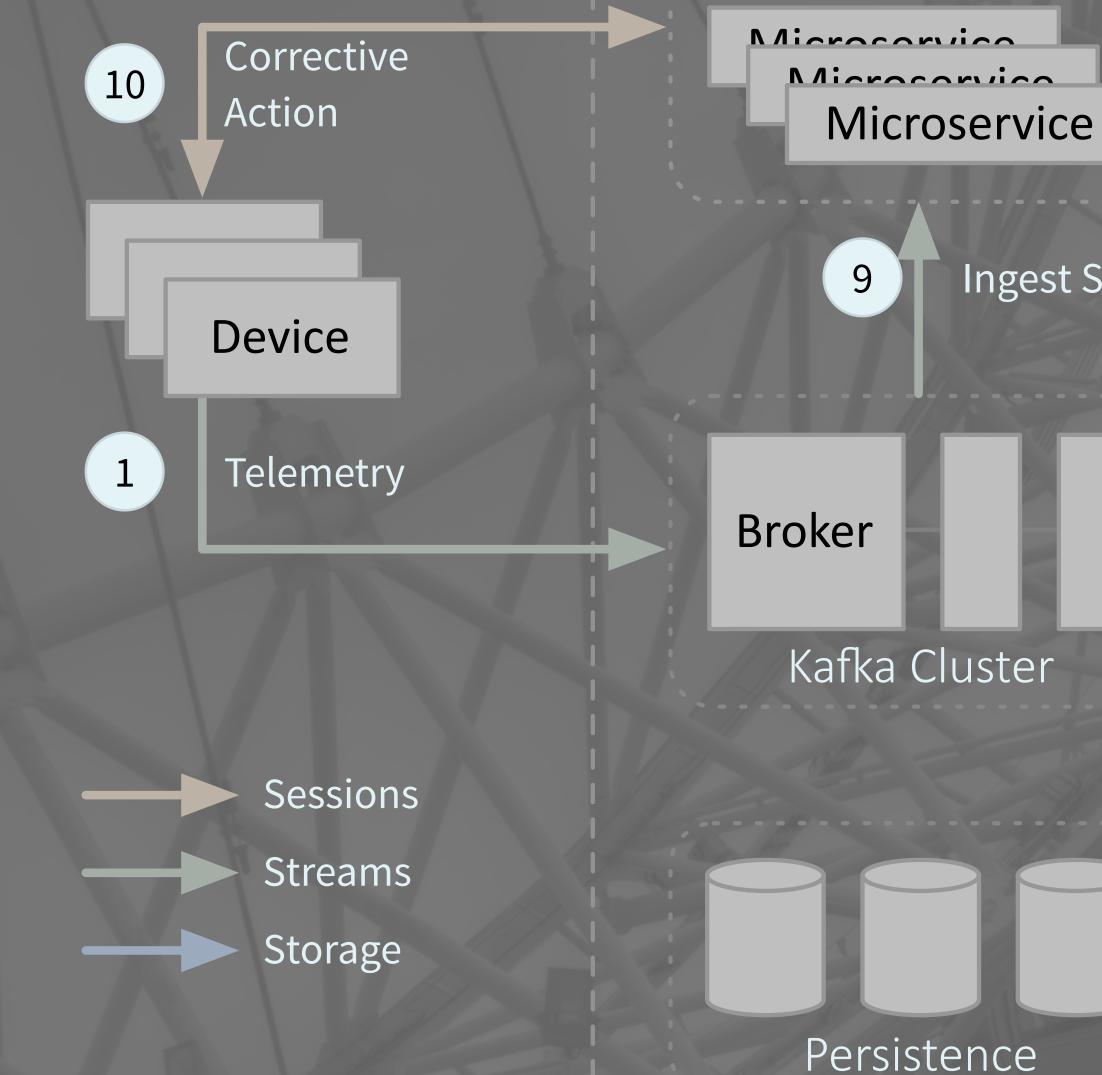
Probable Anomalies

> Anomaly **Detection:** Model

Telemetry Records

Ingest telemetry from edge devices.

Device Session Microservices



Ingest Scores

6, 7, 8

6. → Data Pipeline $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

4,5

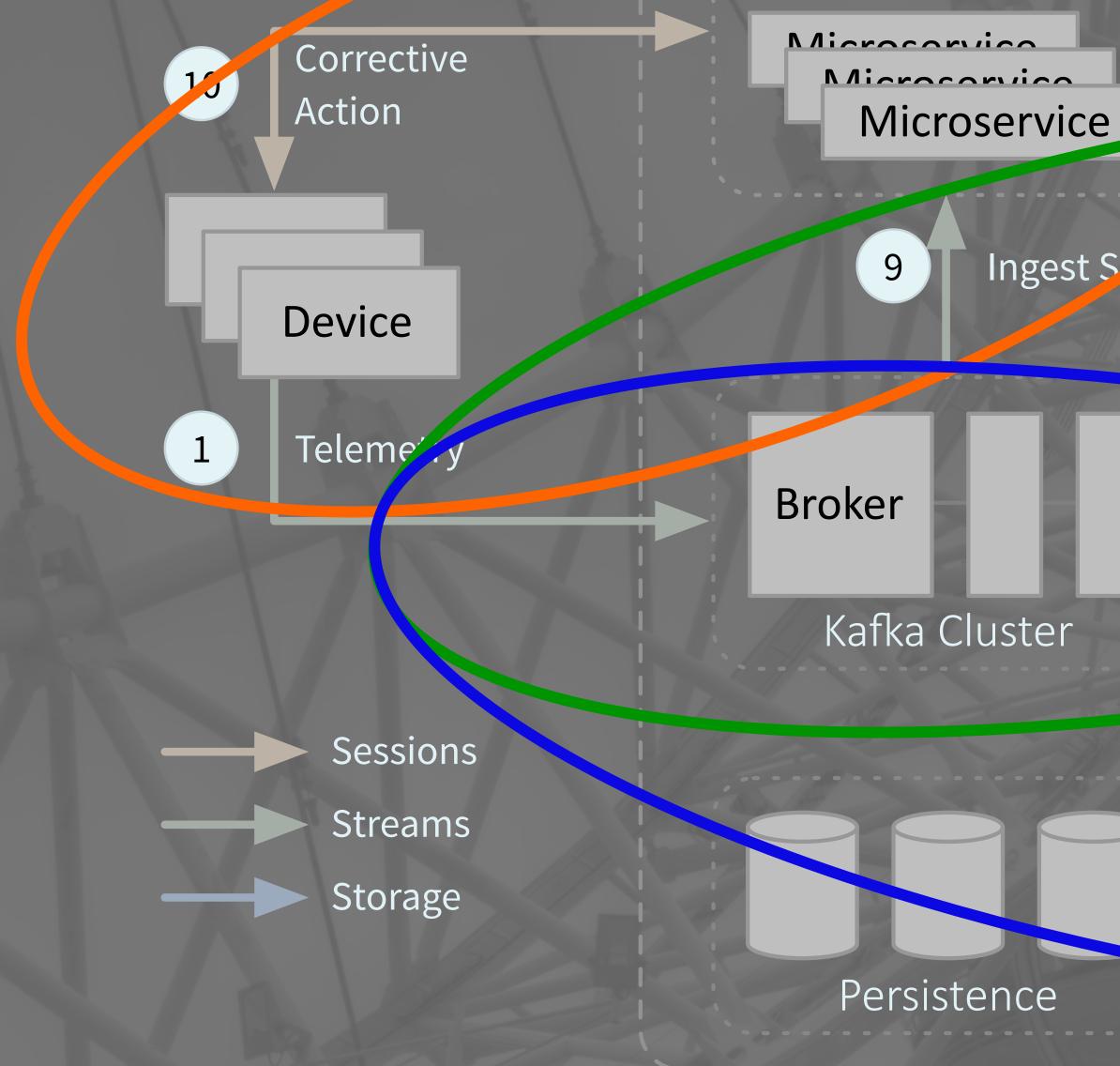
2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

Device Session Microservices



Session management, **REST** microservices

Model

Ingest Scores

6, 7, 8

2,3

4,5

 $6. \rightarrow Data Pipeline$ $7 \rightarrow Model Serving$

 $2. \rightarrow Model Training$

4. ← Model Storage

 $3. \in New models$

5. → Boot up,

historical data

Akka Streams Kafka Streams

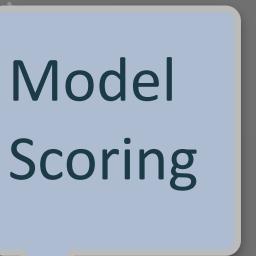
Low Latency Microservices

...

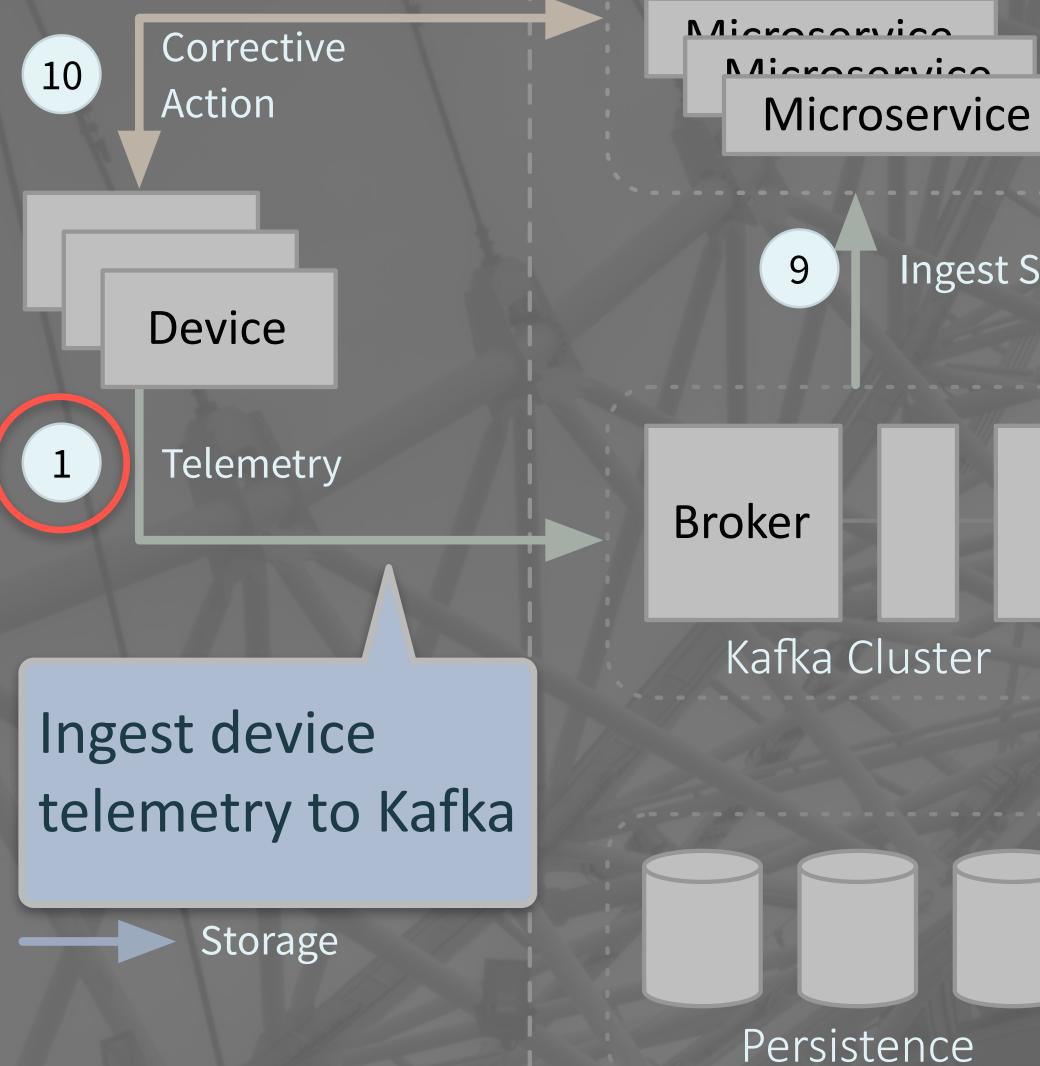
Spark

Mini-batch, Batch

Three groups of functionality



Device Session Microservices



Ingest Scores

6, 7, 8

 $6. \rightarrow Data Pipeline$ $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

4,5

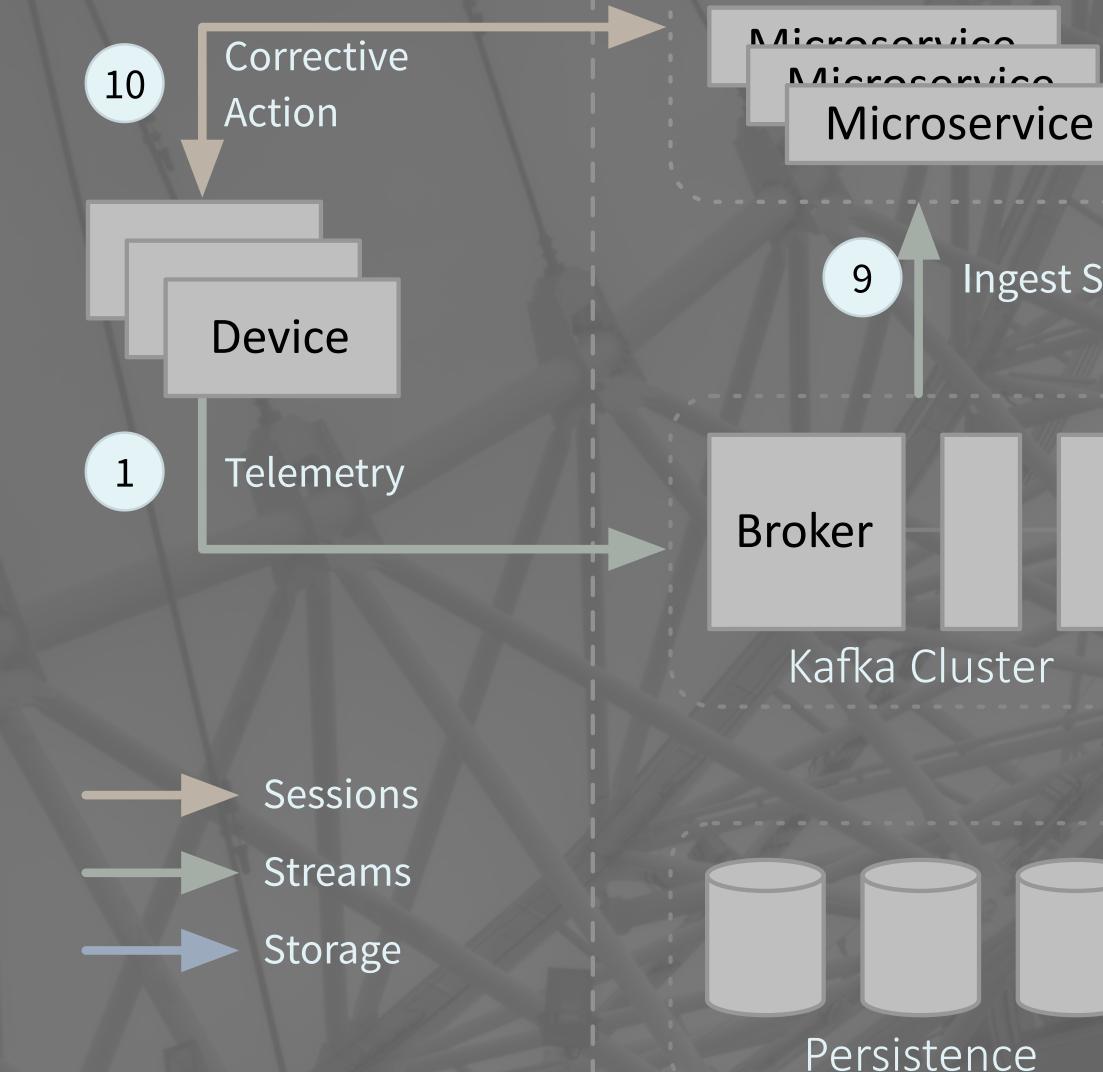
2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

Device Session Microservices



Ingest Scores

6, 7, 8

2,3

 $6. \rightarrow Data Pipeline$ 7. \rightarrow Model Serving 8. ← Anomalies

Akka Streams

Read telemetry into a periodic Spark job for model training to detect anomalies

2. \rightarrow Model Training $3. \leftarrow New models$

4. ← Model Storage 5. → Boot up, historical data

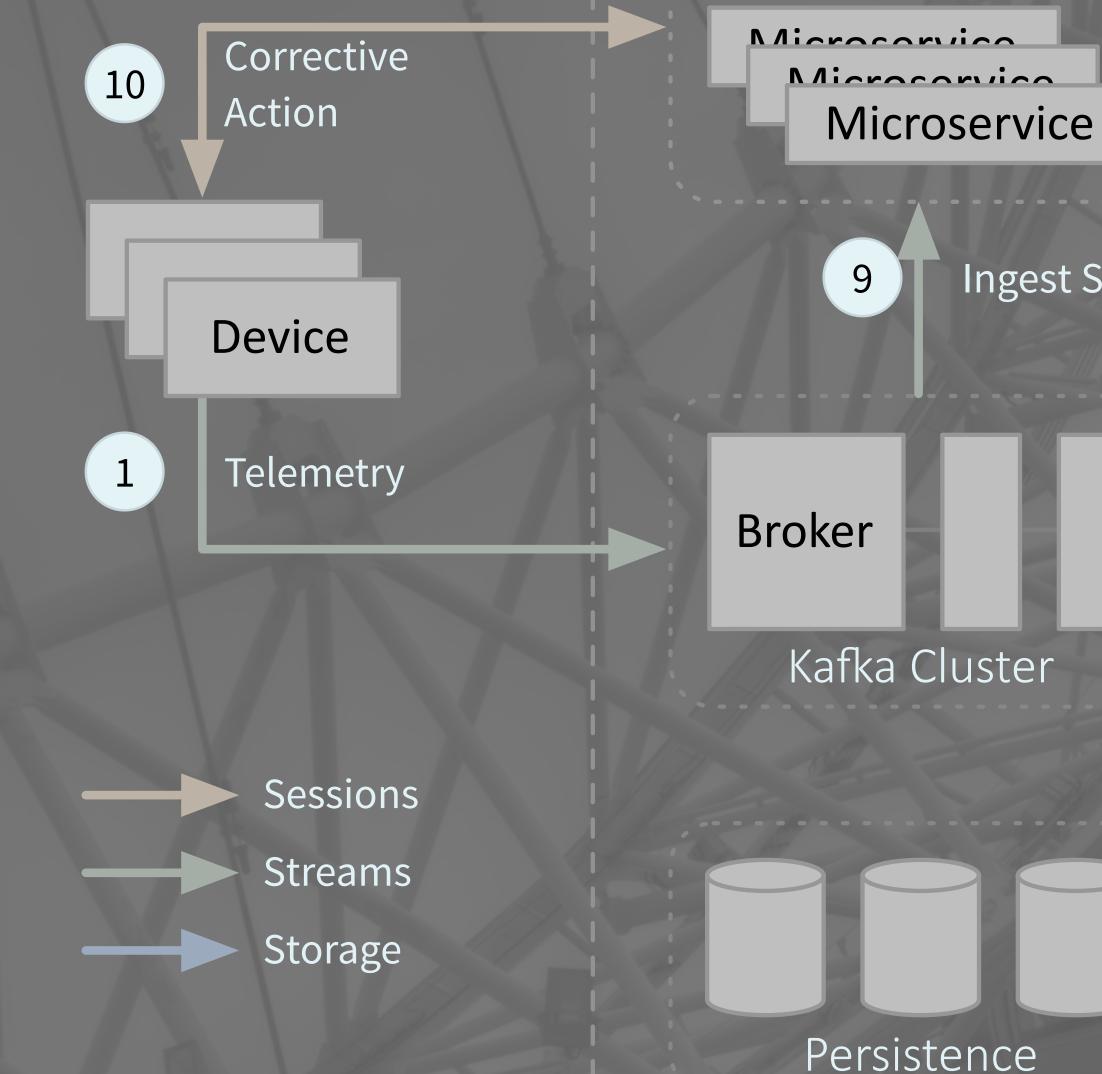
Mini-batch, Batch

Spark

4,5

Large data volume, Long latency (seconds-days)

Device Session Microservices



Ingest Scores

6, 7, 8

 $6. \rightarrow Data Pipeline$ 7. \rightarrow Model Serving 8. ← Anomalies

Updated model parameters are written back to Kafka in a new topic

Akka Streams

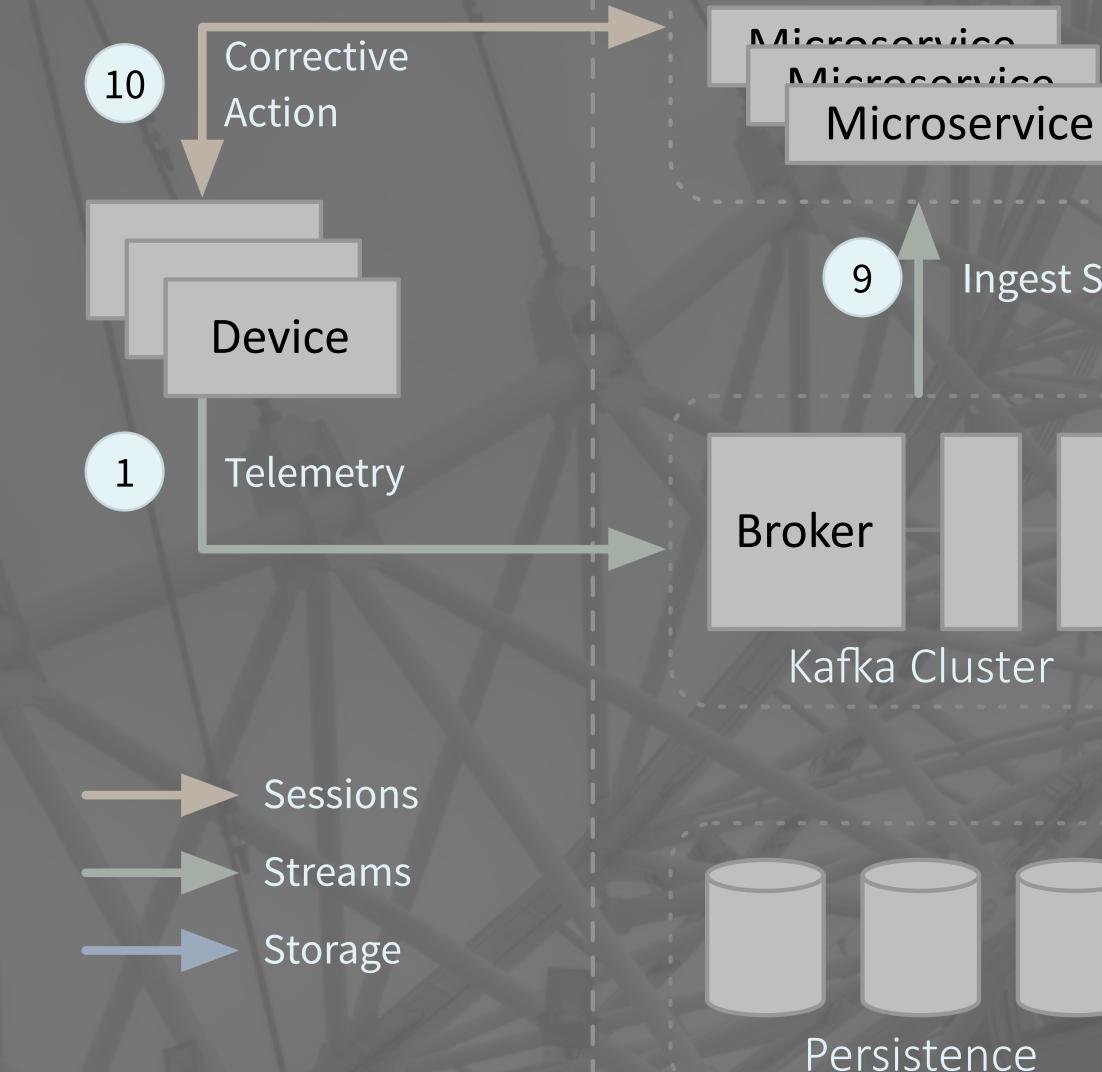
2,3

4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Device Session Microservices



Ingest Scores

6, 7, 8

6. → Data Pipeline $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

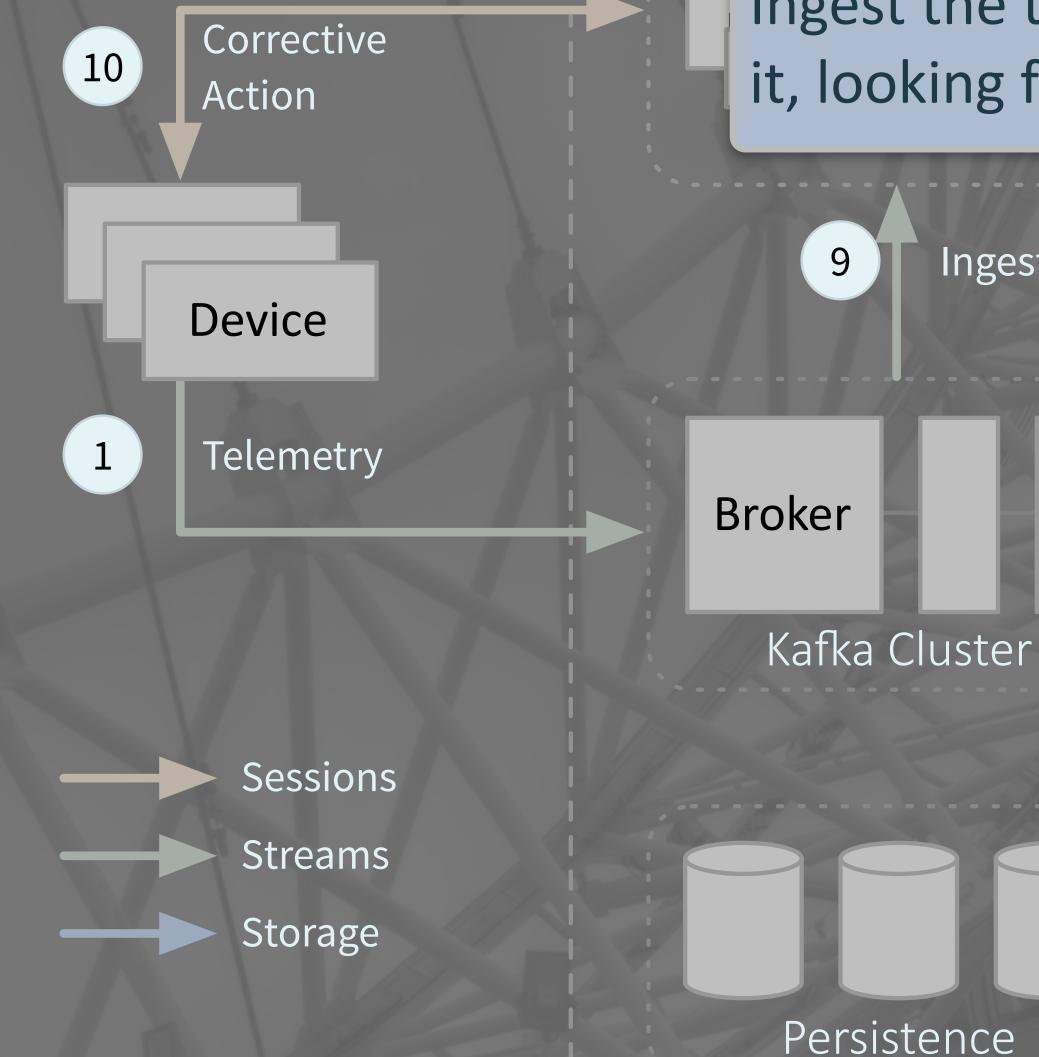
4,5

2. → Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Updated model parameters are also written to longer-term storage (for system restarts, auditing, ...)

Device Session Microservices



Ingest the telemetry data to score it, looking for anomalies

Ingest Scores

6. → Data Pipeline $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

10

1

Corrective

Action

Device

Telemetry

Sessions

Streams

Storage

Navira Saccia Ingest model parameters to update model in the low-latency microservices for model serving

9

Broker

Kafka Cluster

Persistence

Ingest Scores

 $6. \rightarrow Data Pipeline$ $7. \rightarrow Model Serving$ 8. ← Anomalies

Small data volume, Low latency (milliseconds-...)

Akka Streams Kafka Streams

Low Latency Microservices

...

2,3

4,5

6, 7, 8

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch



10

1

Device Session Microservices

9

Broker

Kafka Cluster

Sessions Streams

Corrective

Action

Device

Telemetry

Storage

Write the detected anomalies back to Kafka in a new topic

Ingest Scores

6. → Data Pipeline $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

4,5

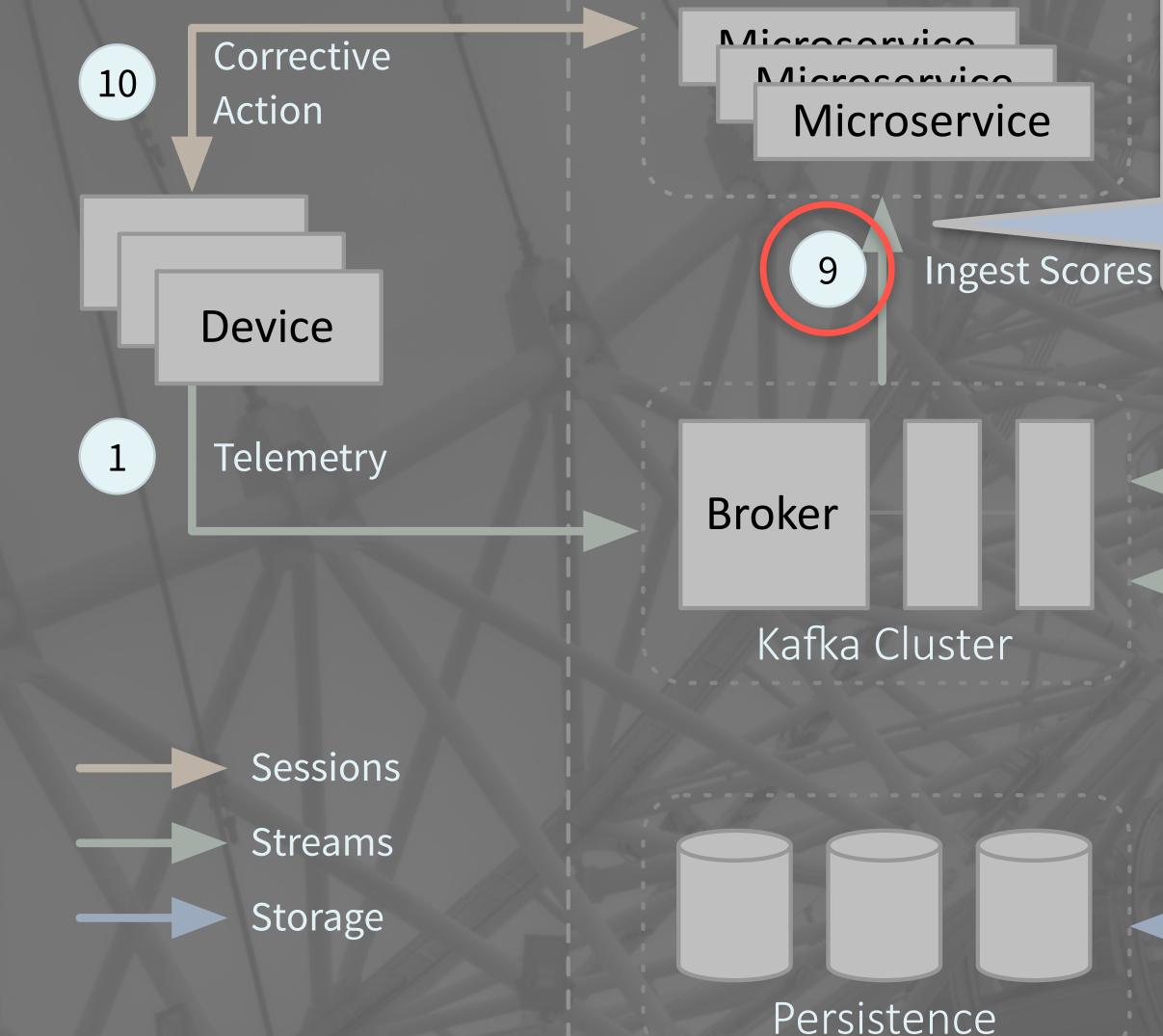
2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

Device Session Microservices



Read anomaly information into microservices that manage the devices remotely

ka Streams fka Streams

 $6. \rightarrow Data Pipeline$ $7. \rightarrow Model Serving$ 8. ← Anomalies

Low Latency Microservices

...

2,3

4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

10

1

Device Session Microservices

Microconvico Microconvico Microservice

Take corrective action, e.g., upload more information, download patches, controlalt-delete, ...

Kafka Cluster

Sessions Streams

Storage

Corrective

Action

Device

Telemetry

Persistence

6, 7, 8

 $6. \rightarrow Data Pipeline$ $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

4,5

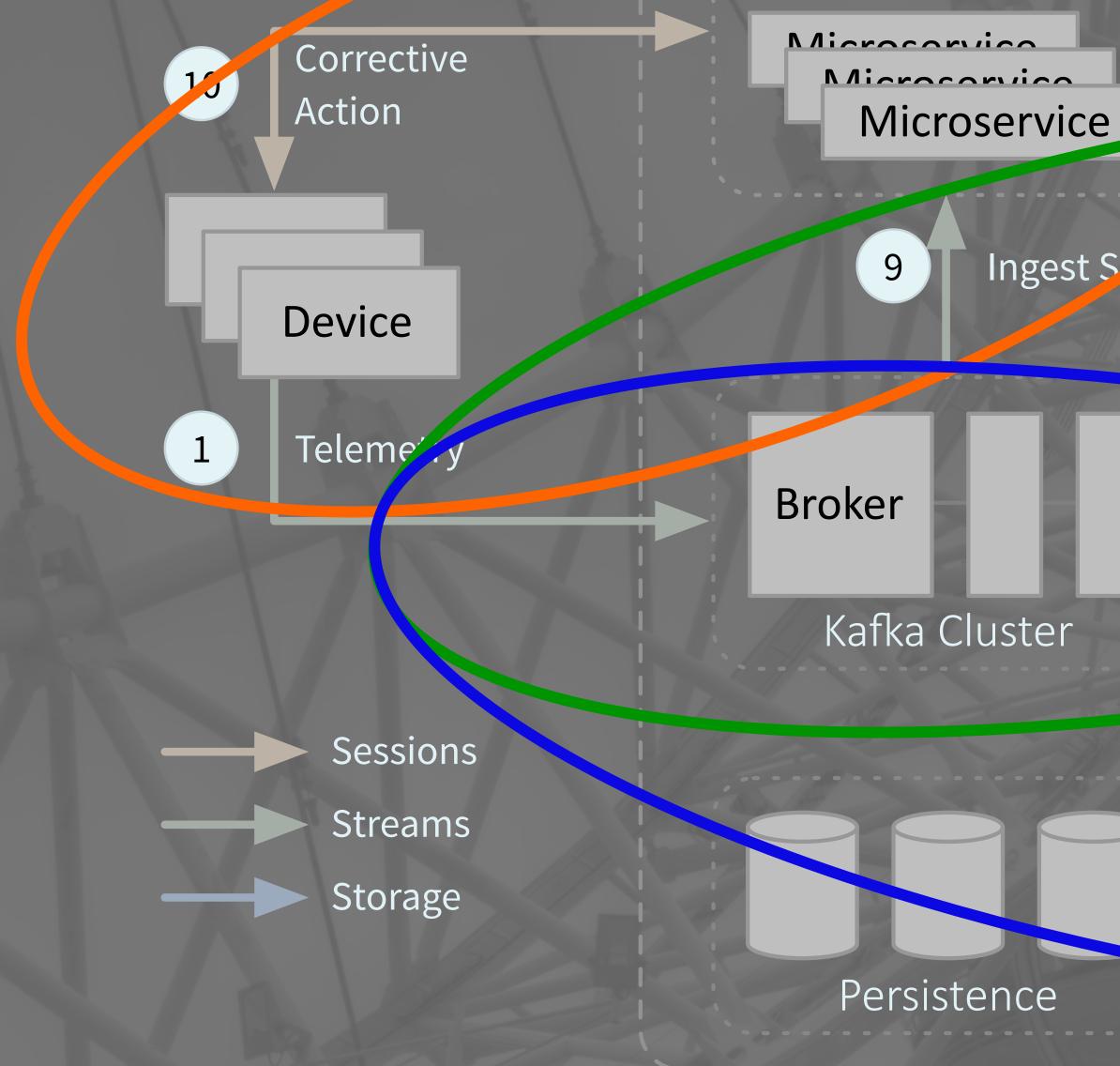
2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

Device Session Microservices



Session management, **REST** microservices

Model

Ingest Scores

6, 7, 8

2,3

4,5

 $6. \rightarrow Data Pipeline$ $7 \rightarrow Model Serving$

 $2. \rightarrow Model Training$

4. ← Model Storage

 $3. \in New models$

5. → Boot up,

historical data

Akka Streams Kafka Streams

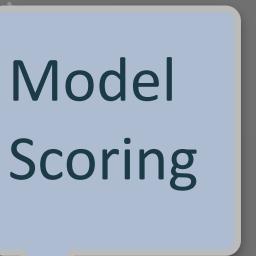
Low Latency Microservices

...

Spark

Mini-batch, Batch

Three groups of functionality



Microconvico ¹⁰Integration of Machine challenge right now

Akka Streams Learning/Artificial Intelligence with streaming is a common

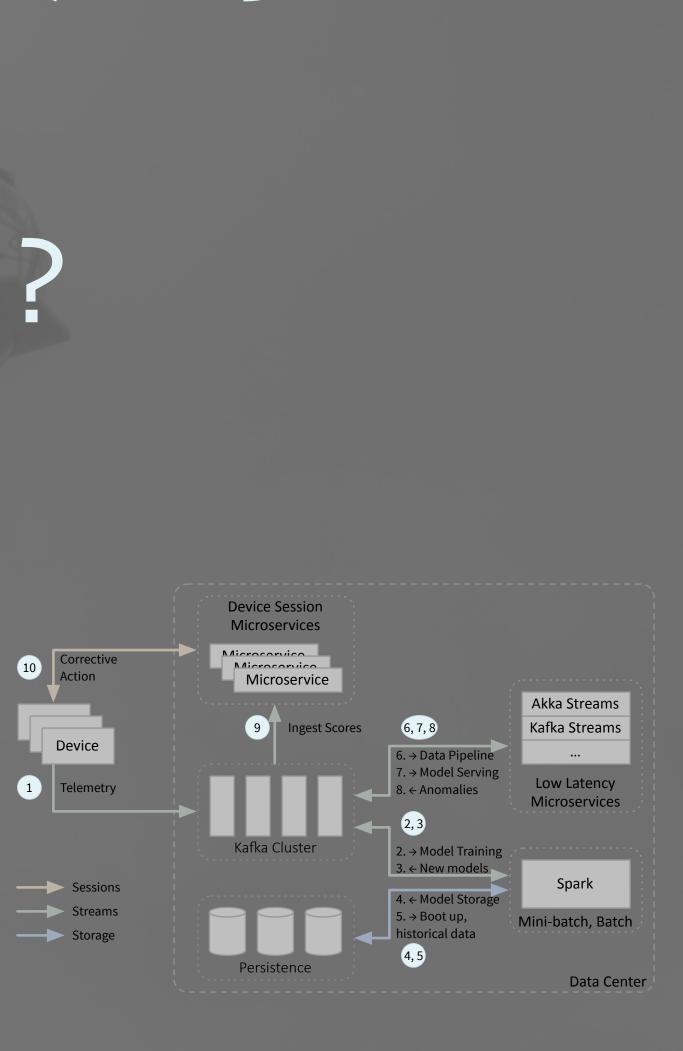
4,5

Spark

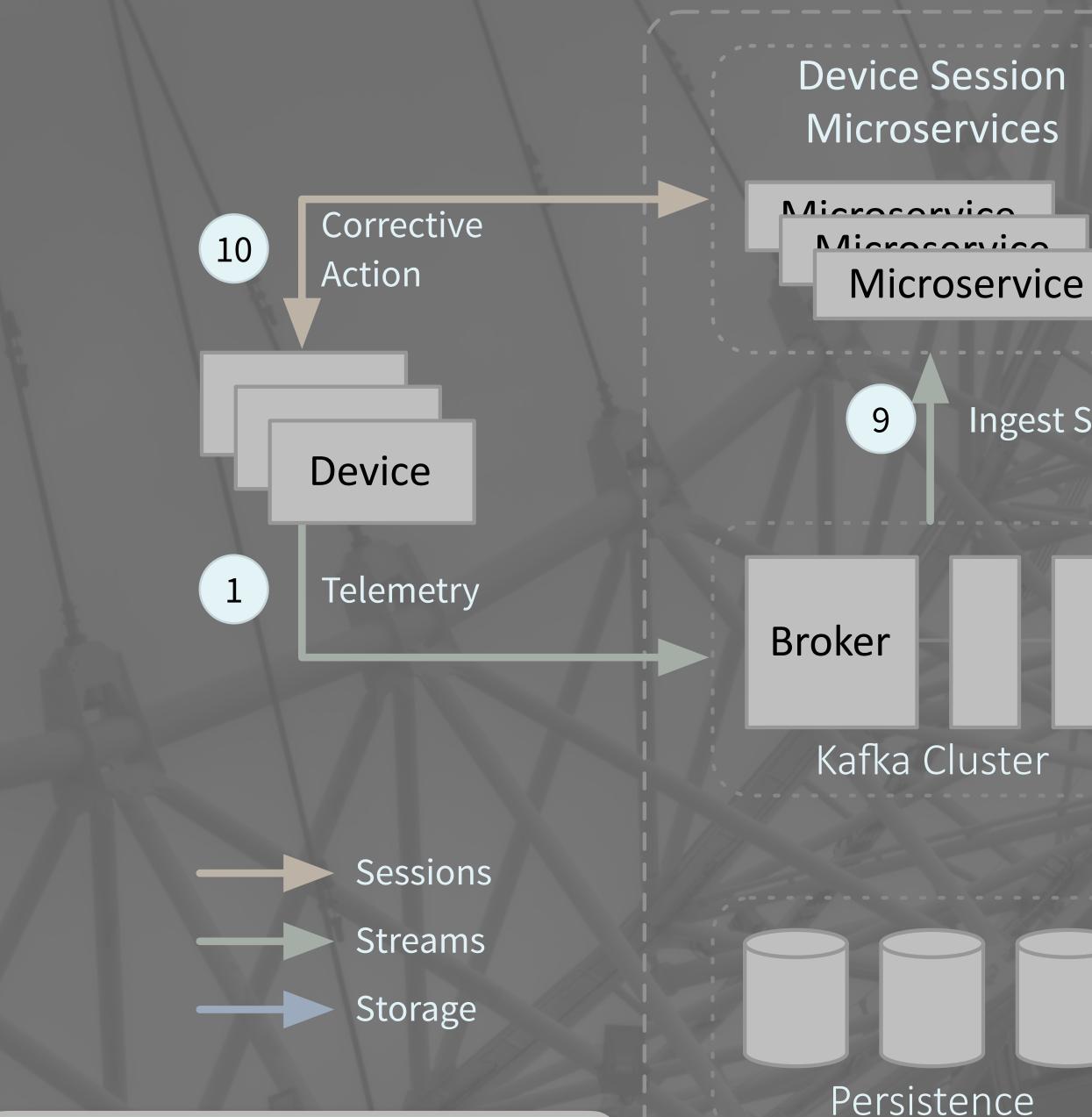
too high? Model serving latency too long? • Datacenter unavailable?

 Idea: Serve models on the device!

Challenges Network overhead for telemetry ingestion



Internet of Things Real-time consumer and industrial device and supply chain management at scale



What we just discussed...

Example Architecture

Ingest Scores

6, 7, 8

6. → Data Pipeline $7. \rightarrow Model Serving$ 8. ← Anomalies

Akka Streams

Kafka Streams

...

Low Latency Microservices

2,3

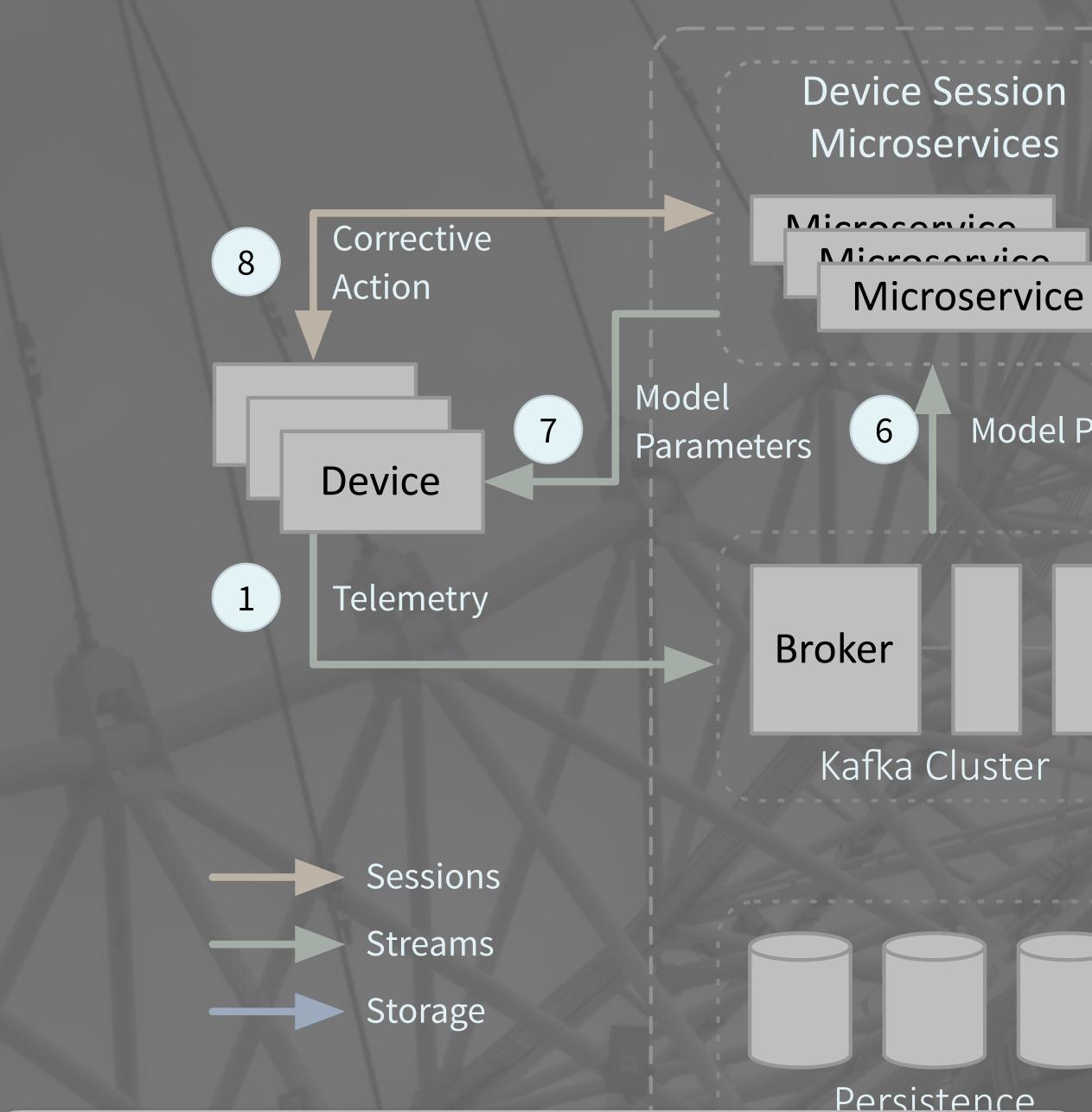
4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch



Alternative: model serving on the edge device

Edge-Scoring Example Architecture

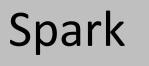
Model Parameters

2,3

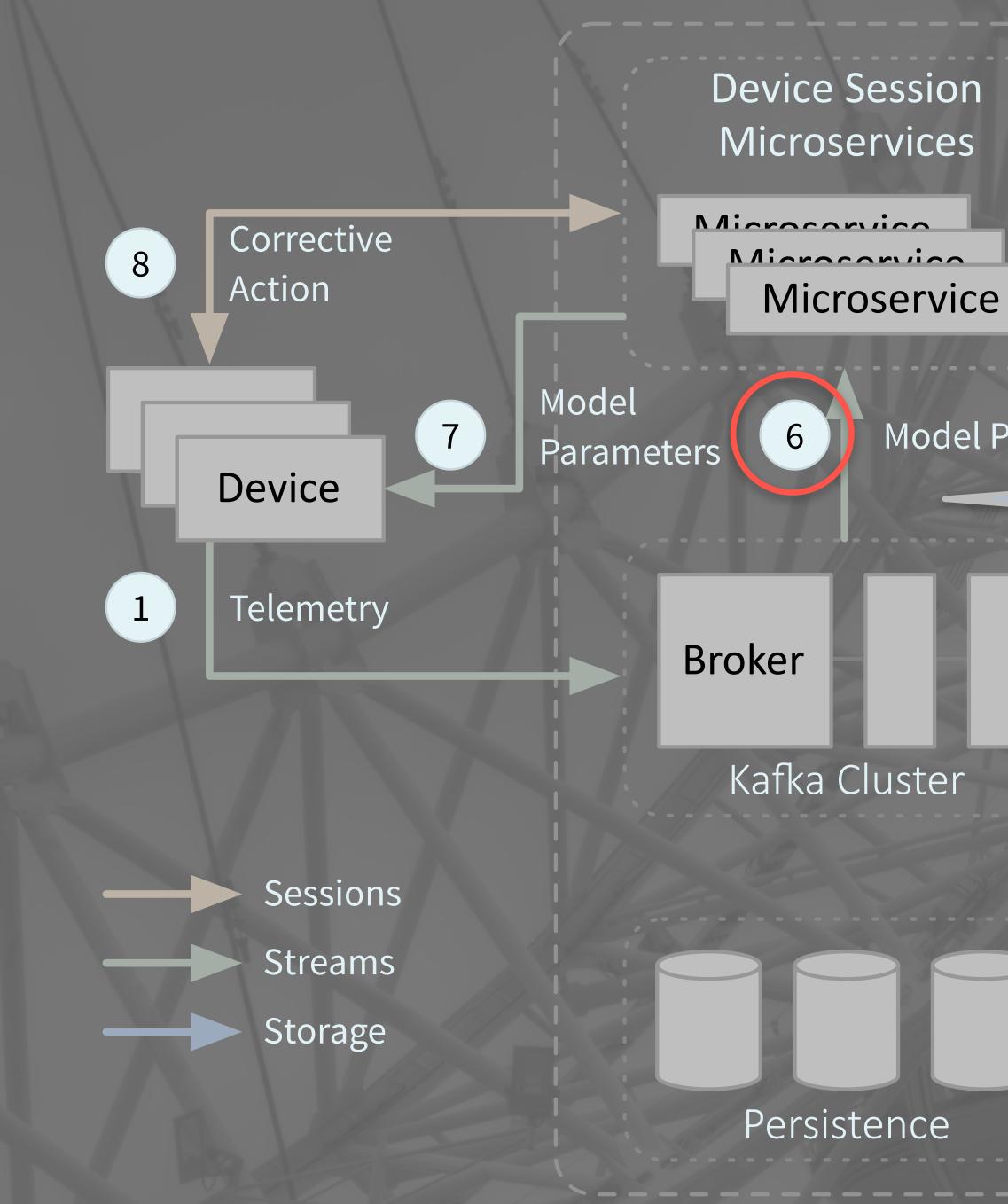
4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data



Mini-batch, Batch



Model Parameters

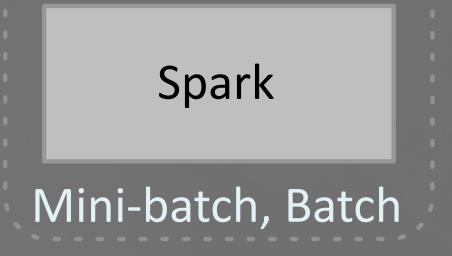
Scoring microservices now on the edge devices, so the device session microservices (in the datacenter) now ingest model updates...

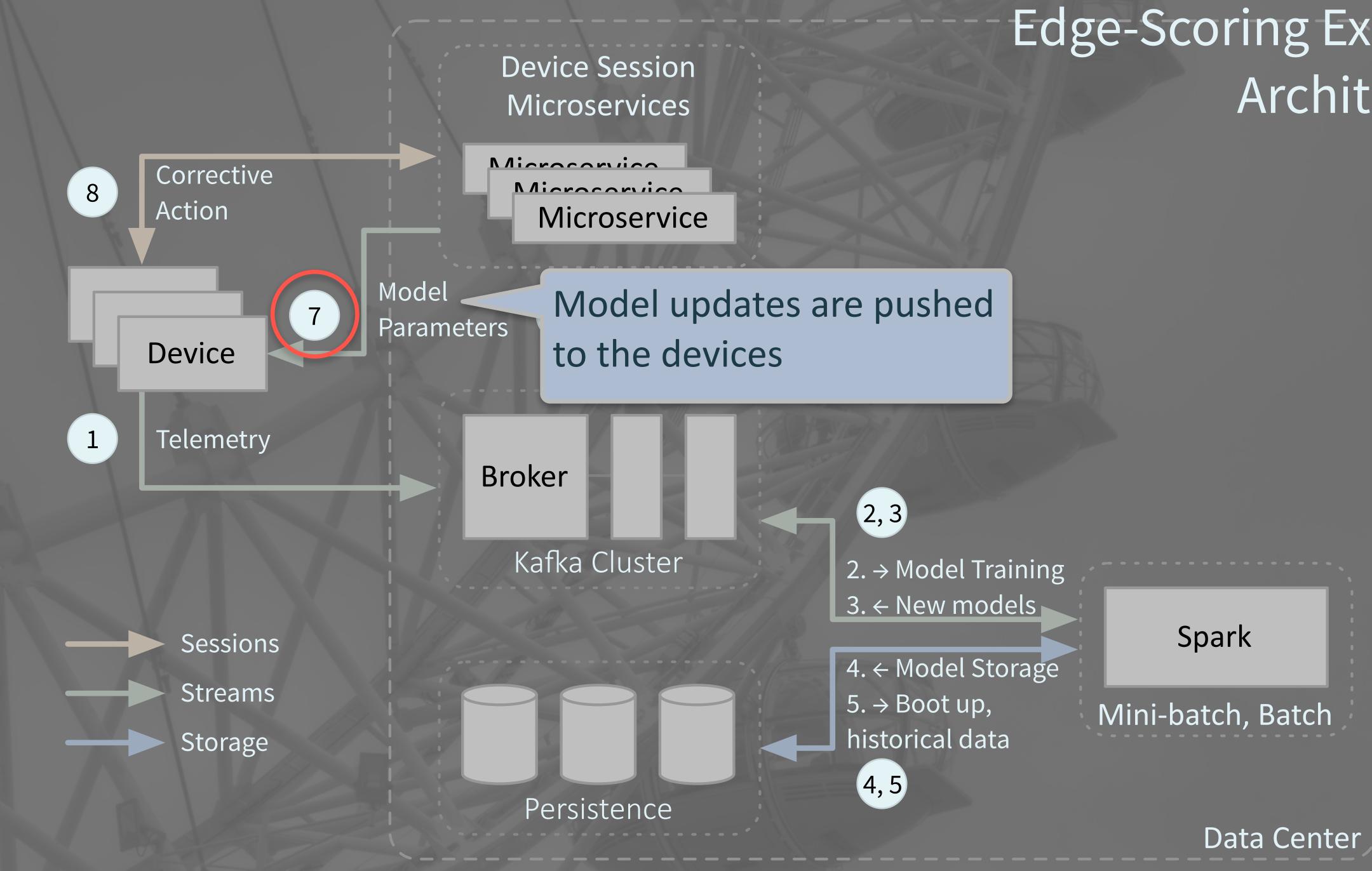
2,3

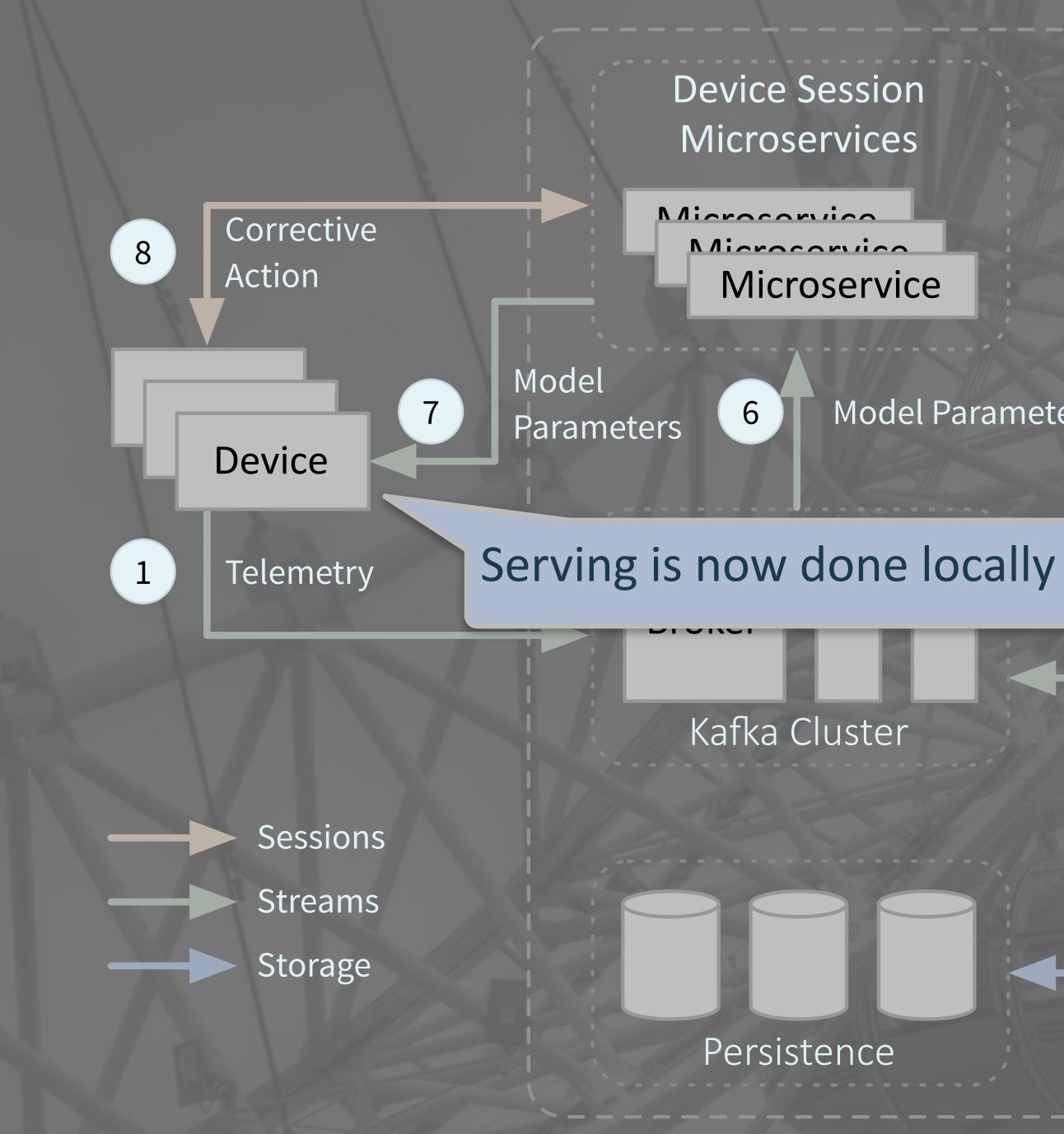
4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data







Model Parameters

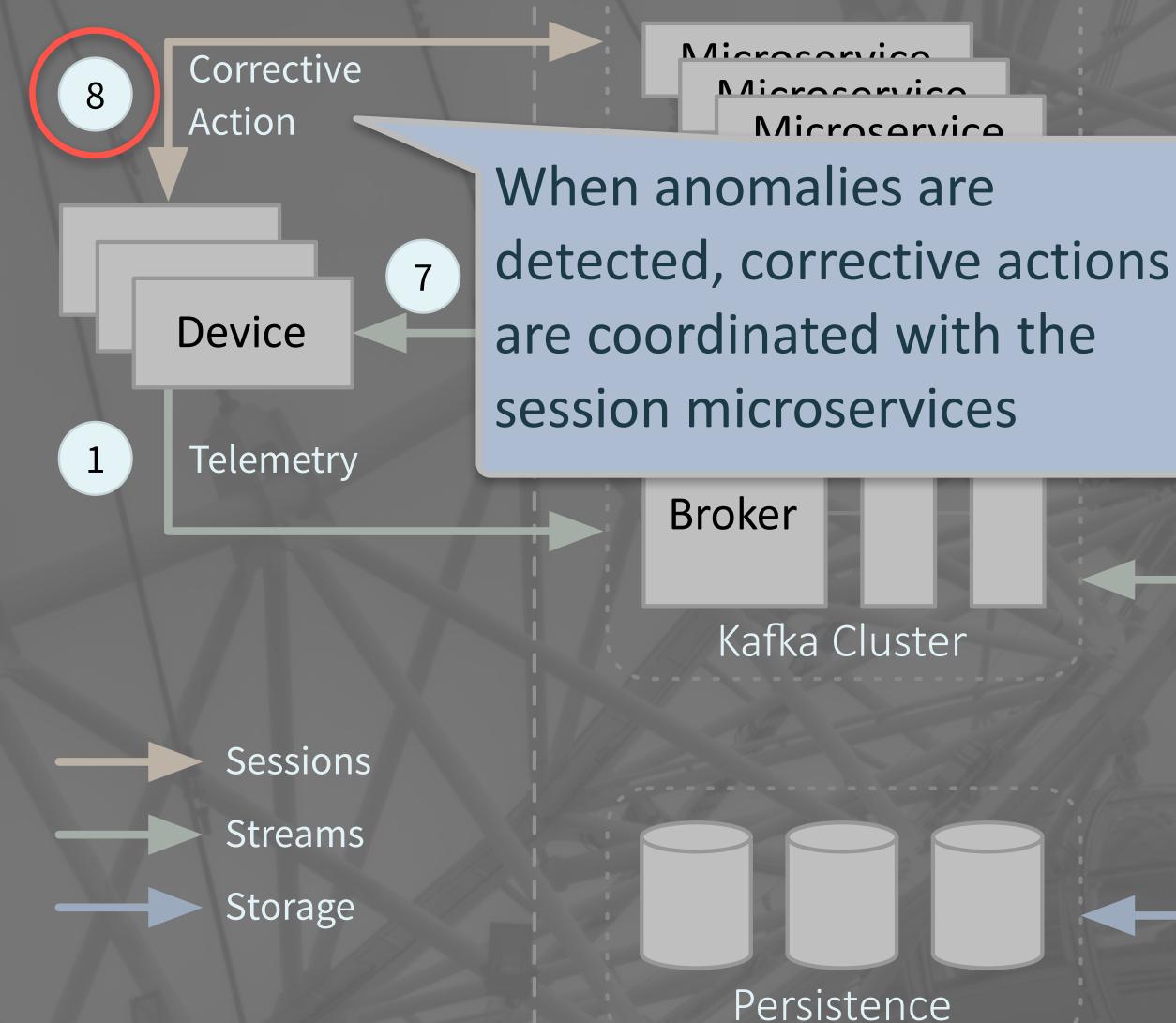
2,3

4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Mini-batch, Batch



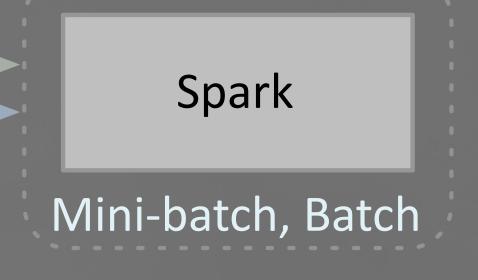
Other uses of ML for this Starbucks scenario: serving coupons, making recommendations, projecting inventory demands, ...

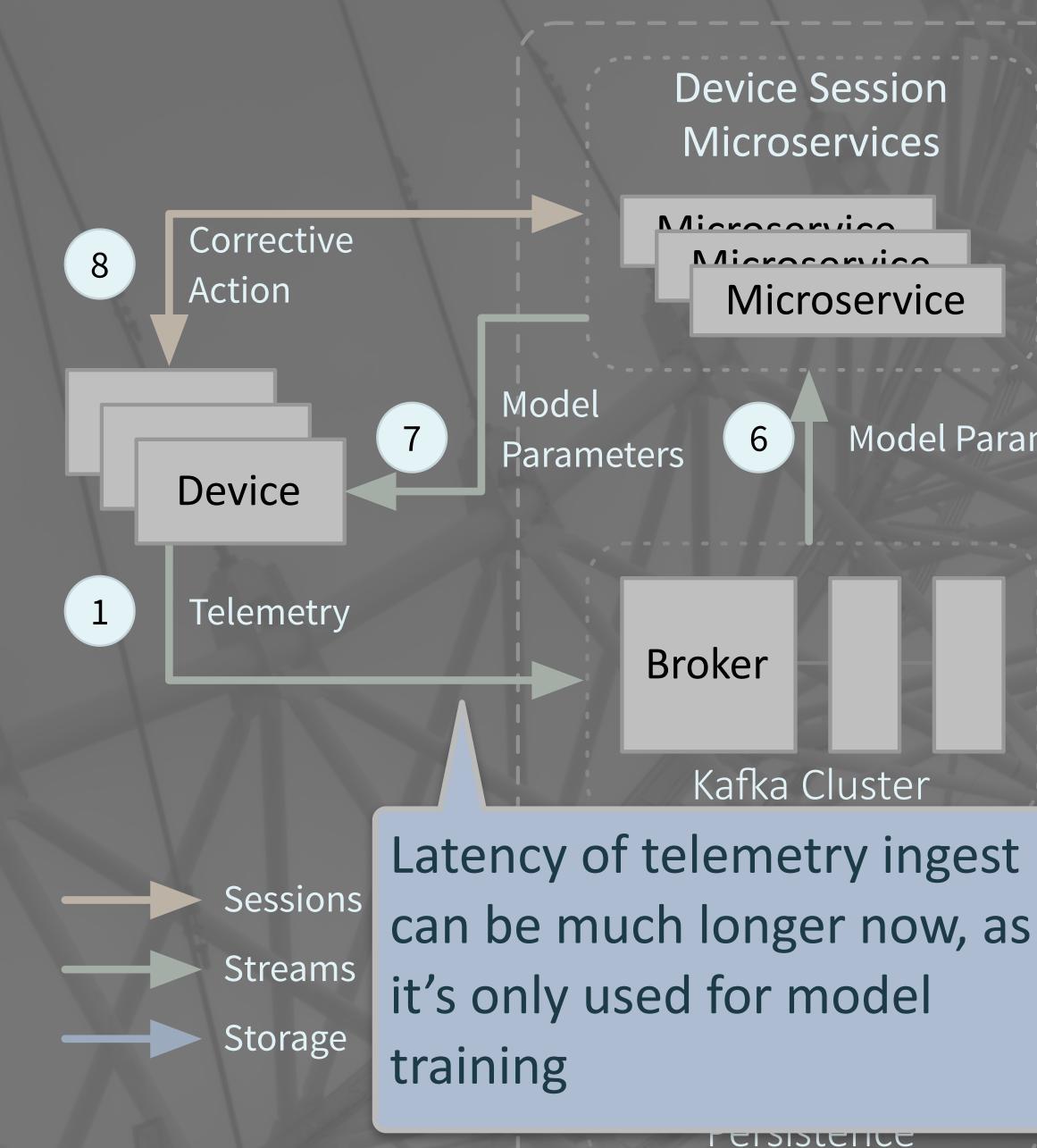
 $2. \rightarrow Model Training$ 3. ← New models

2,3

4,5

4. ← Model Storage 5. → Boot up, historical data





Model Parameters

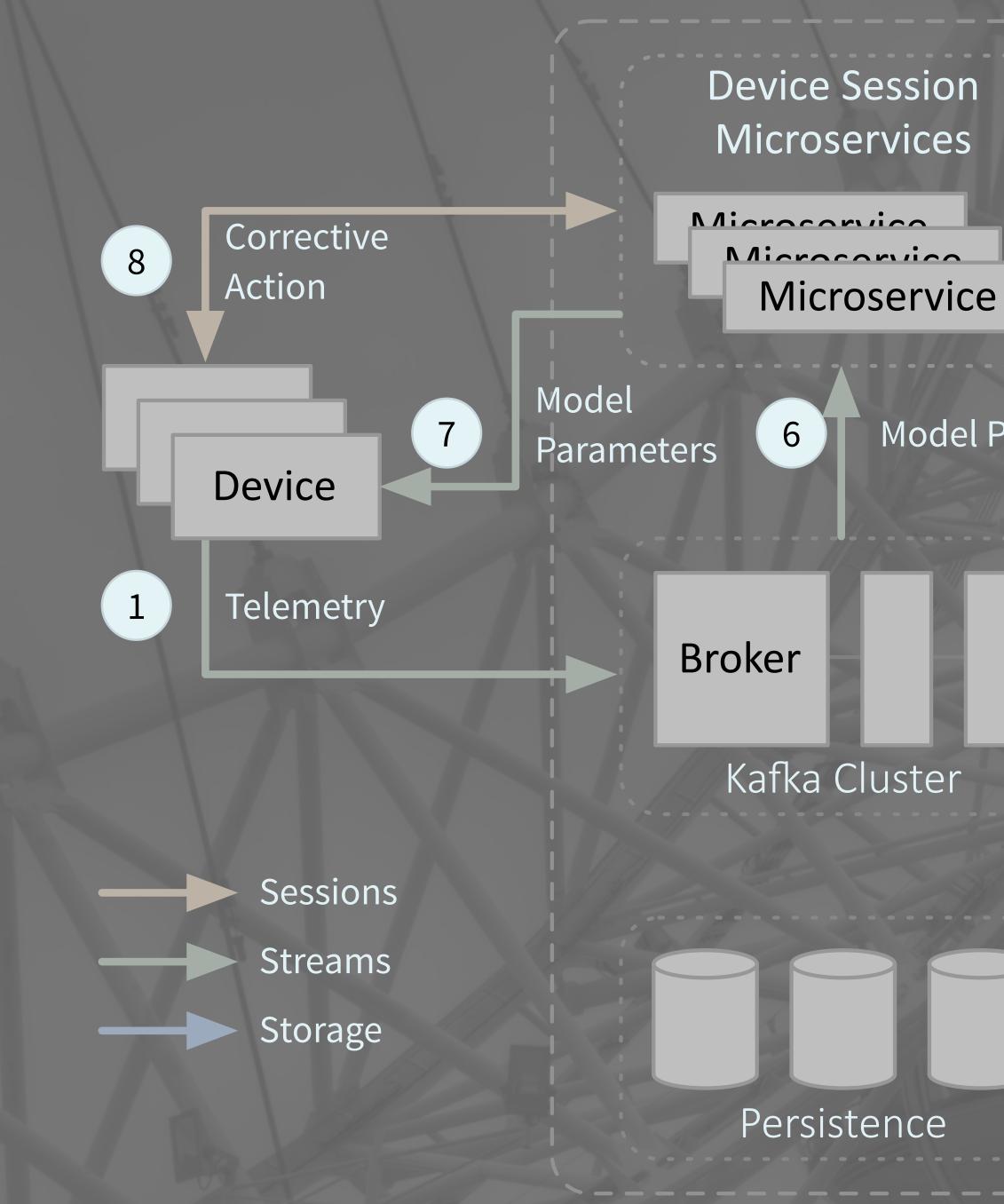
2,3

4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Mini-batch, Batch



Model Parameters

2,3

4,5

2. \rightarrow Model Training 3. ← New models

4. ← Model Storage 5. → Boot up, historical data

Spark

Mini-batch, Batch

Recap: Edge Serving

Predictive Analytics

Apply ML models to large volumes of device data to pre-empt failures / outages

IoT

Real-time consumer and industrial Device and Supply Chain management at scale

Hewlett Packard Enterprise

Fas Batch changed to streaming for competitive advantage

Real-time Personalization

Real-time marketing based on behavior, location, inventory levels, product promotions, etc.

Real-time Financial Processes

Drive better business outcomes through realtime risk, fraud detection, compliance, audit, governance, etc.

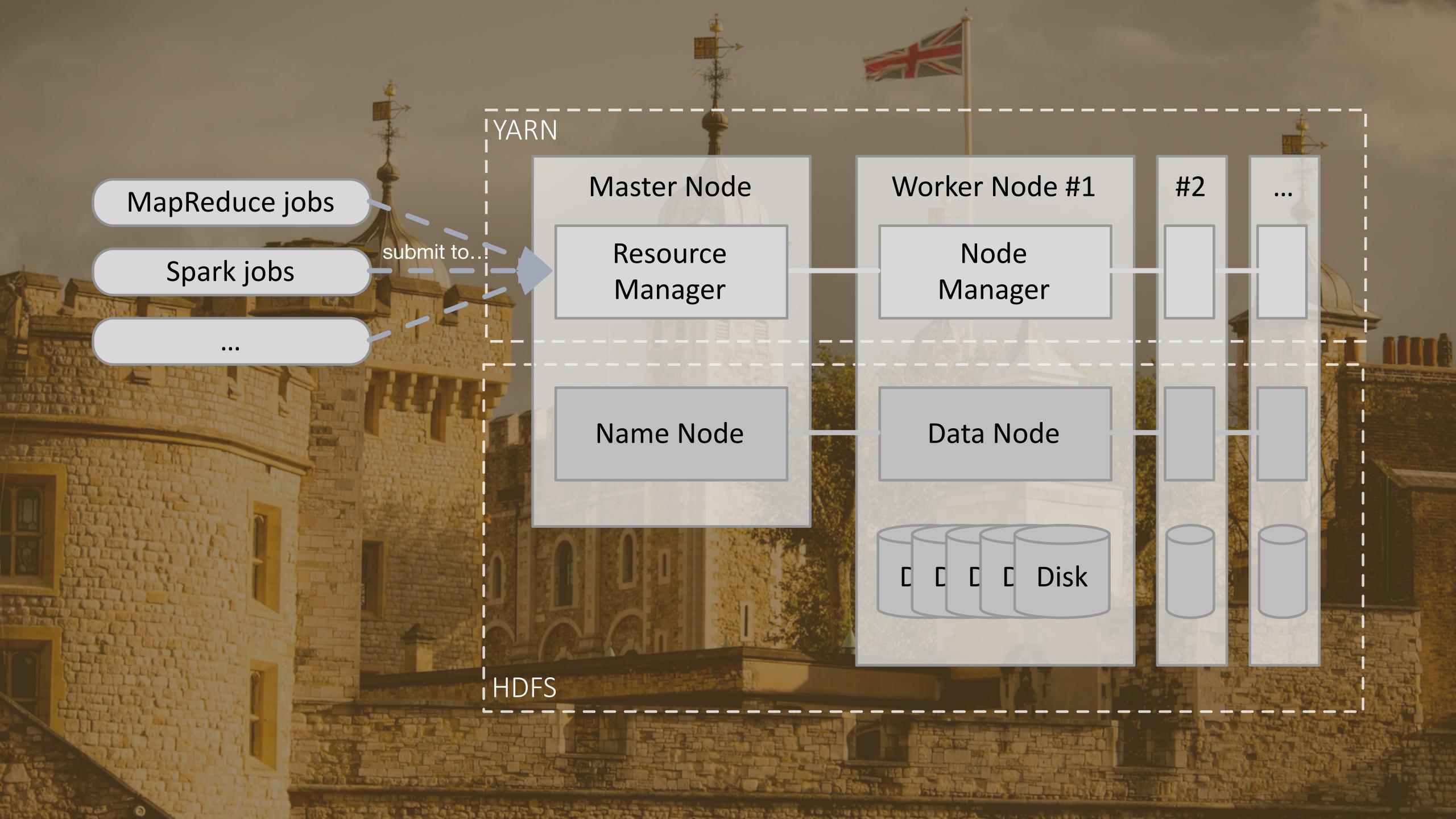
https://www.lightbend.com/customers

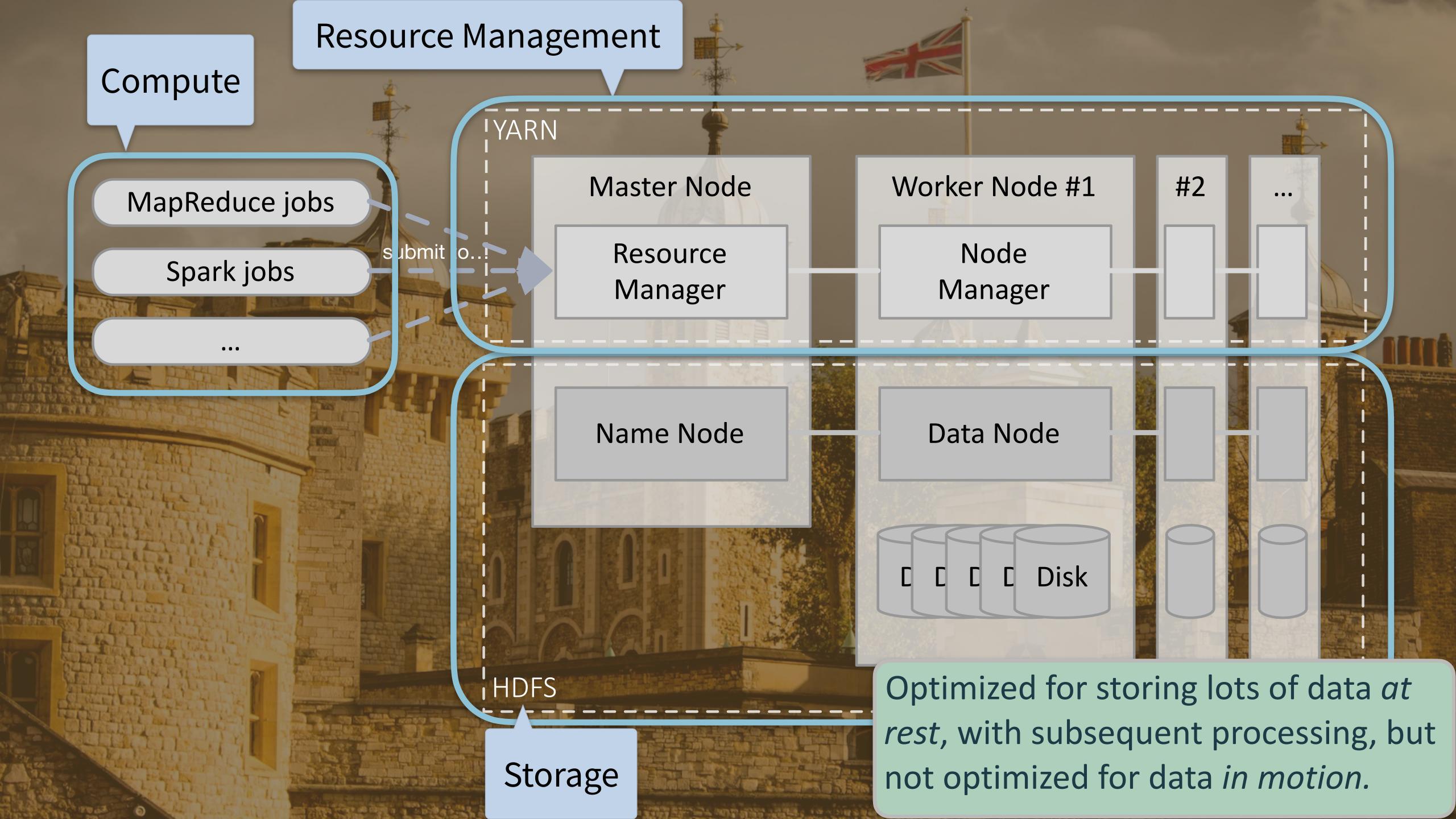
More than "faster" Hadoop... New architectures that merge data processing with microservices

Technology Choices

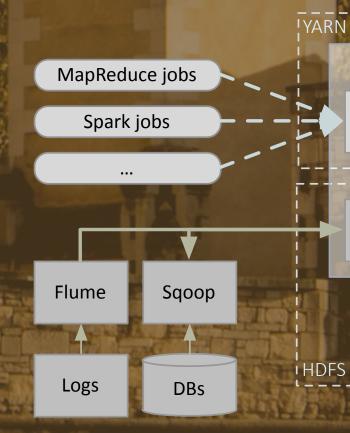
Recall Hadoop...

Data warehouse replacement Historical analysis Interactive exploration Offline training of machine learning models





Hadoop is ideal for batch and interactive apps ... but also constrained by that model

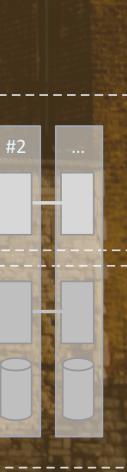


Master Resource Manager

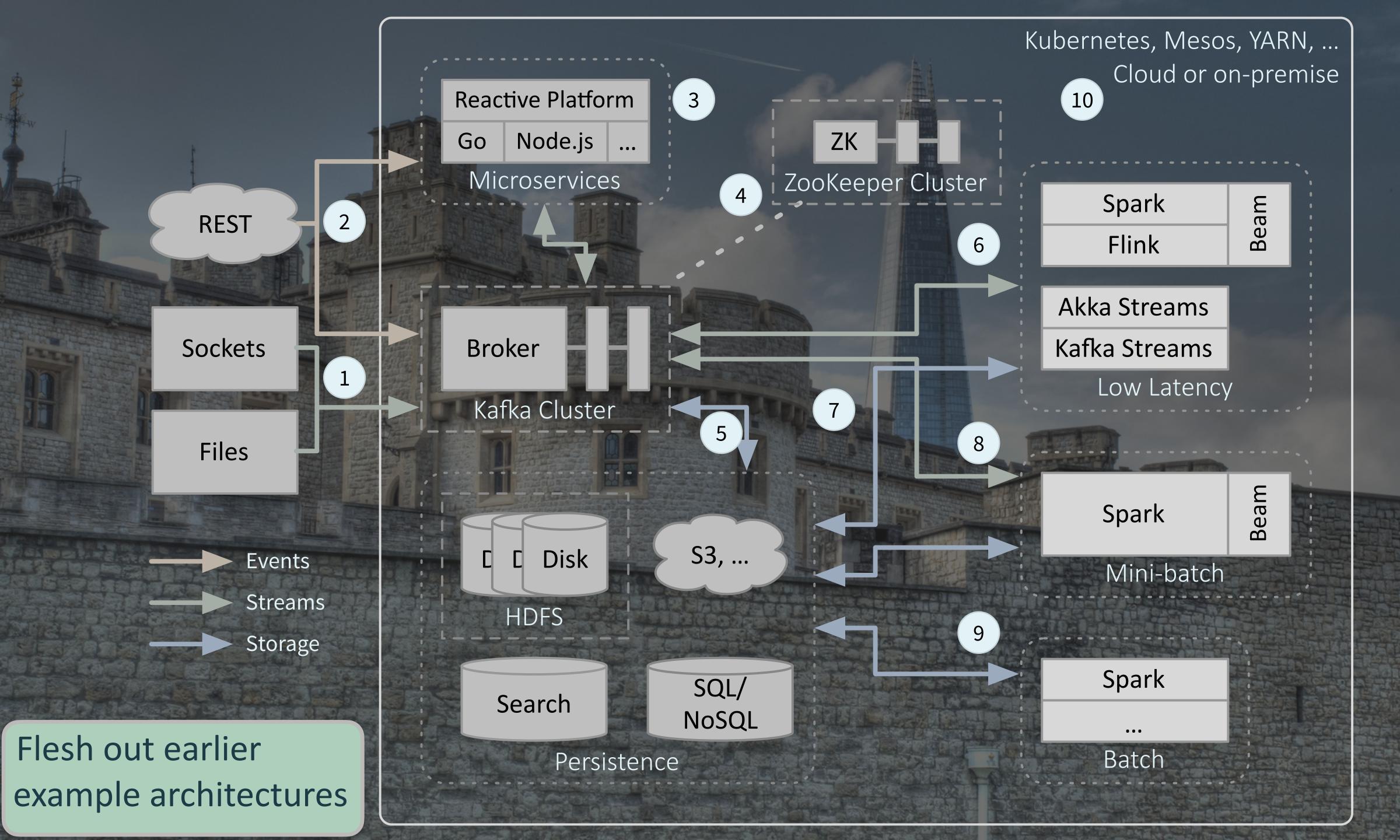
Name Node

Node Manager Data Node

Worker #



New Fast Data Architecture



Kubernetes and Mesos provide the job and resource management needed for dynamic, heterogenous work loads

Kafka Cluster

Disk

Broker

REST

Sockets

Files

Events

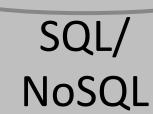
Streams

Storage

2

Search

HDFS



5

S3, ...

Persistence

While YARN can be used, it's not flexible enough for today's dynamic workloads

9

eper Cluster

7

10

Deploy in the cloud or on premise

Kubernetes, Mesos, YARN, ...

ms

ms

Spark

Spark

...

Batch

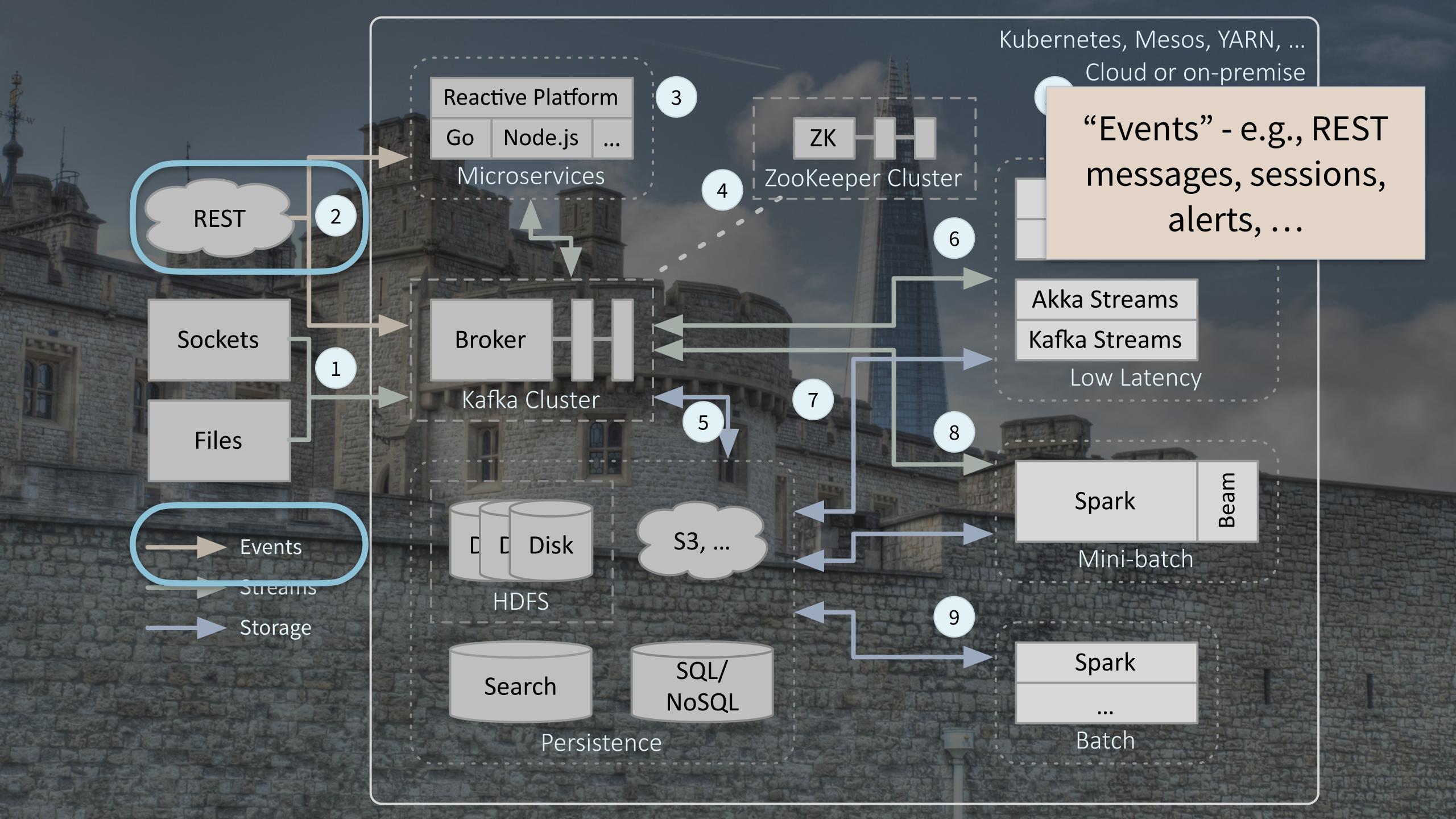
Mini-batch

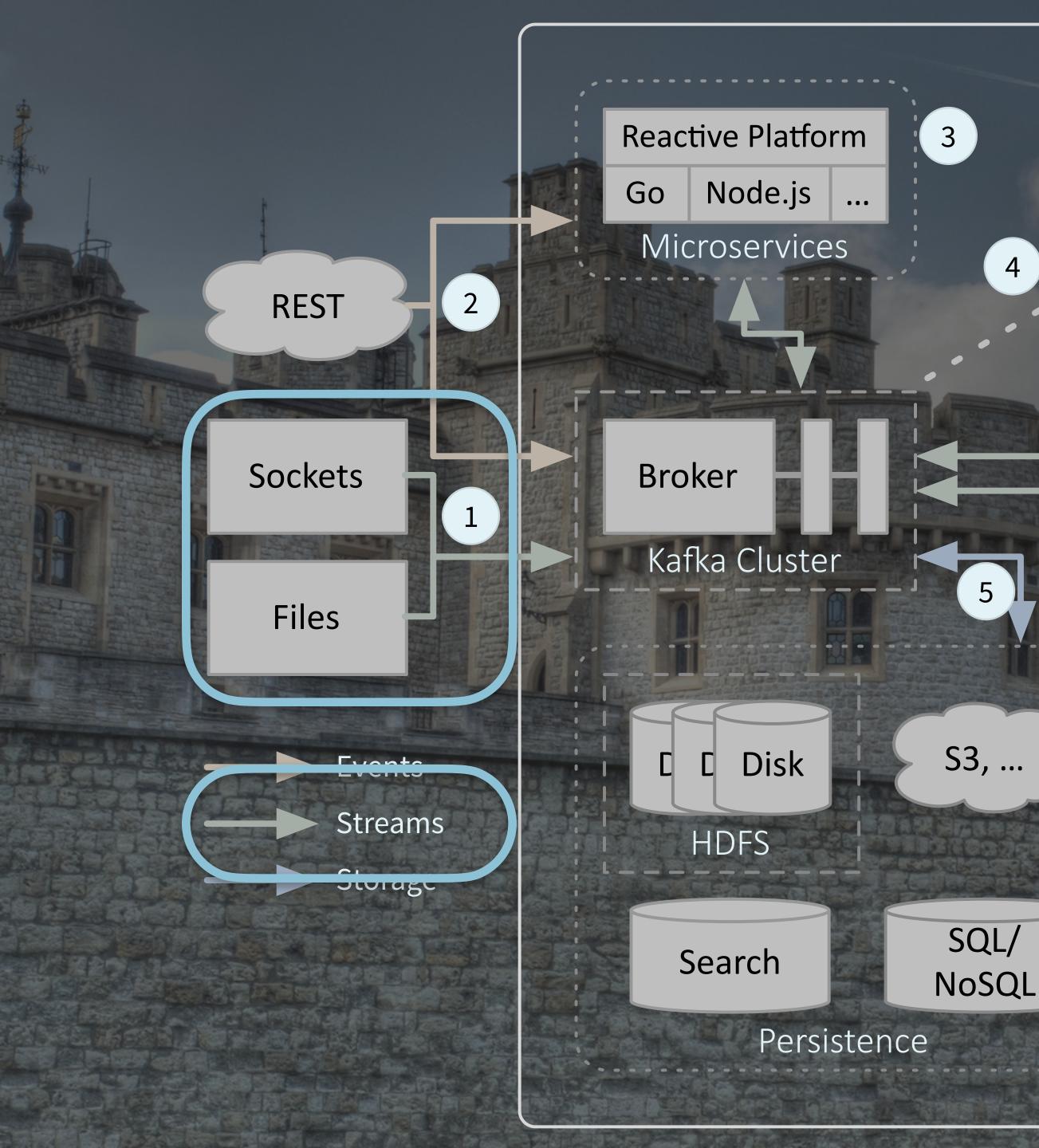
ency

eam

m

Cloud or on-premise





Kubernetes, Mesos, YARN, ... Cloud or on-premise

ZK

7

ZooKeeper Cluster

6

9

Α

Ka

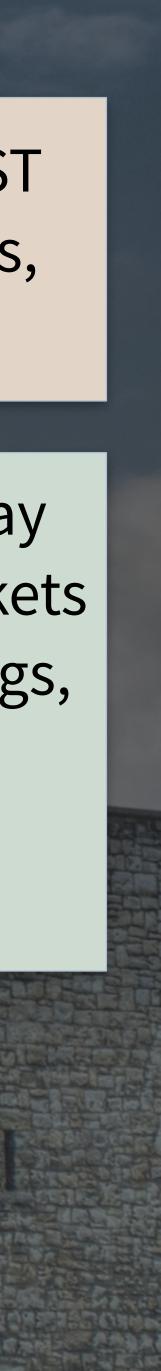
"Events" - e.g., REST
messages, sessions,
alerts, ...

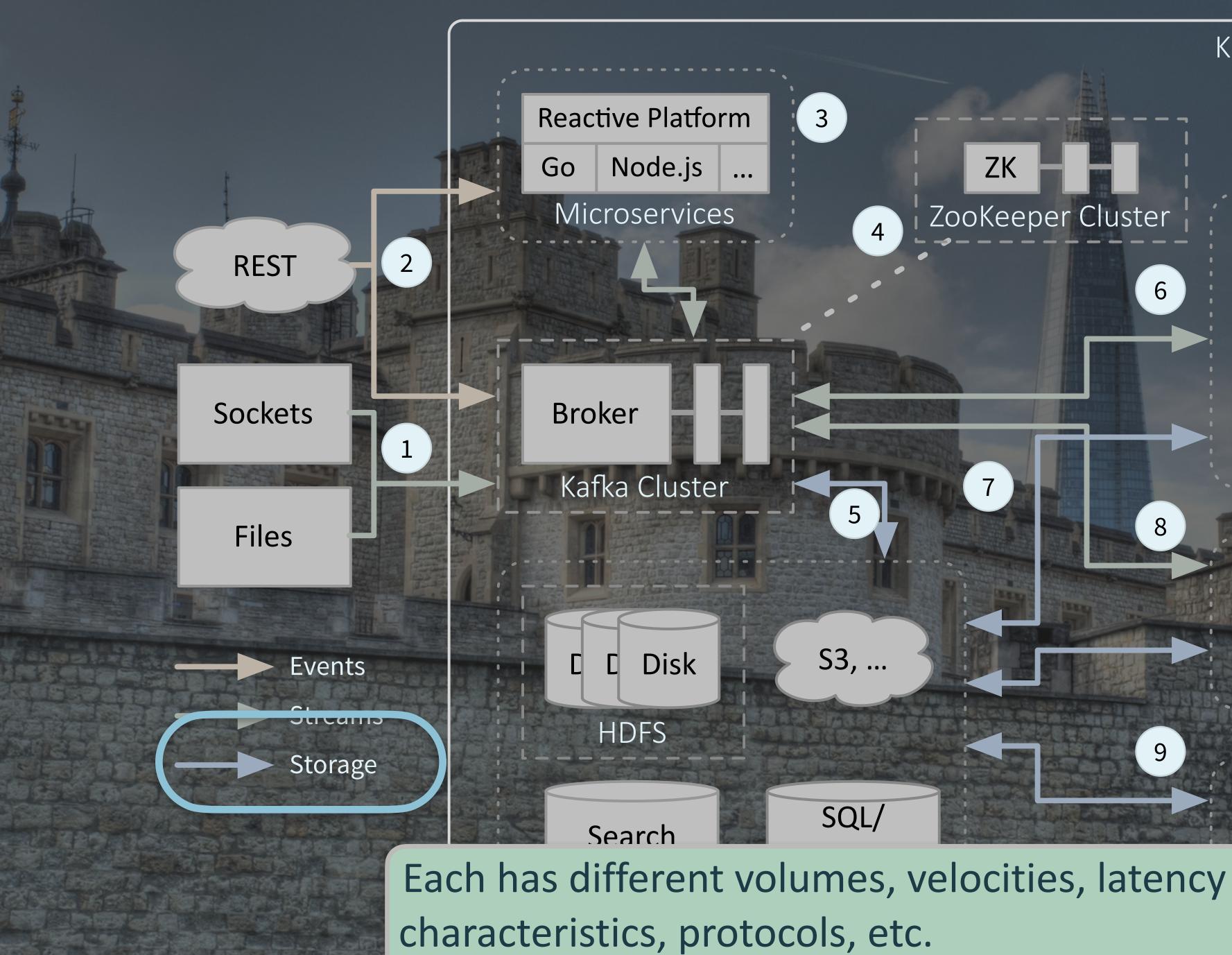
"Streams" - one-way data flows, e.g., sockets or files, including logs, metrics, other telemetry, click streams, etc.

Spark

...

Batch





Kubernetes, Mesos, YARN, ... Cloud or on-premise

> "Events" - e.g., REST messages, sessions, alerts, ...

"Streams" - one-way data flows, e.g., sockets or files, including logs, metrics, other telemetry, click streams, etc.

"Storage" - JDBC, async reads/writes to storage

Batch

ZK

7

4

5

ZooKeeper Cluster

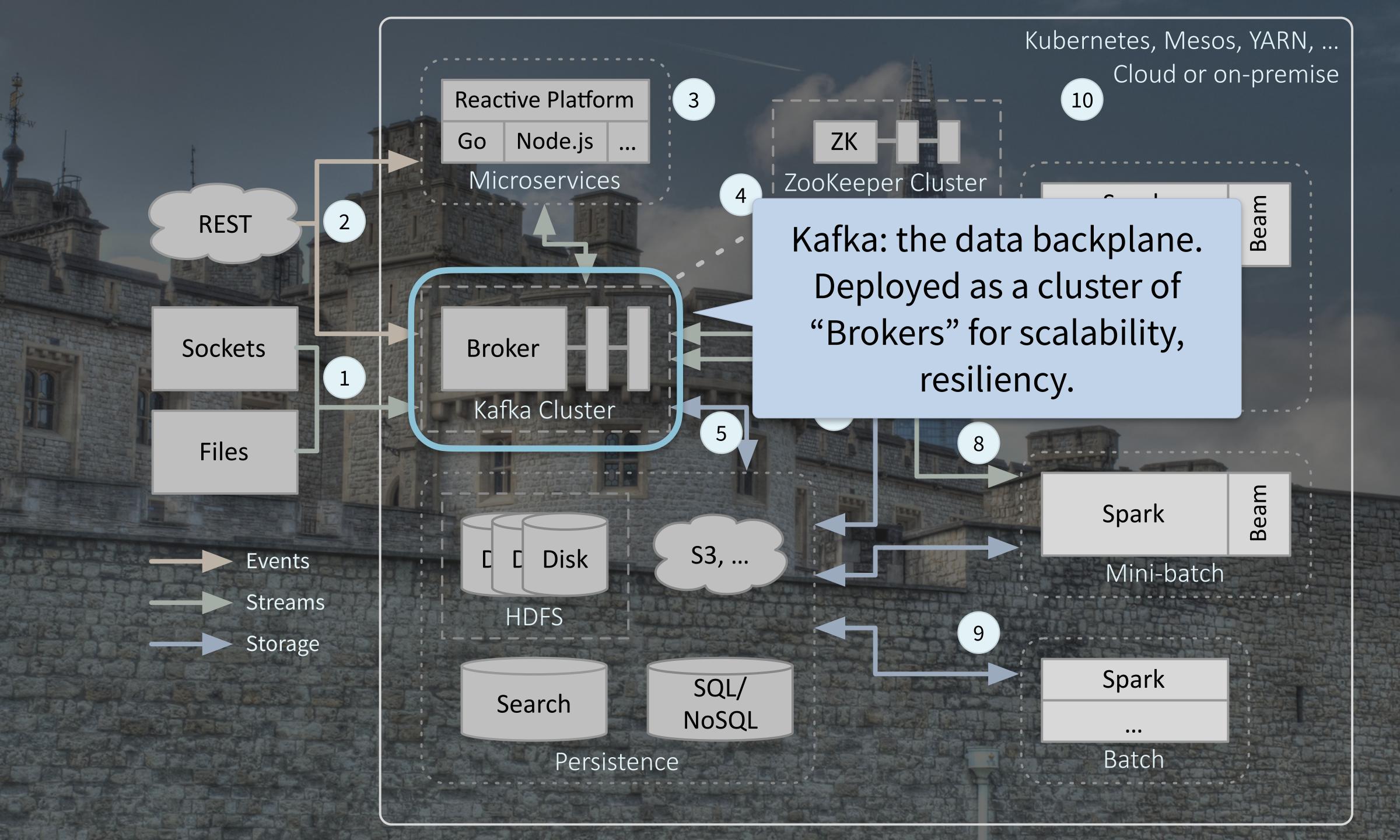
6

9

A

Ka

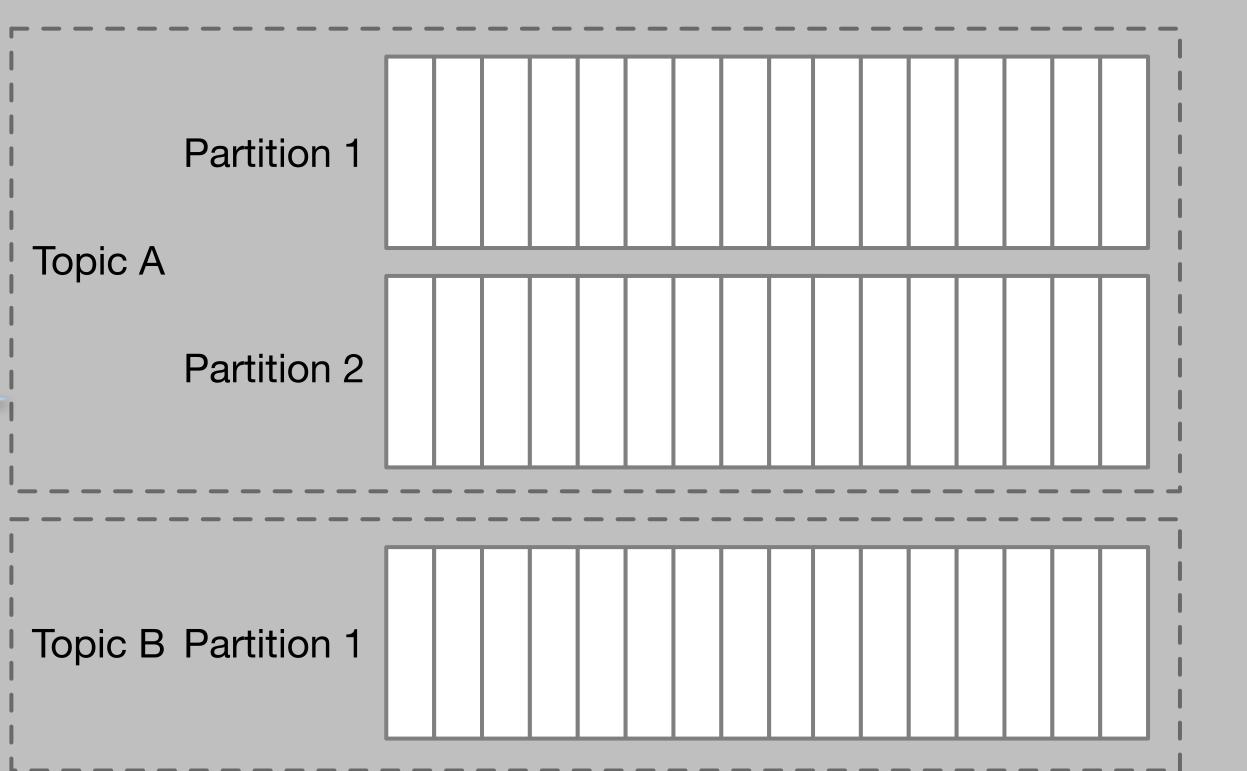




Organized into topics

Topics are partitioned, replicated, and distributed Kafka

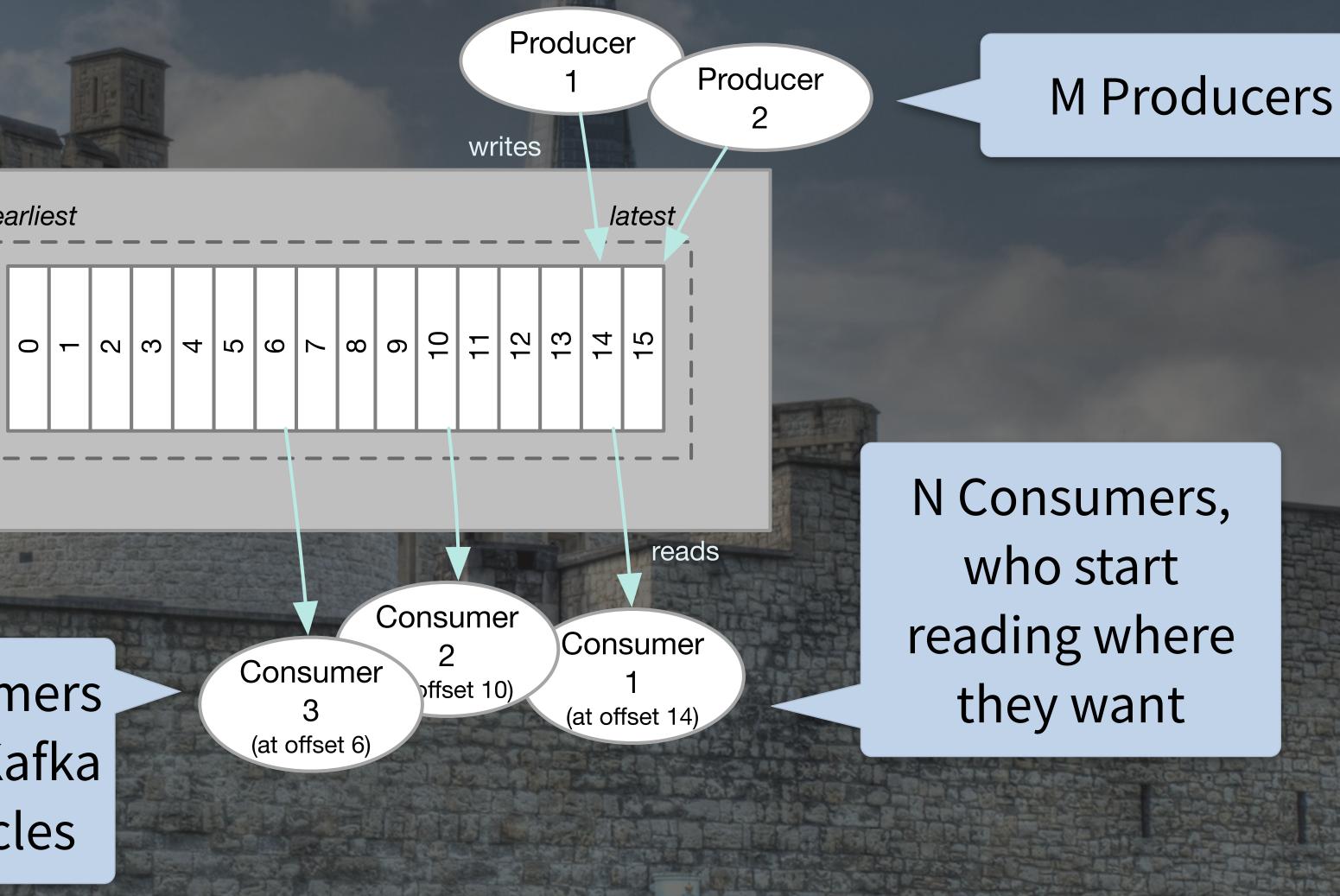
Why Kafka?



Logs, *not* queues!

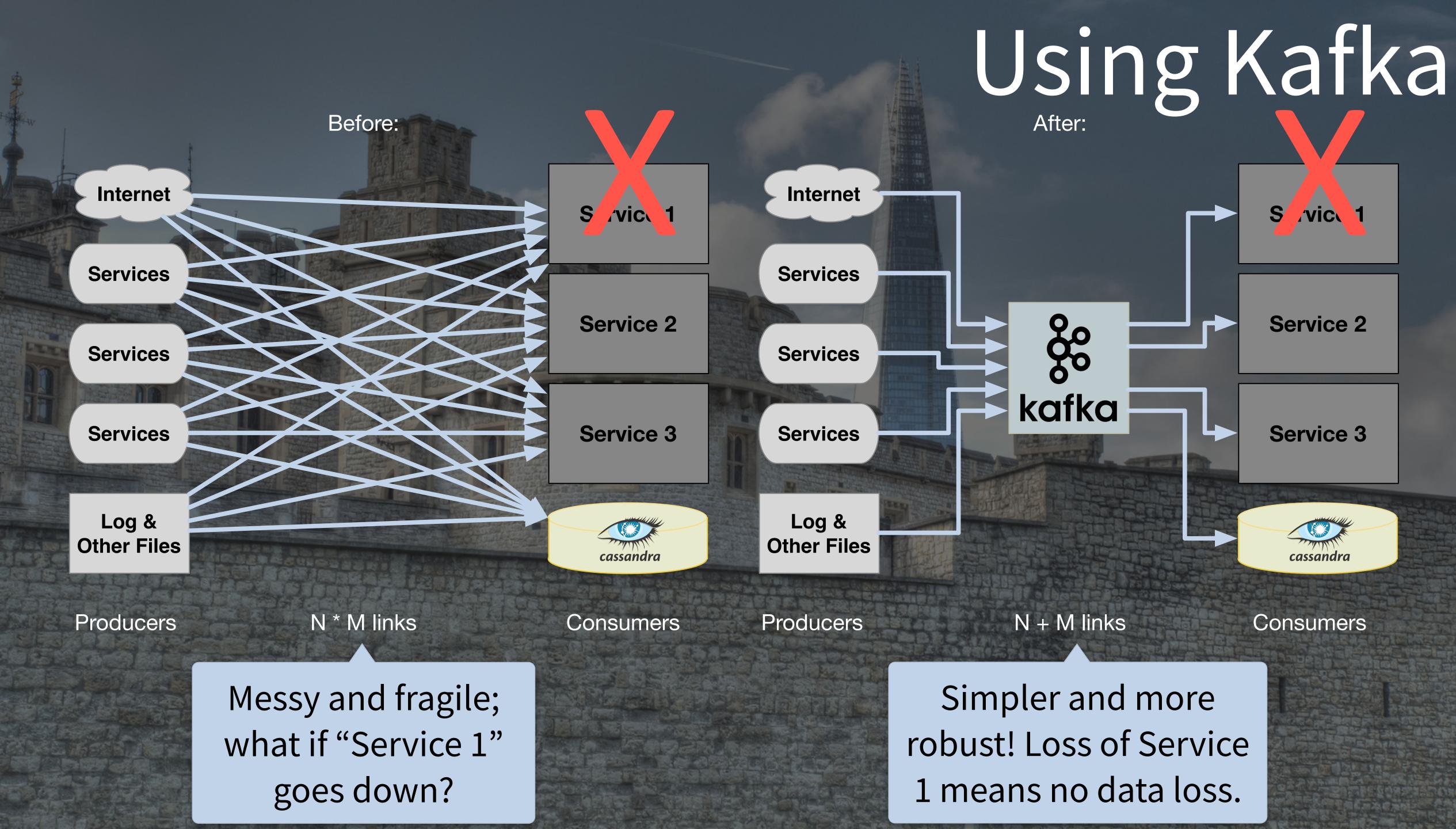
earliest

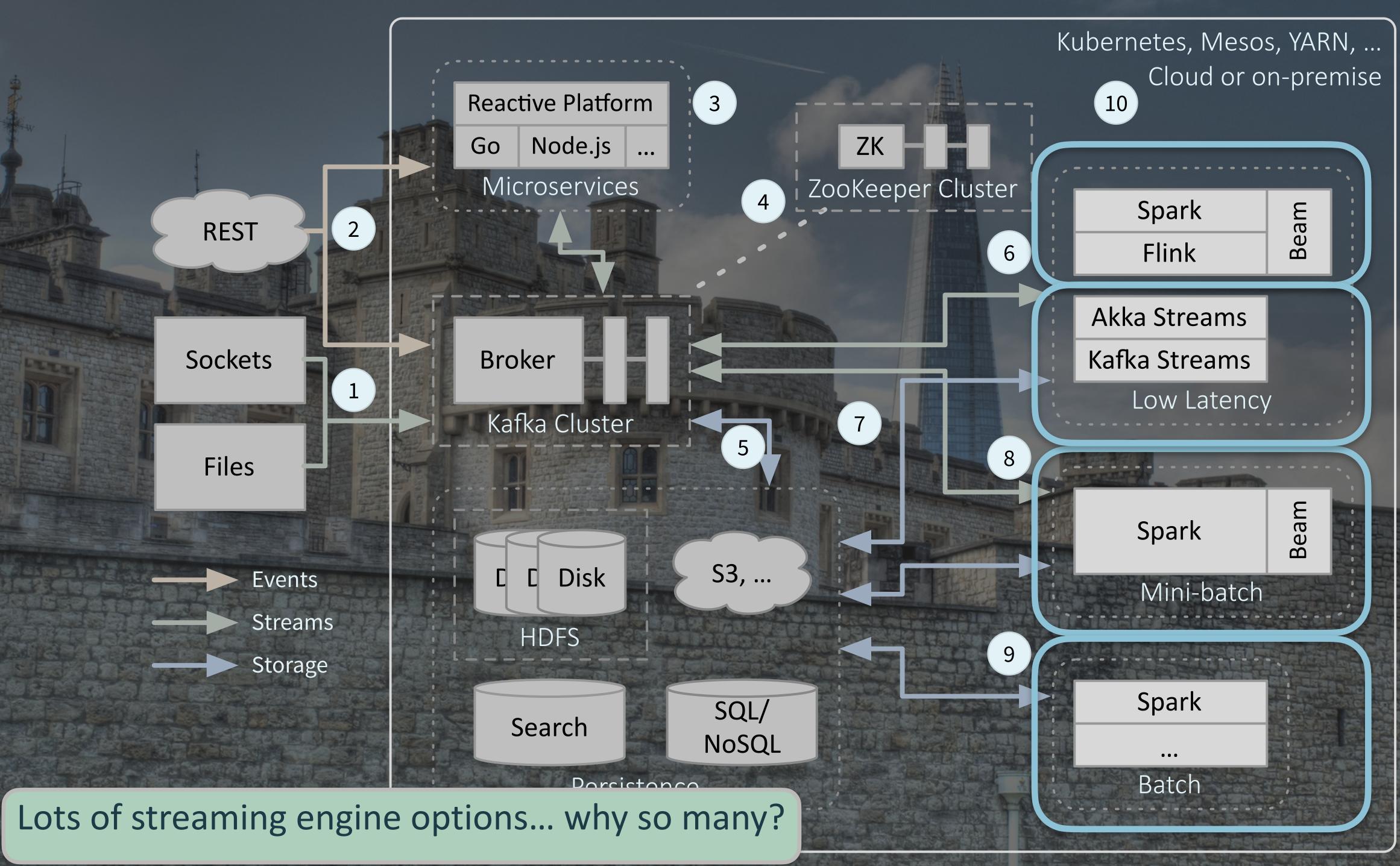
Topic B Partition 1



Unlike queues, consumers don't delete entries; Kafka manages their lifecycles

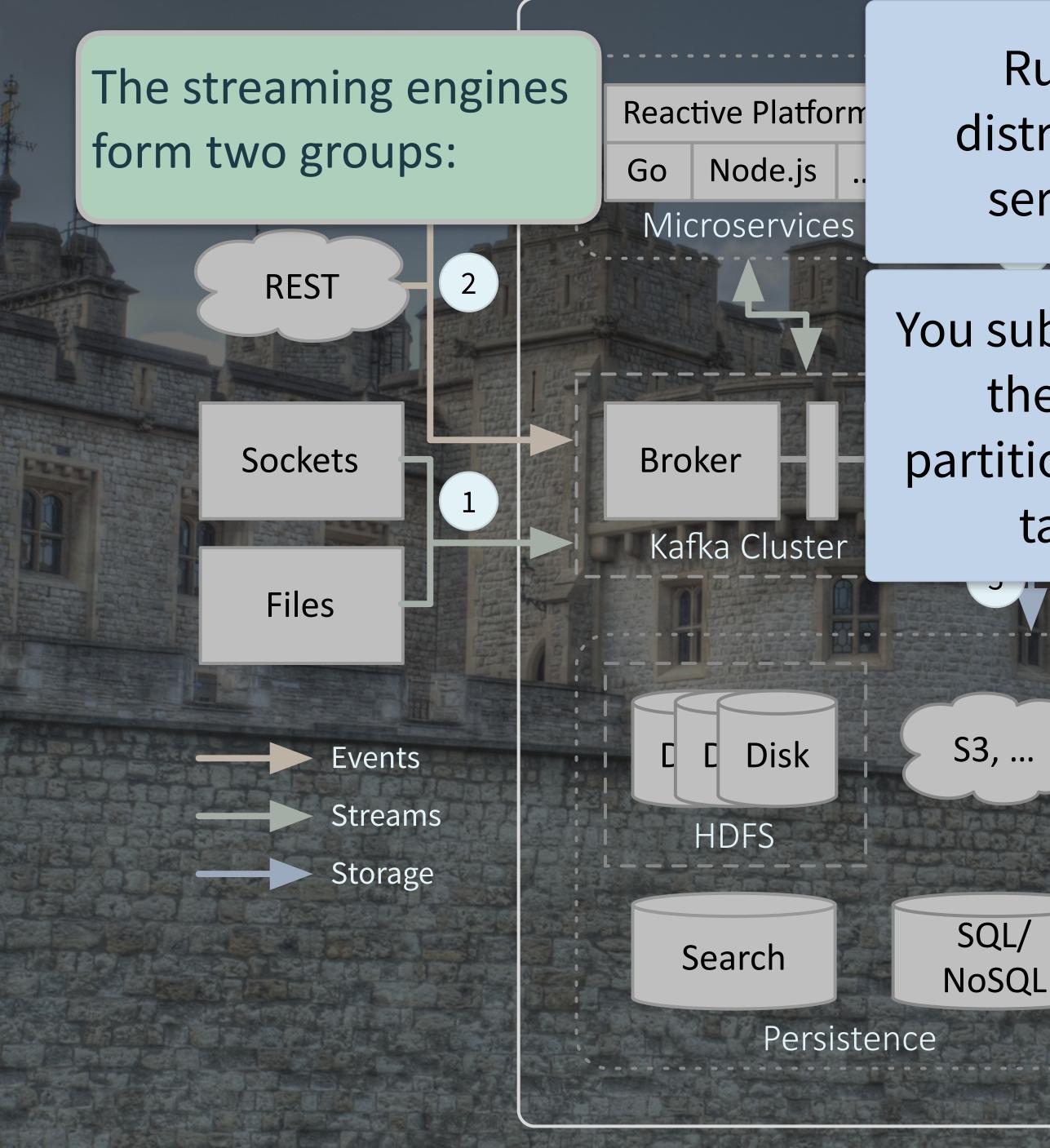
Why Kafka?





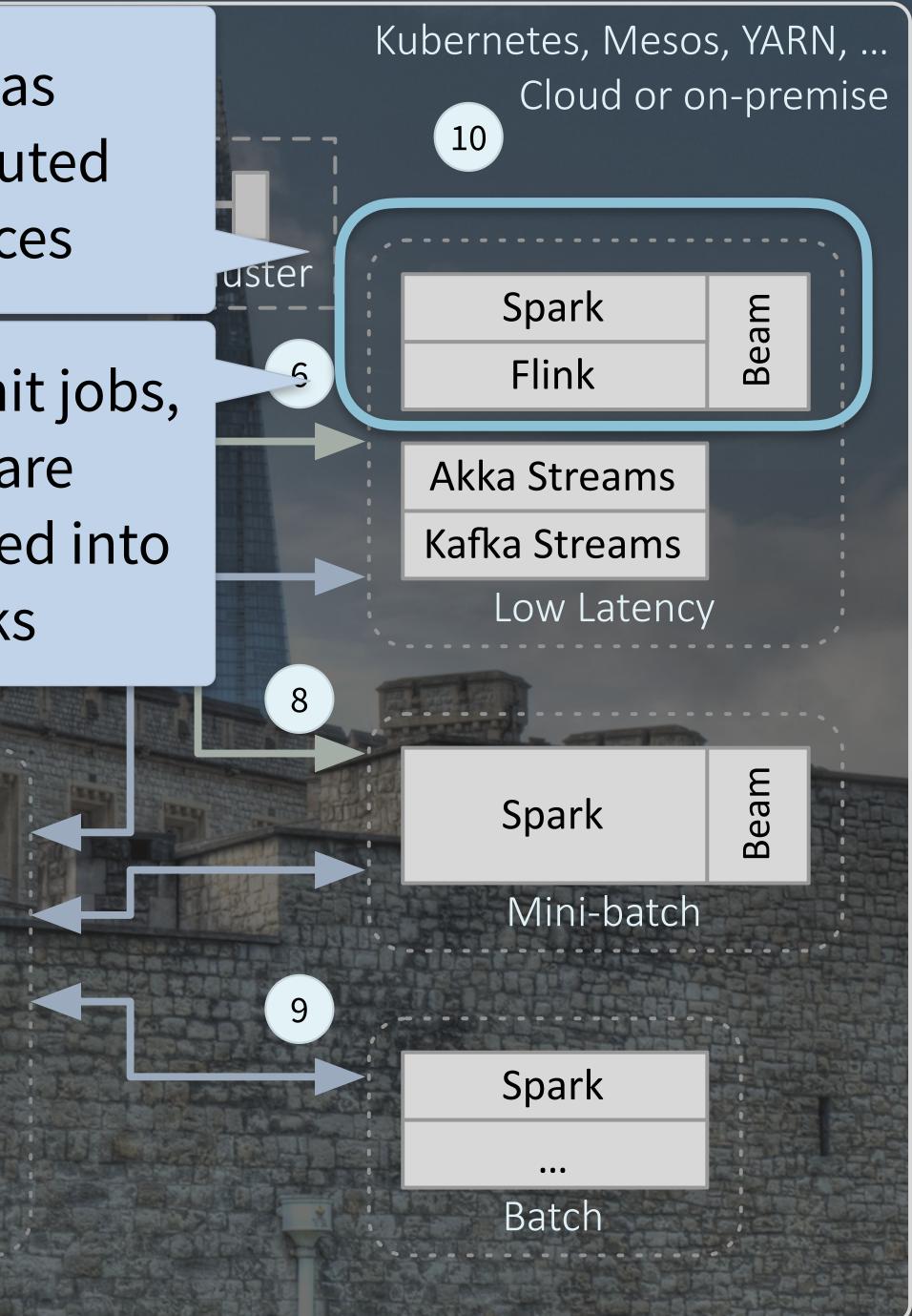
Latency: how low? • Volume per unit time: how high? Data processing: which kinds? Build, deploy, and manage services: what are your preferences?

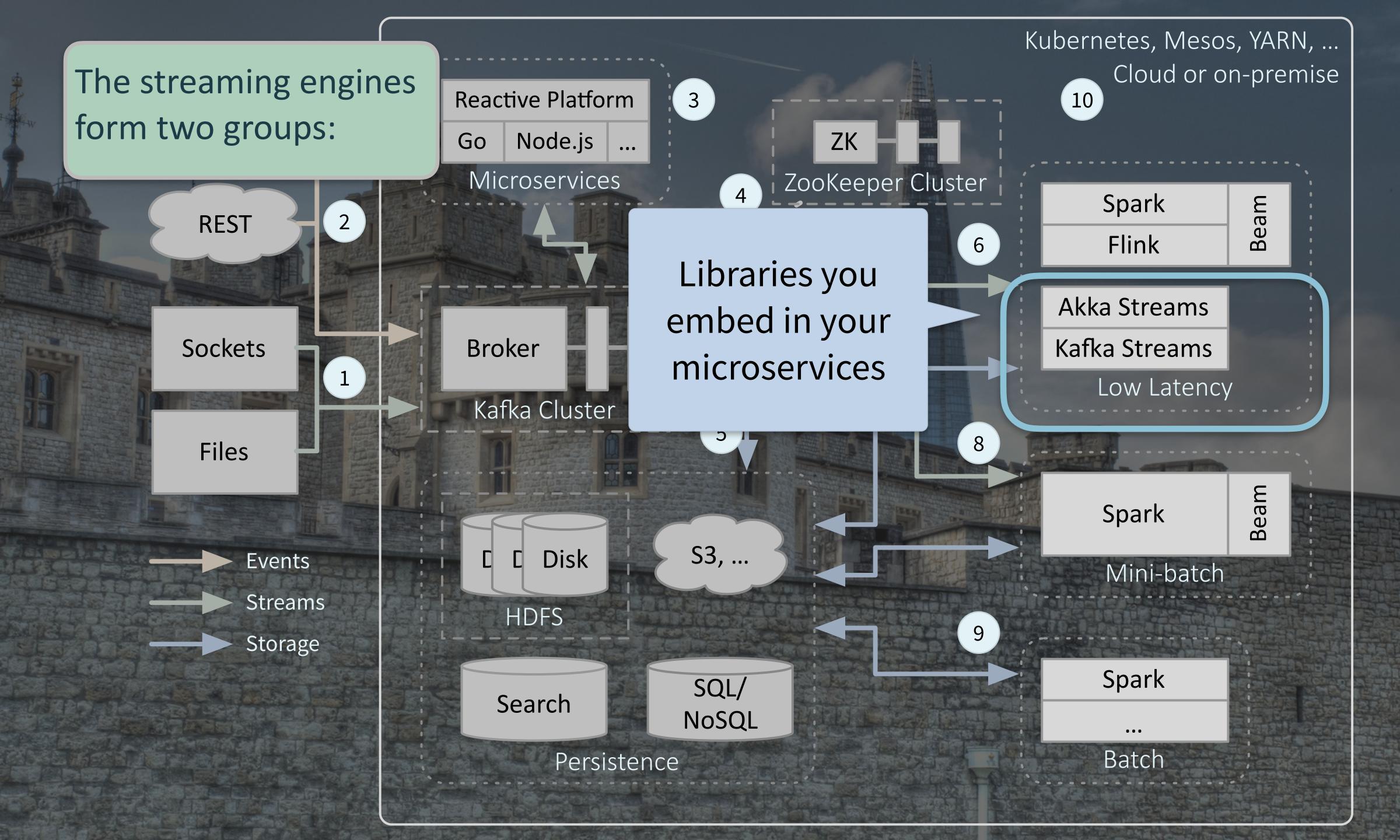
You need choices

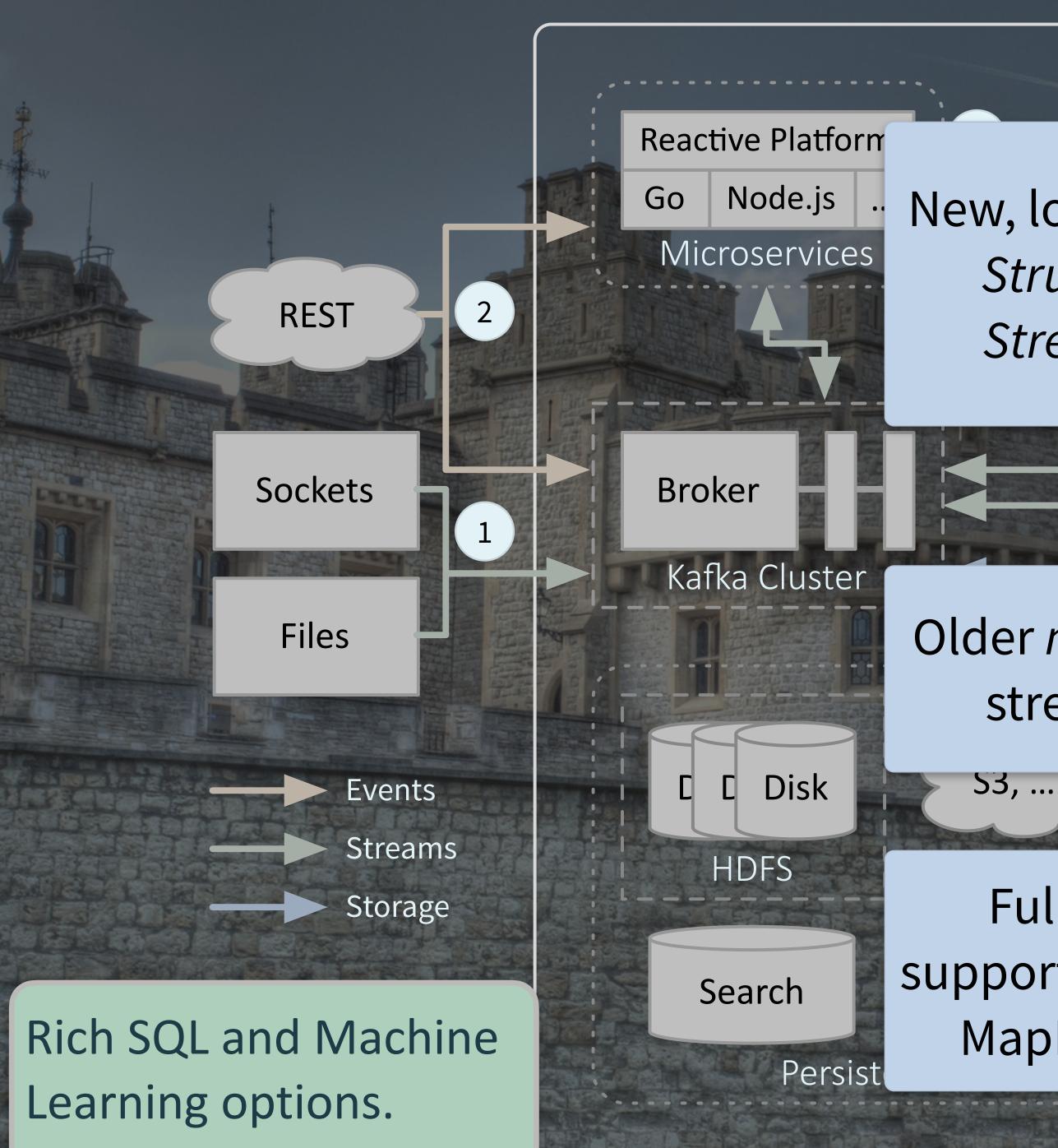


Run as distributed services

You submit jobs, they are partitioned into tasks



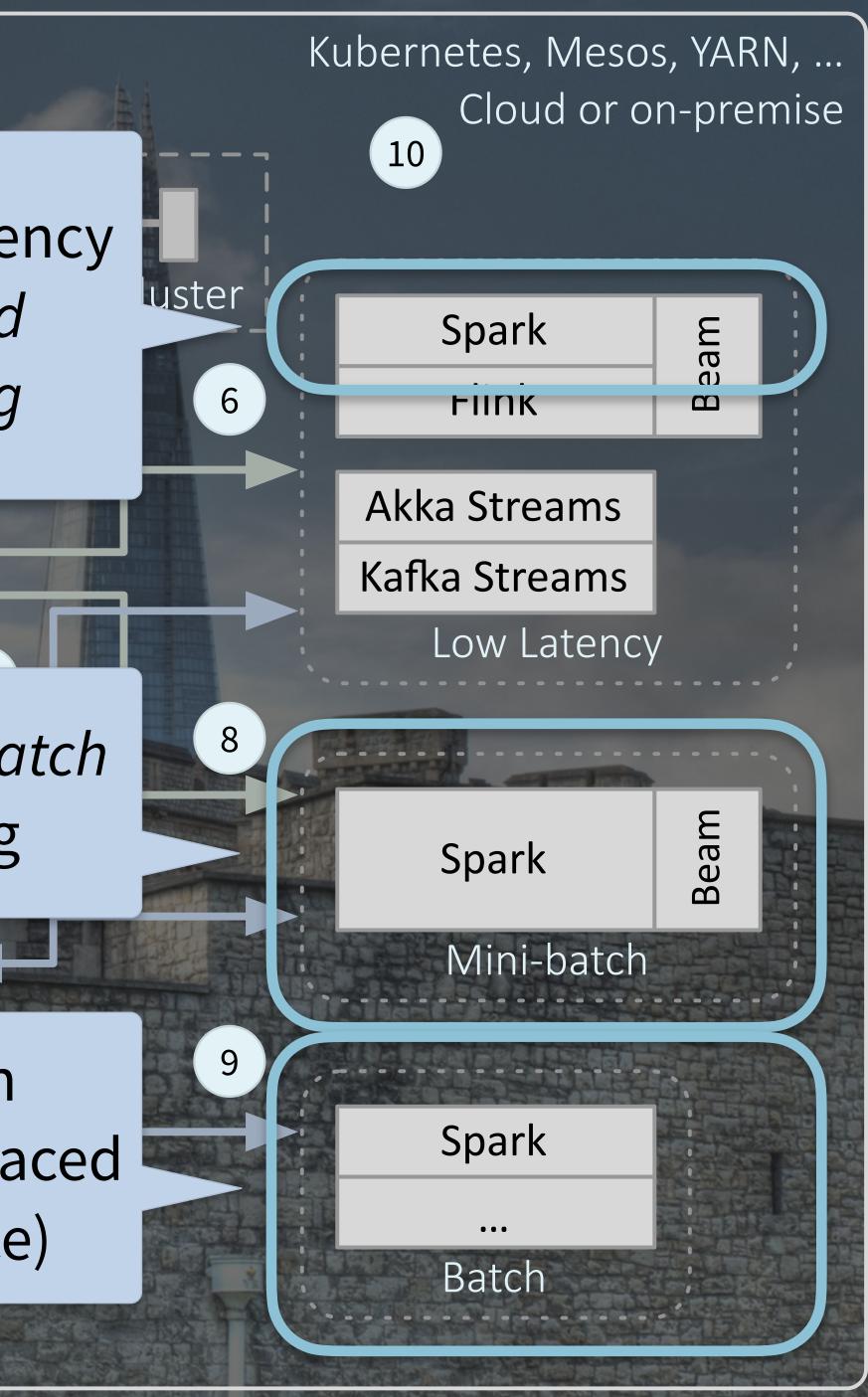


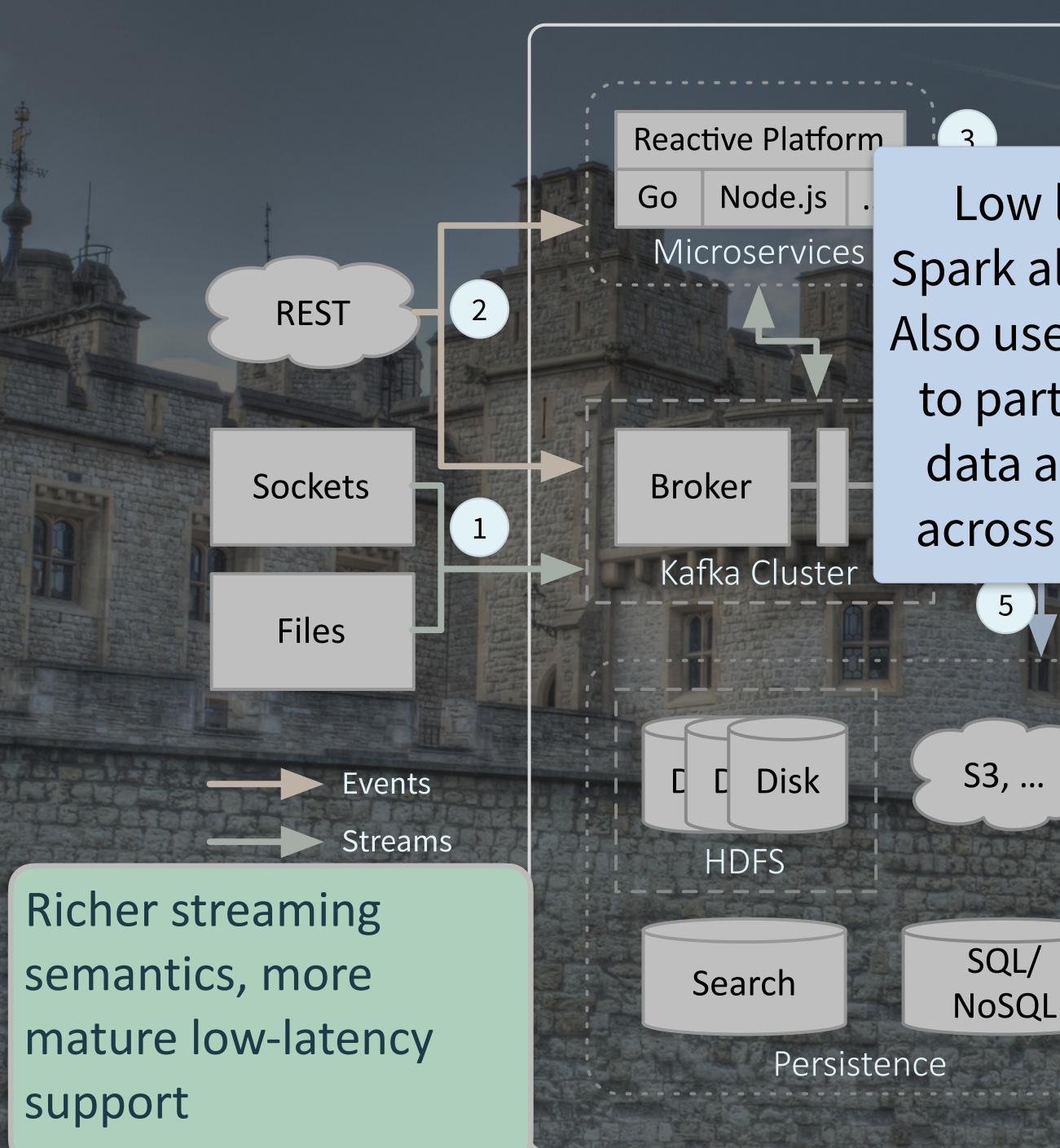


New, low-latency Structured Streaming

Older *mini-batch* streaming

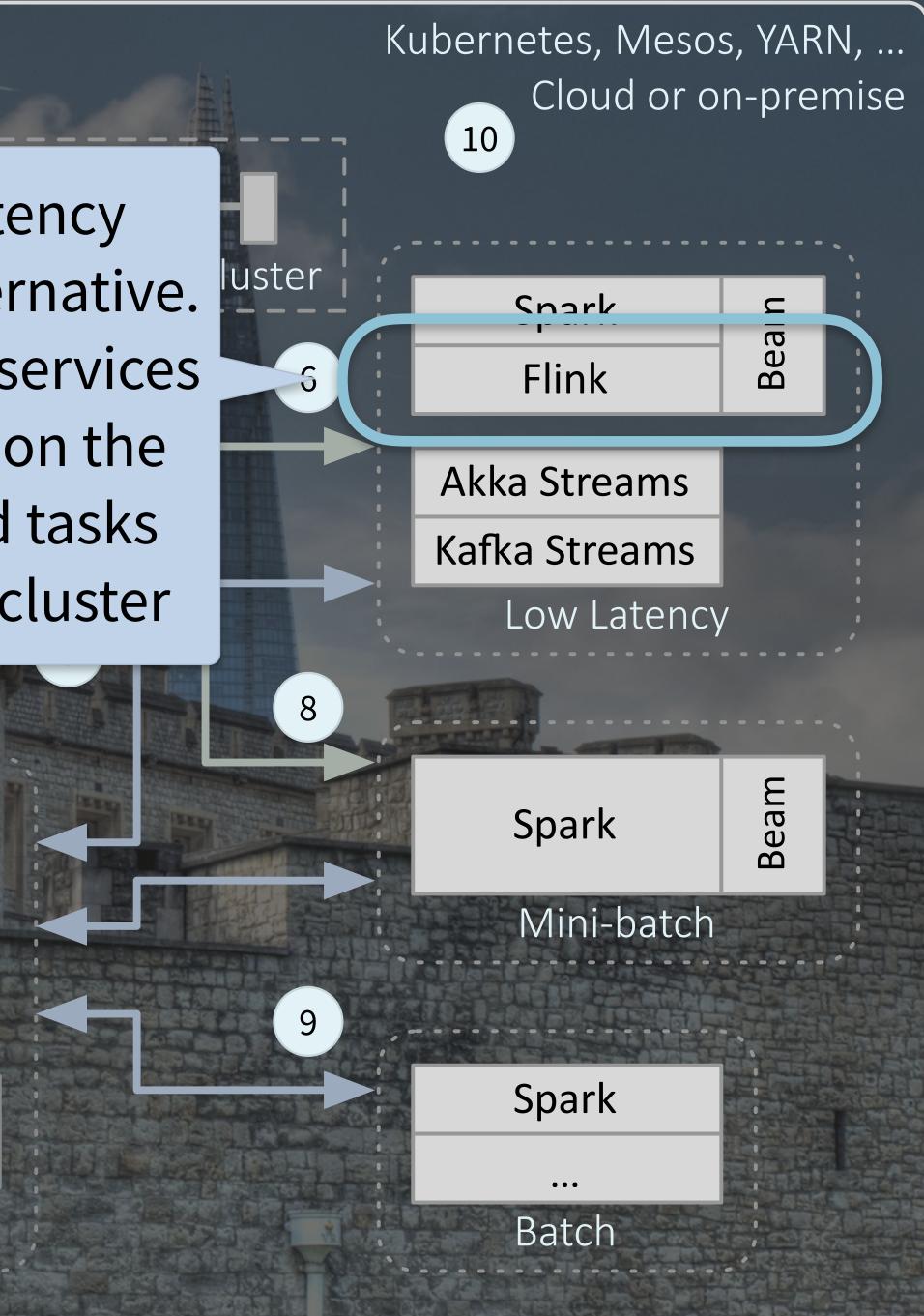
Full batch support (replaced MapReduce)

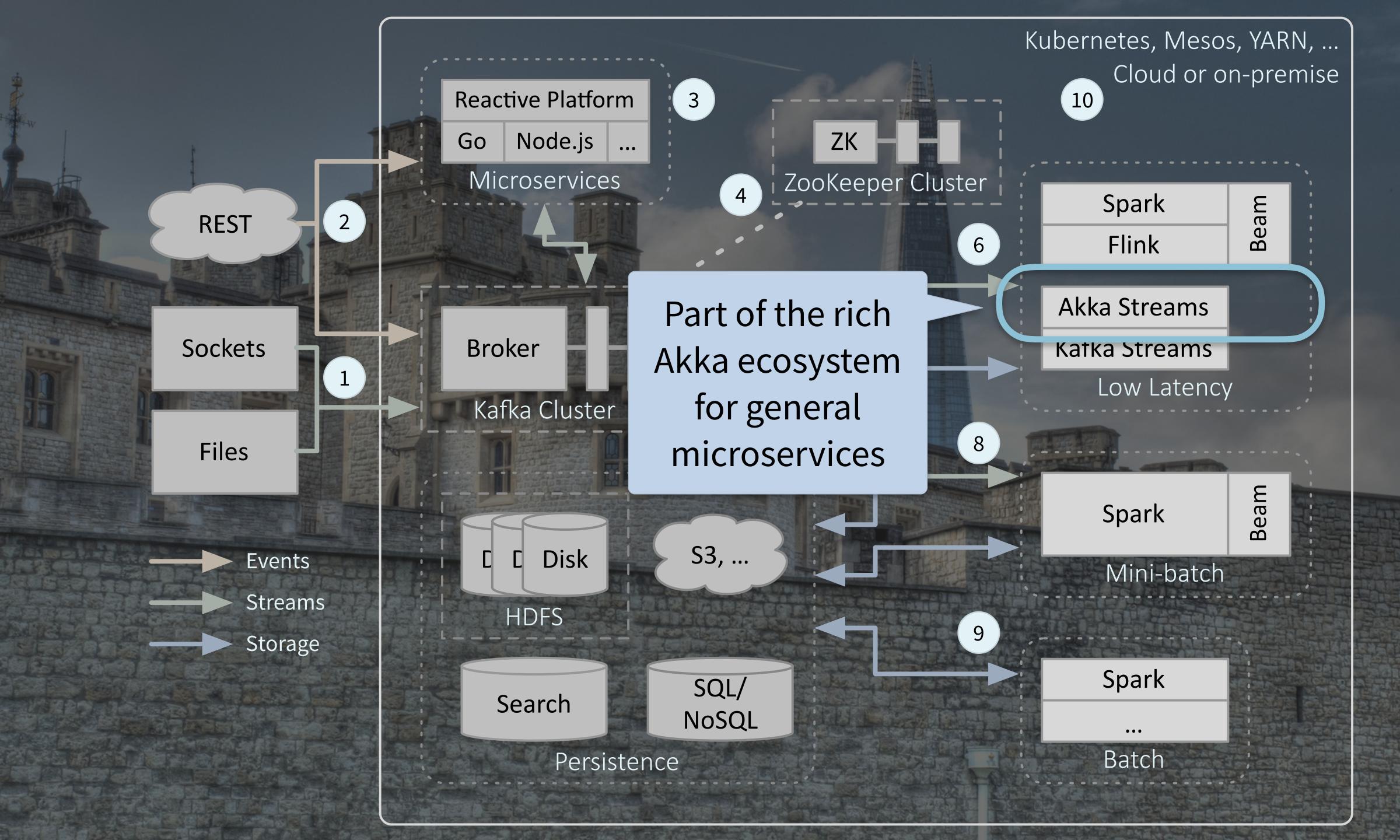


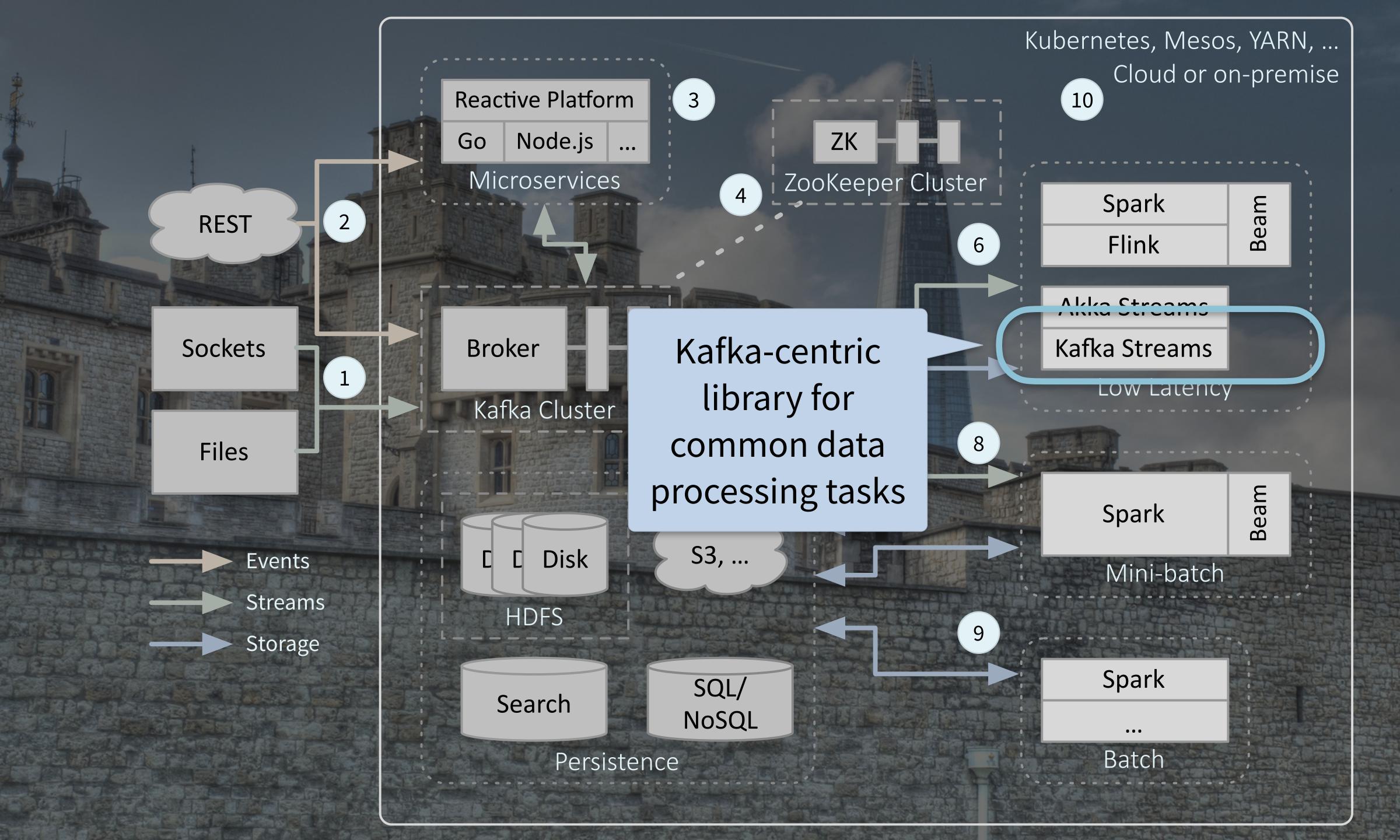


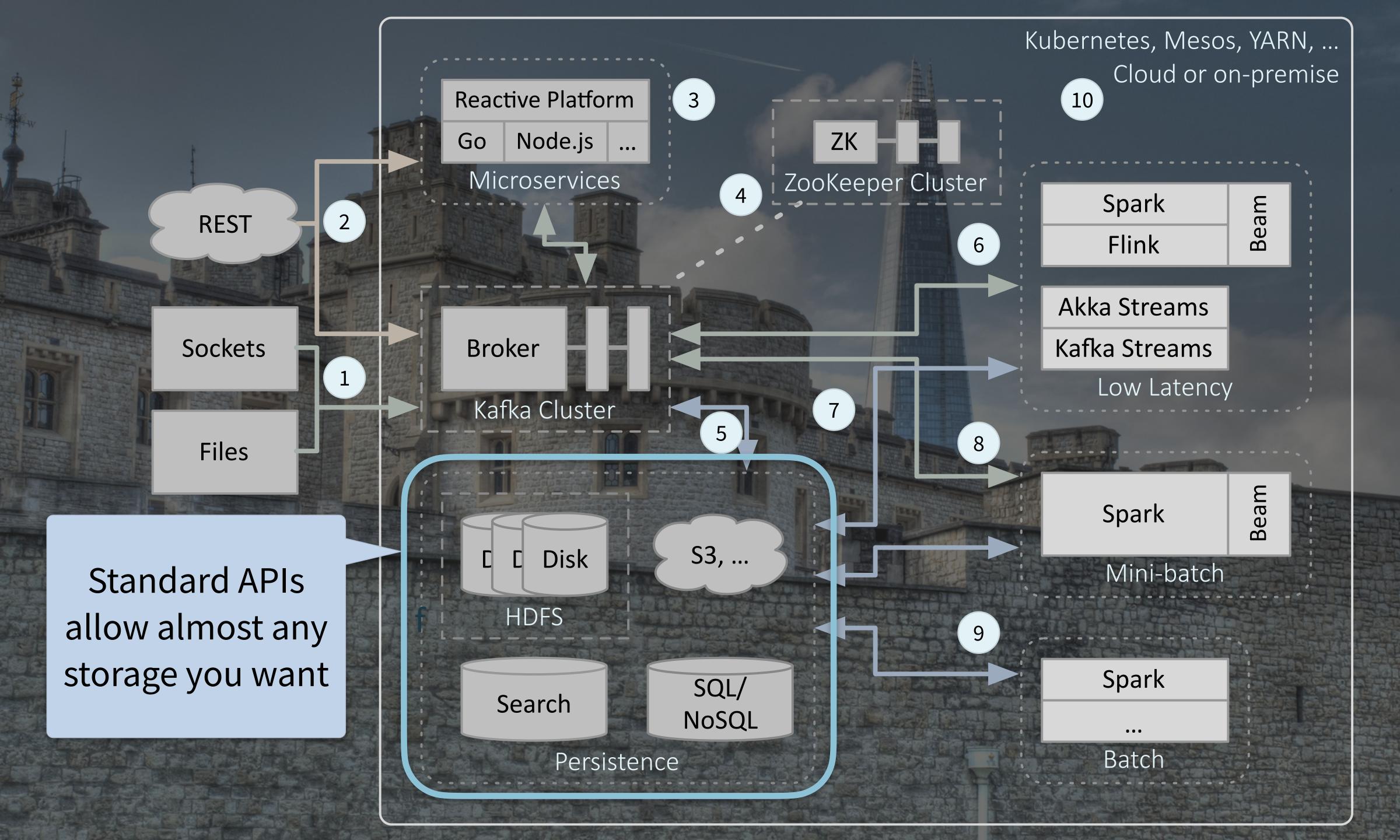
Low latency Spark alternative. Also uses services to partition the data and tasks across a cluster

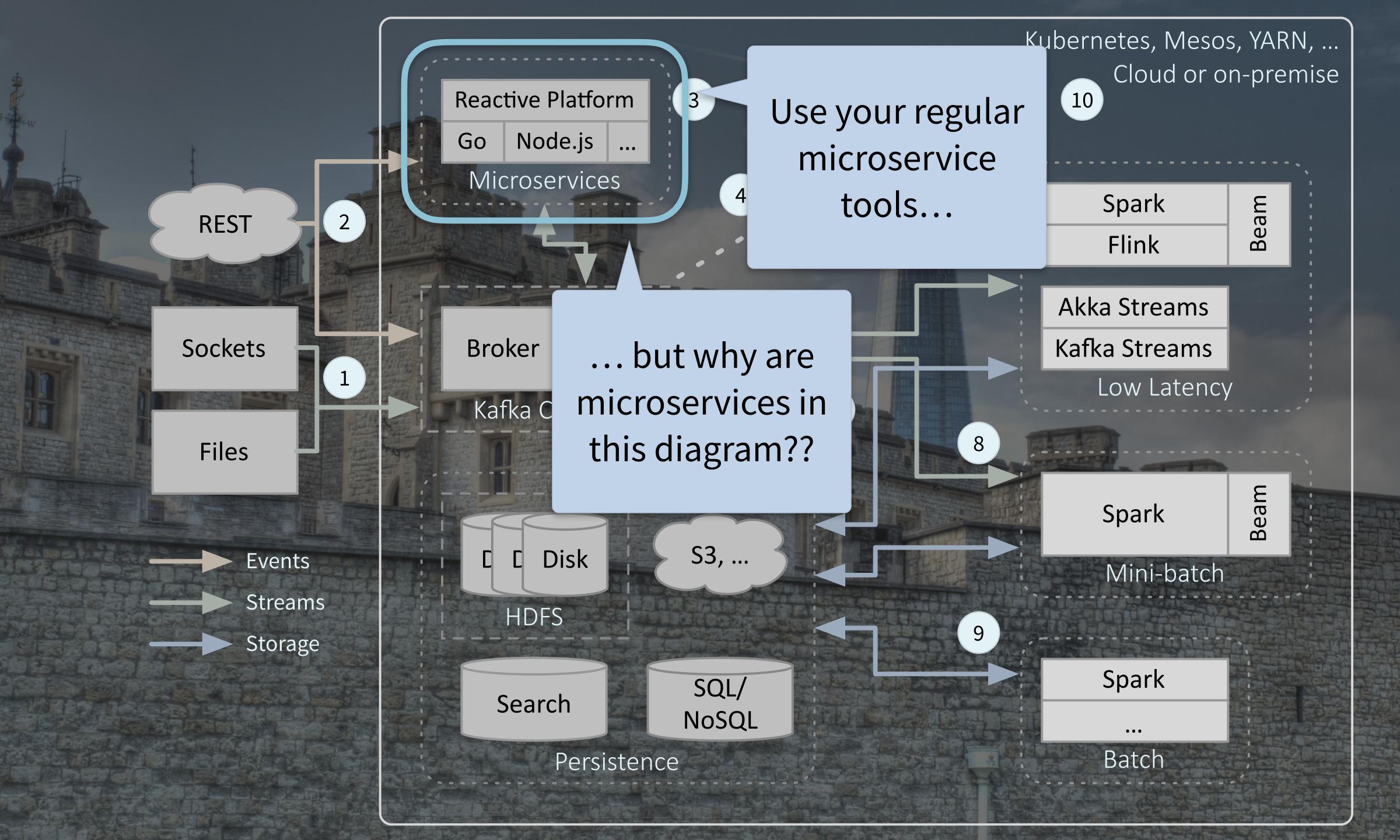
5











1. The trend is to run everything in big clusters using Kubernetes or Mesos In the cloud or on-premise

2. If streaming gives you information faster...

other services!

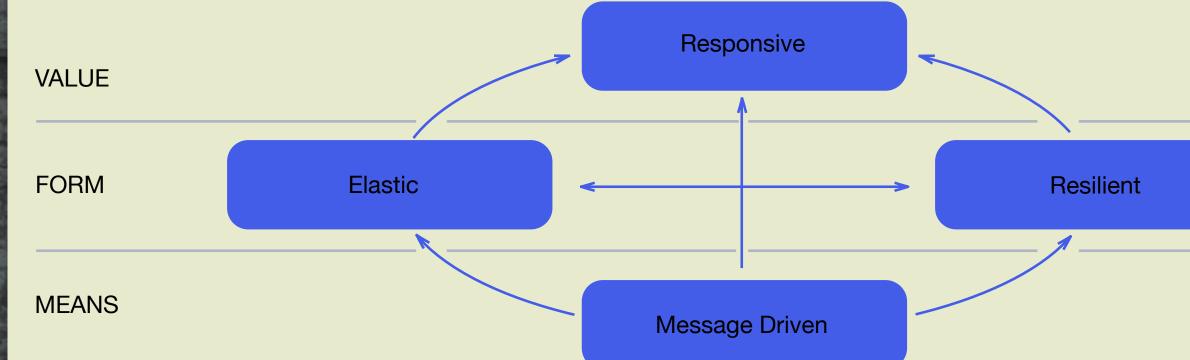
... you'll want quick access to it in your

streaming services must be more: Scalable

Resilient

• Flexible

3. Streaming raises the bar on data services Compared to batch services, long-running



https://www.reactivemanifesto.org/

4. This leads to our last major point...

Organizational Impact

THE REAL AND A PARTY

Data engineers have to become good at highly-available microservices Microservice engineers have to become good at data

... and Data scientists have to understand production issues

Organizational Impact

Services

The Past

Big Data

Some overlap in concerns, architecture

The Present

Microservices & Fast Data

Much more overlap

Why? Since streams process data incrementally, there is less need for large-scale tools like Spark, Flink

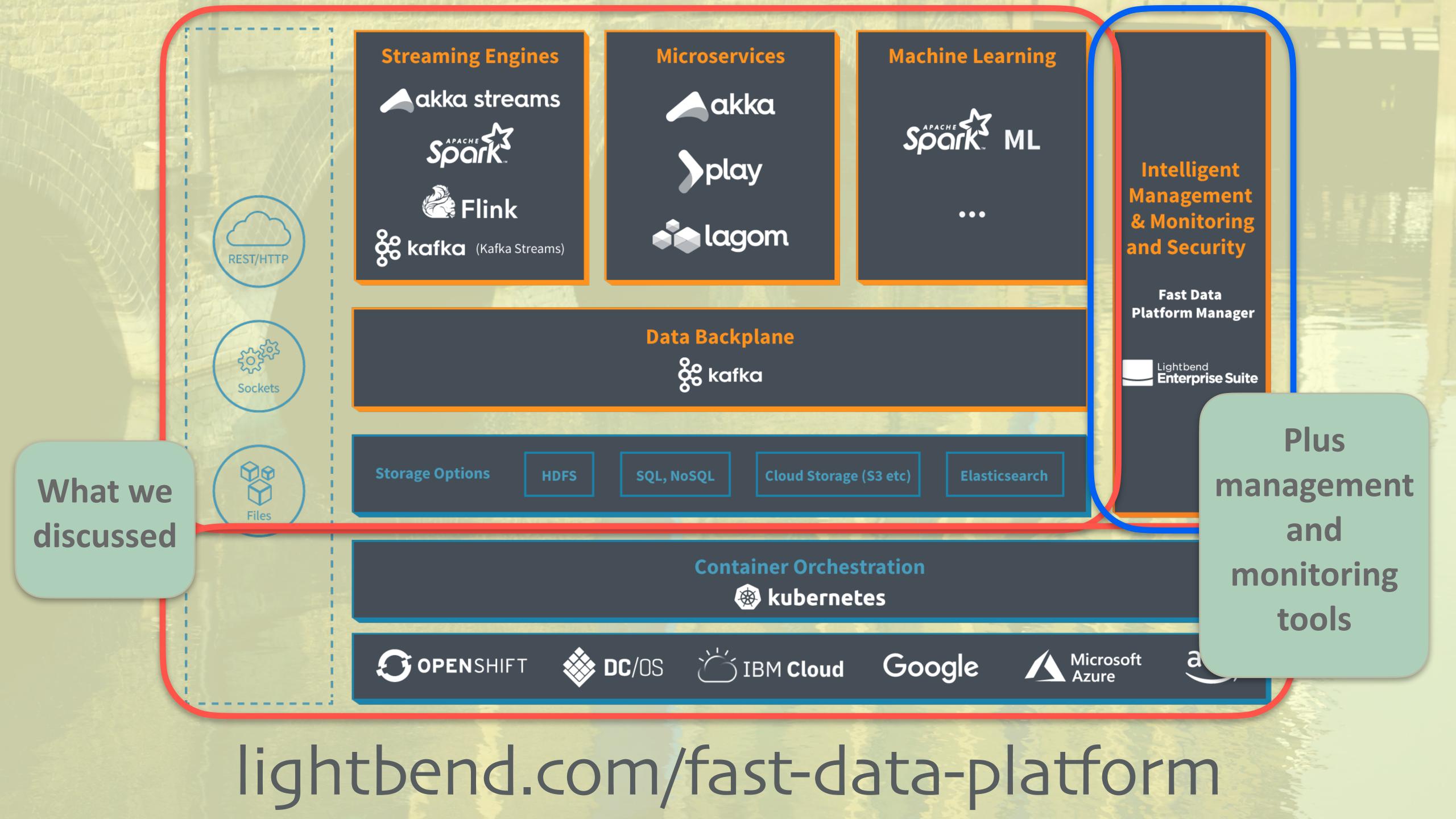
... and using
microservices for
everything simplifies
development,
deployment, and
operations

The Future?

Microservices for Fast Data

Much more microservice focused?

<u>Ignibenc</u> Fast Data Platform lightbend.com/fast-data-platform



lightbend.com/fast-data-platform

Dean Wampler, Ph.D. dean@lightbend.com @deanwampler polyglotprogramming.com/talks

COMPENS.

an anter a man an an an

NAME AND ADDRESS OF TAXABLE

IN REAL PROPERTY AND INCOME.

Lightbend

