### Executive Briefing: What it takes to use machine learning in fast data pipelines

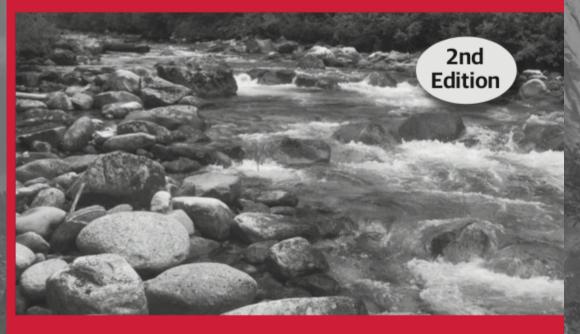
@deanwampler
dean@deanwampler.com
polyglotprogramming.com/talks

© Dean Wampler, 2007-2019

# Data Streaming, in General

go.lightbend.com/fast-dataarchitectures-for-streamingapplications-oreilly-2nd-edition





### **O'REILLY**®

### Fast Data Architectures for **Streaming Applications**

**Getting Answers Now from Data Sets That Never End** 

Dean Wampler, PhD



## What We'll Discuss

 Batch vs. streaming... and why Data science vs. data engineering Serving models in production CI/CD Systems for ML • Example architecture Updating Models in Production



## Batch vs. streaming... and why

TTA TATIA

# THITHE Codeanwampler

### Finance

- III

Energy

### ... and IoT

State of the art phone!

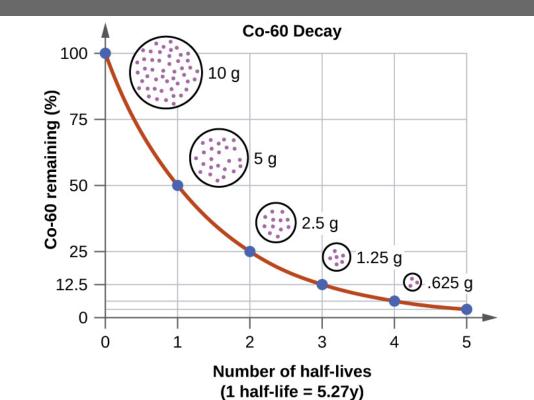


### Telecom

### Medical

Mobile @deanwampler

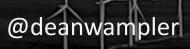
# Information value has a half life; it decays with time







## Data Science vs. Data Engineering



### upyter torch manet thean Tensor H<sub>2</sub>O.Oi R Spark MLID big I K Keras Caffe

Data Science toolbox

@deanwampler

### Software Engineering toolbox



### Data Scientists

- Comfortable with uncertainty
- Less process oriented
  Iterative, experimental

### Data Engineers

- Uncomfortable with uncertainty
- Process oriented

Scala 👙 Java

- Agile Manifesto
  - ... which does not mention data! https://derwen.ai/s/6fqt

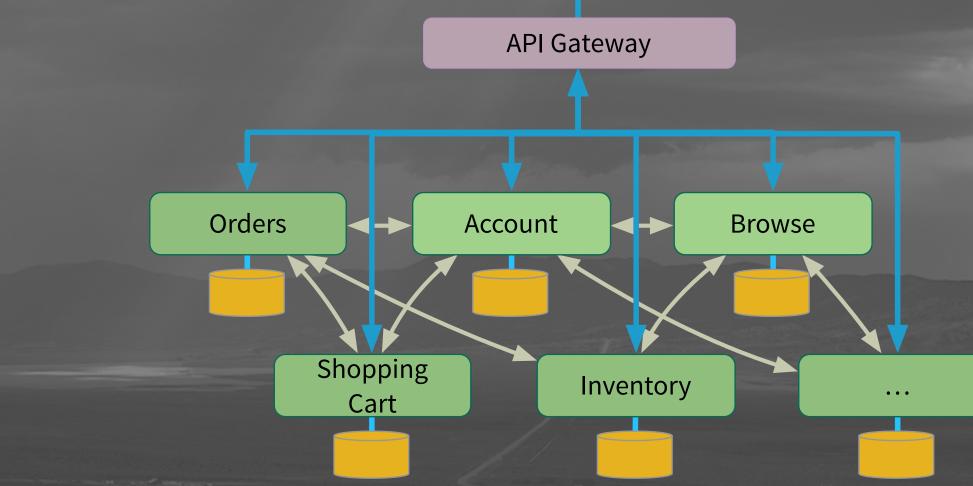


## Streaming Imposes New Requirements

If you run something long enough, all rare problems eventually happen!

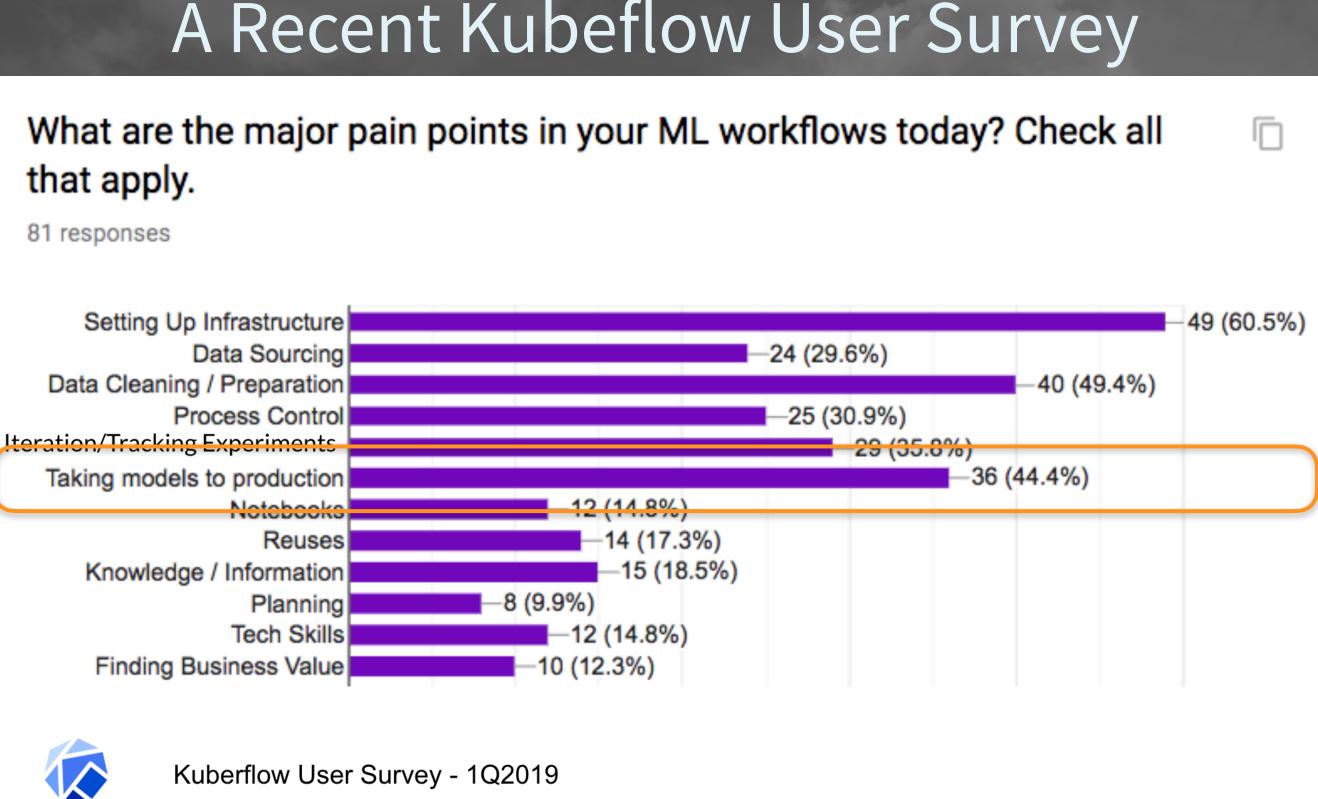
- Reliability fault and "surprise" tolerant
- Availability "always on"
- Low latency for some definition of "low"
- Scalability up and down
- Adaptability ideally without restarts

# In other words: Microservices



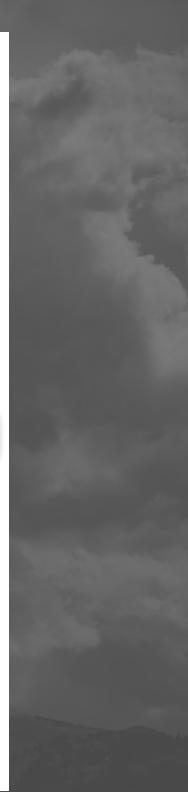
# Serving Models in Production

81 responses





From this <u>Kubeflow Overview</u>



## Lack of Tool/Process Integration

~60% worry about missed opportunities

 ~50% worry about loss of data team productivity

• ~45% worry about slow time-to-market

~40% worry about customer dissatisfaction

From a recent Lightbend survey

## Can You Answer this Question?

### • Why did the model reject that loan application?

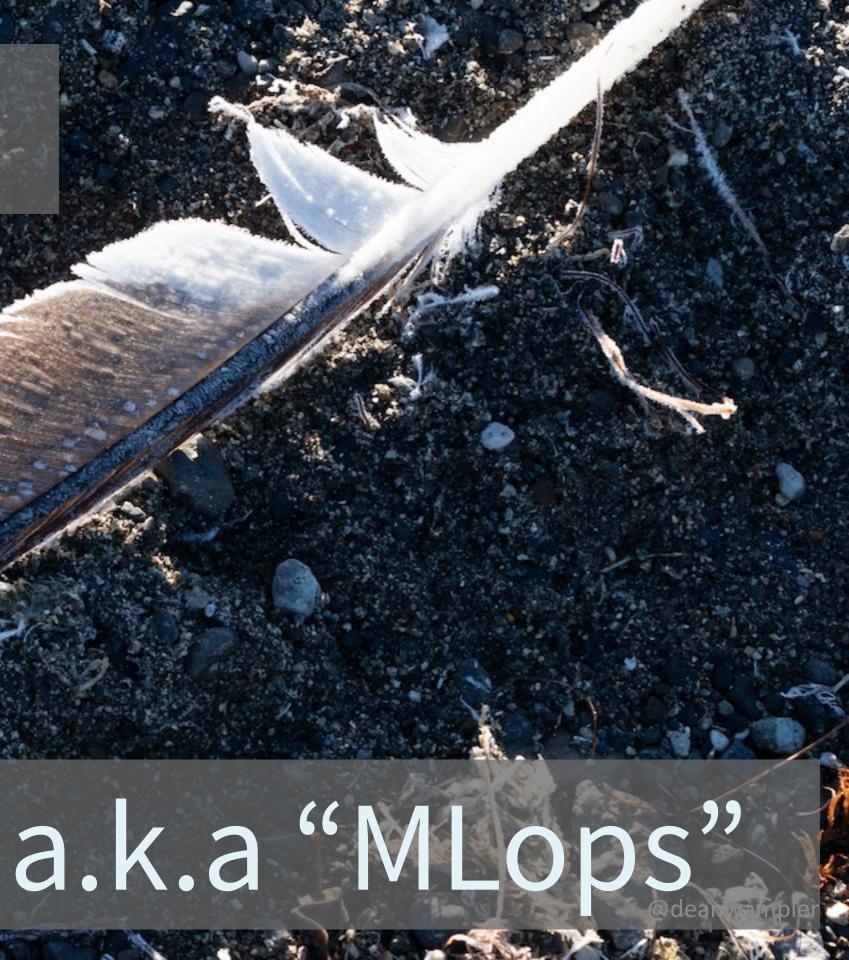
(After you've been sued for discrimination...)

napplication? mination...)

## Which model was it?

• Which version of the model was used? • How was it trained? • When was this model deployed? • ... and other questions you'll need to answer to understand what happened...

# CI/CD for ML?



# CI/CD Process Required (1/4)

 Version control - for models and code Automation - builds, tests, quality checks, artifact management & delivery Necessary for reproducibility

# CI/CD Process Required (2/4)

 Supports different launch configurations: • "dark" launches • A/B, Canary, and other testing scenarios

# CI/CD Processes Required (3/4)

• Auditing

 Which model used to score this record? • Which records used to train this model? Who accessed this model and when?

# CI/CD Processes Required (3/4)

 Auditing Which model used Sore this record?
Which record of the type of type of the type of t

## CI/CD Processes Required (3/4)

### • Auditing

Which model used to score this record?

• Which records used to train this model?

### Who accessed this model and when?

GDPR - What if a customer asks you to delete their data? Do you also delete the models trained with that data?

## **CI/CD** Processes Required (4/4)

 Monitoring Resource utilization changes? Quality metrics: Match performance during training? Concept drift?

## What's Different from Microservice CI/CD?

### • AutoML

 Data safety and lineage Model fairness and reproducibility Model and feature artifact management

https://www.oreilly.com/ideas/9-ai-trends-on-our-radar

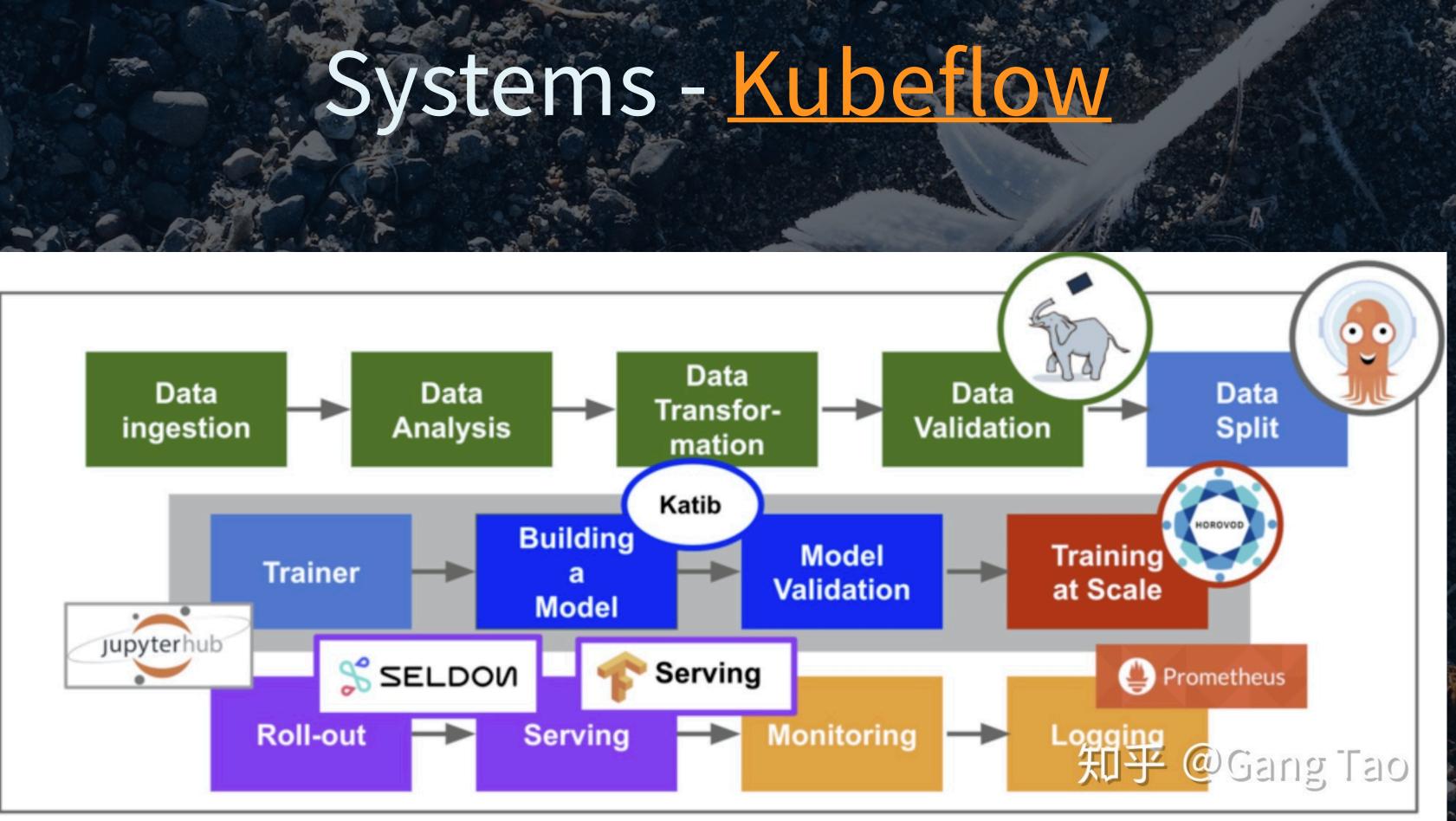
## What's Different from Microservice CI/CD?

 CI/CD prefers deterministic measures of quality. How should you support the extra statistical indeterminacy data science introduces?

## <u>C/CD</u> Suites for ML

 Kubeflow - for Kubernetes SageMaker - for AWS users MLFlow - from the Spark community • ... plus emerging vendors



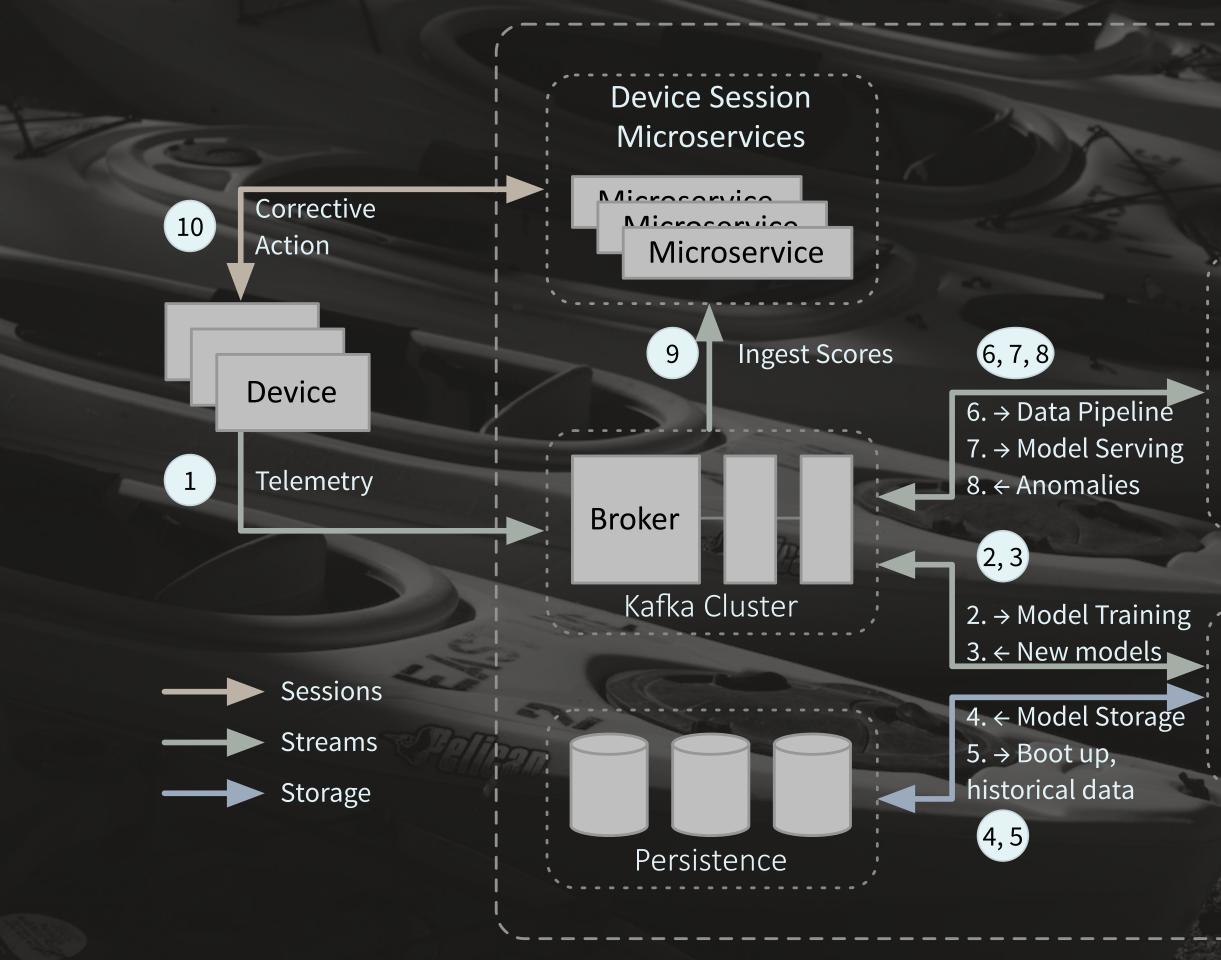




# Example Architectures

# Example Architectures

# Timely Information Integrated with Your Apps



Akka Streams Kafka Streams

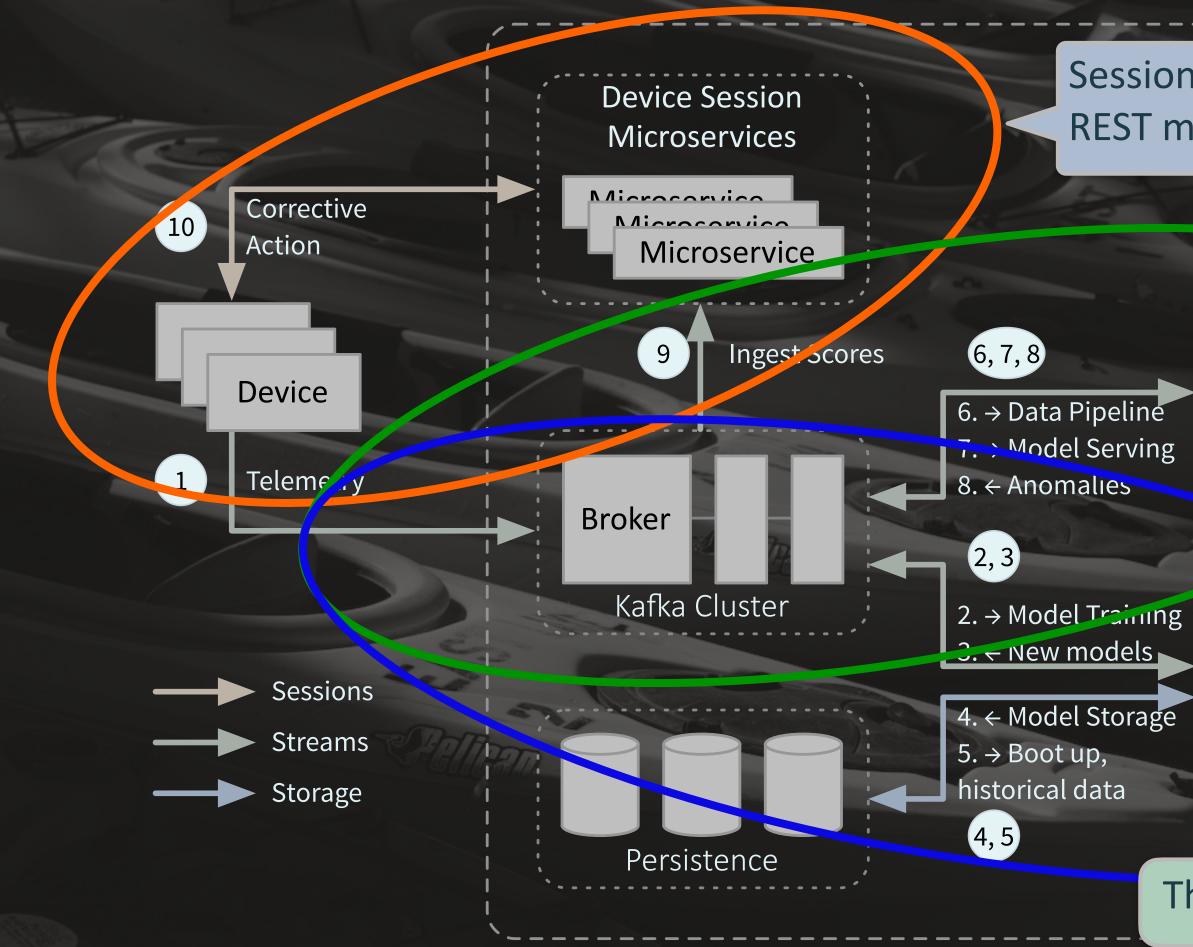
Low Latency Microservices

...

Spark

Mini-batch, Batch

Data Centerdeanwampler



### Session management, REST microservices

### Model Scoring

Akka Streams Kafka Streams

### Low Latency Microservices

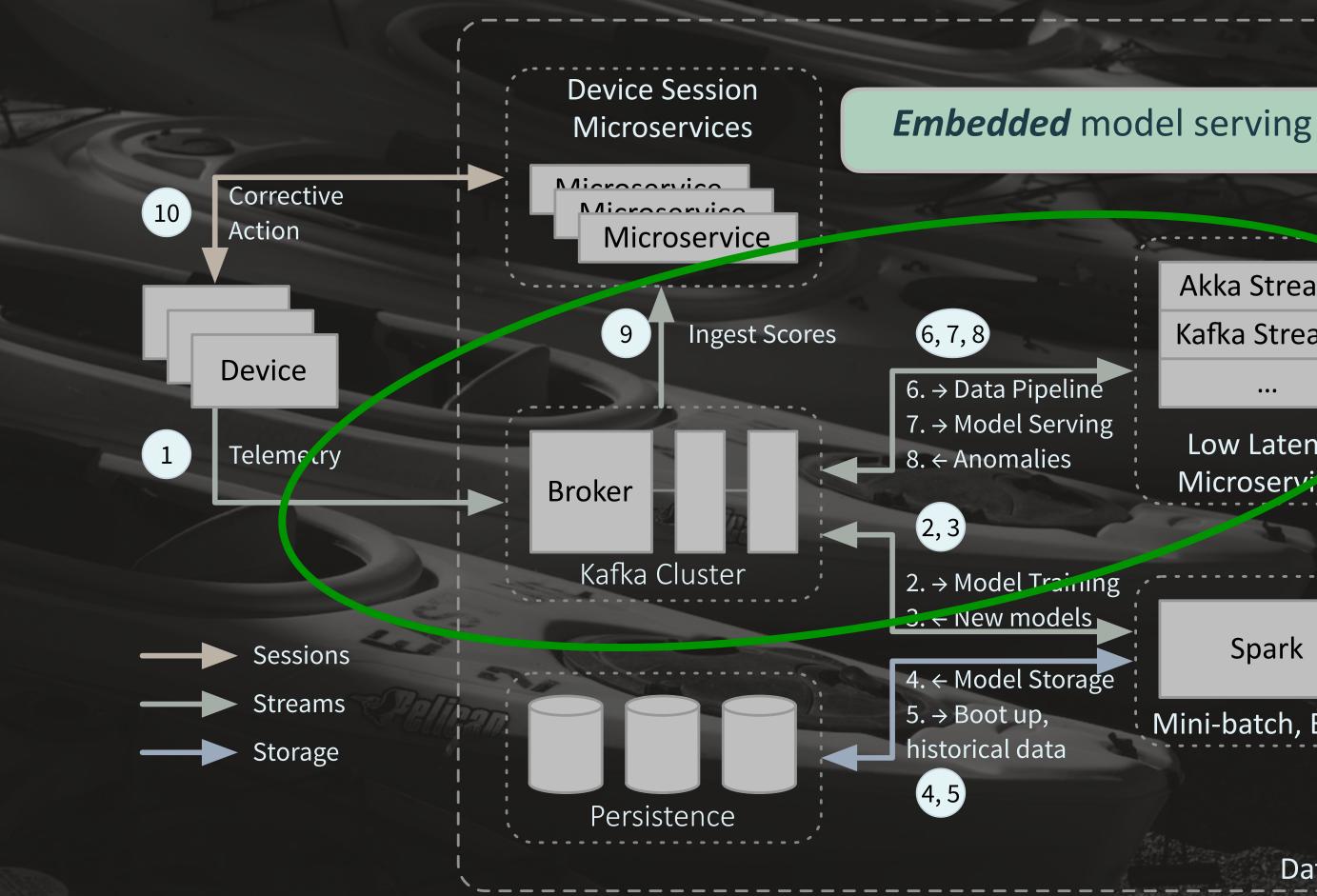
...

### Model Training

Spark

### Mini-batch, Batch

### Three groups of functionality



Akka Streams Kafka Streams

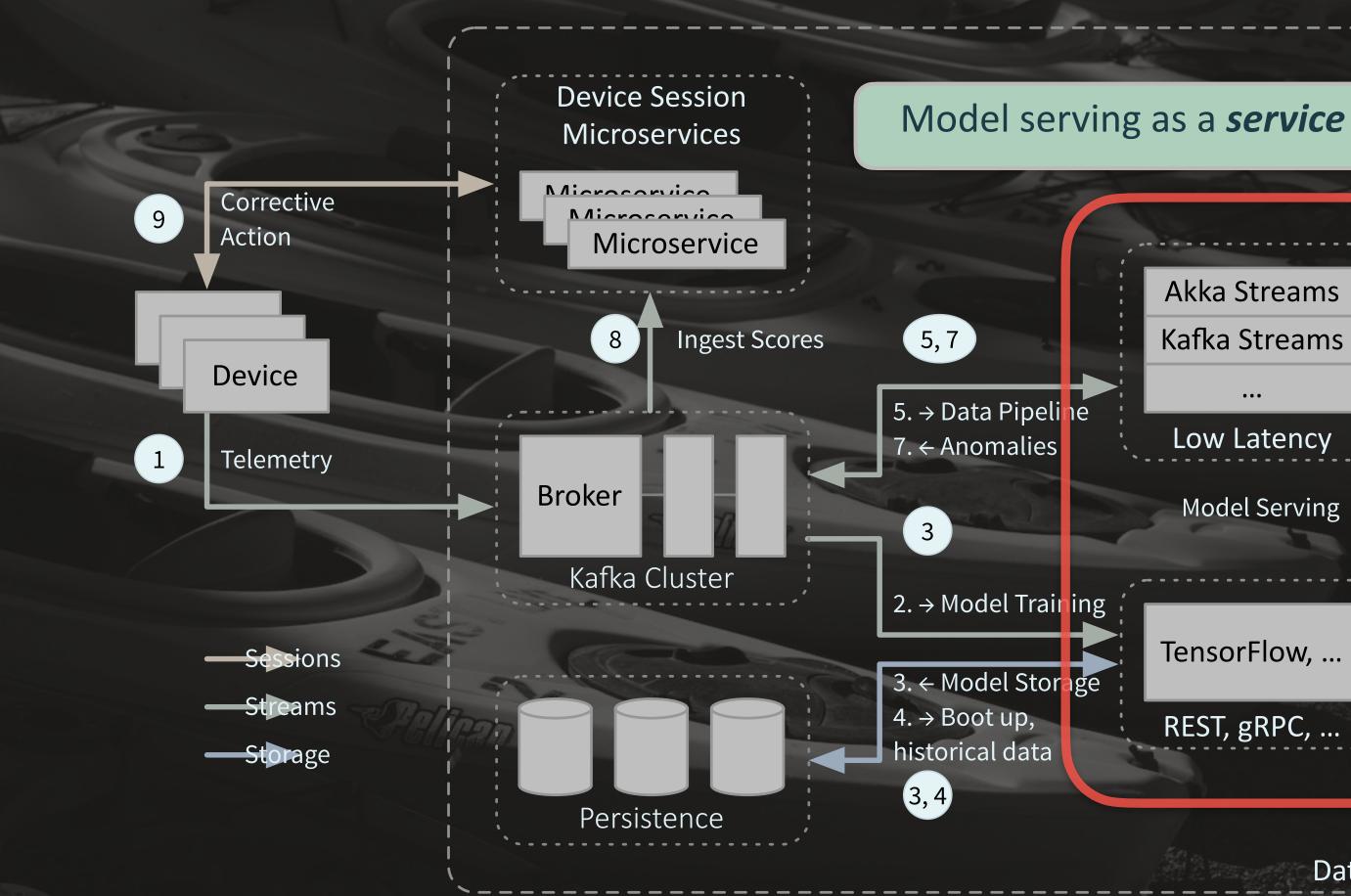
...

Low Latency Microservices

### Spark

### Mini-batch, Batch

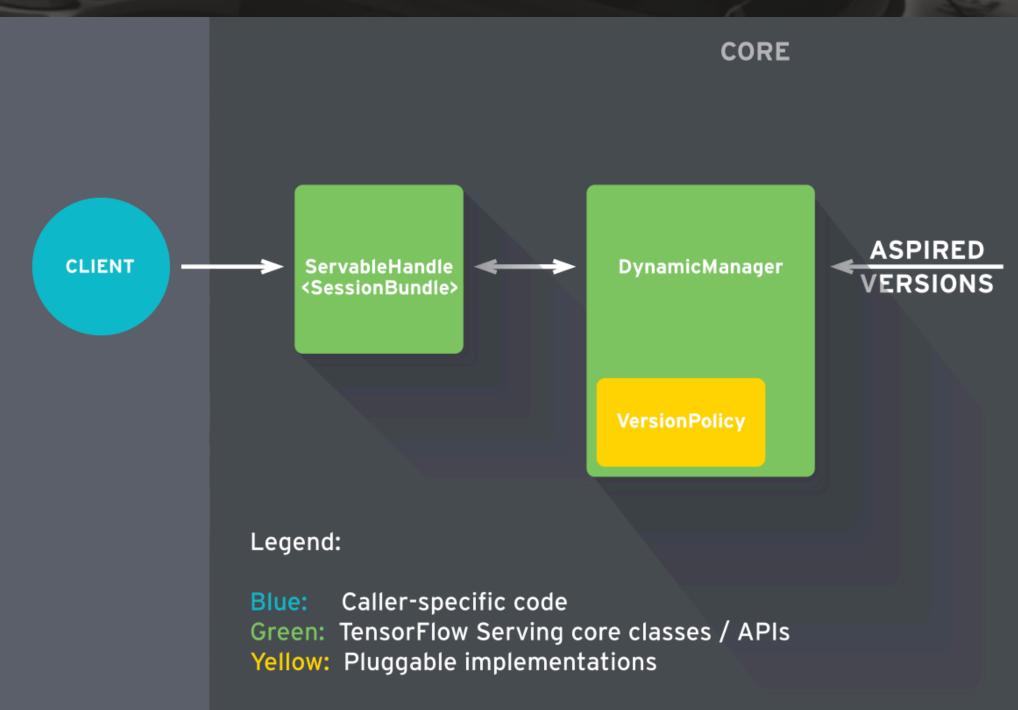
Data Cente<sup>edeanwampler</sup>



6

Data Cented deanwampler

## TensorFlow Serving





### Loader ENSORFLOW <SessionBundle>

Source

### FILE SYSTEM

## Model Serving as a Service

Corrective Action

Device

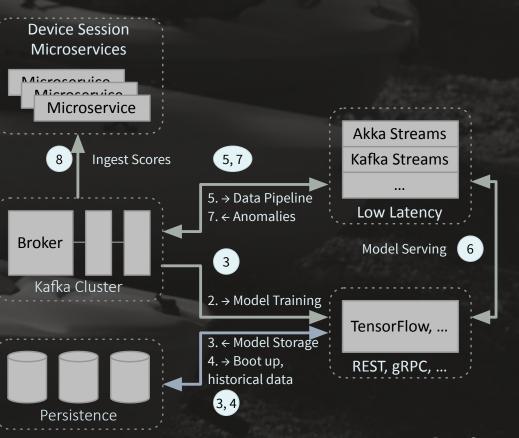
Telemetry

### Pros:

- A familiar integration pattern
- Decouples "concerns": Al tools, scaling, upgrading,

. . .

 One system for training and scoring



Data Center

## Model Serving as a Service

Corrective Action

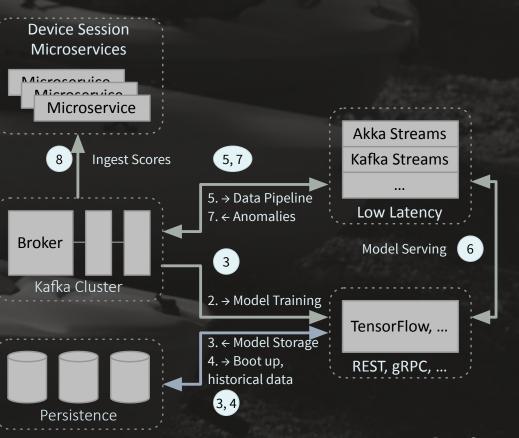
Device

Telemetry

• Cons:

Overhead of invocation,
 e.g., REST

 ML Pipeline becomes a unique production work flow



Data Center

## Embedded Model Serving

Corrective

Action

Device

Telemetry

Sessions

Storage

10

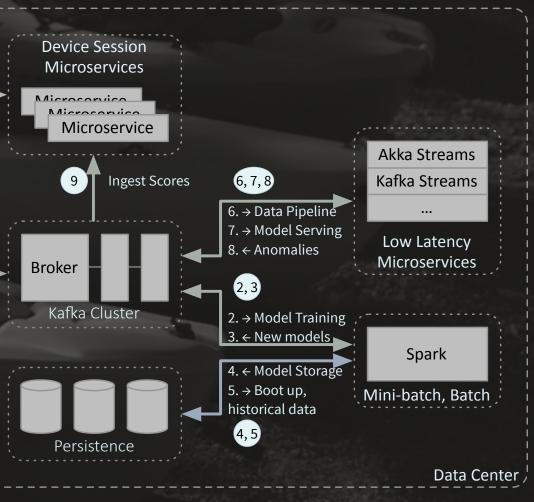
1

### • Pros:

Lowest scoring

 overhead - interprocess
 communication only
 used for model updates

 Performance tuning focuses on one system, the data pipeline



## Embedded Model Serving

Corrective

Action

Device

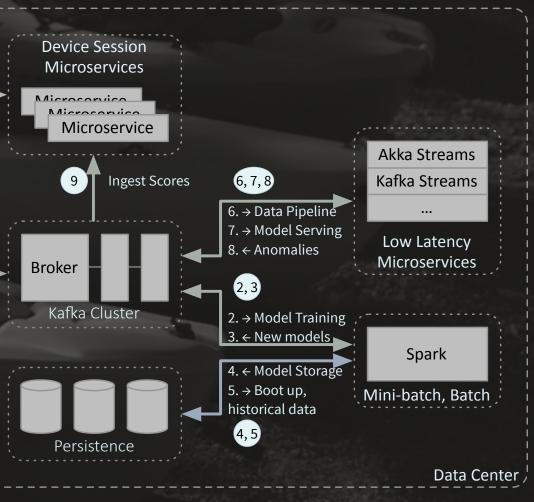
Telemetry

Sessions

Storage

10

- Cons:
  - Model parameters must be serialized
  - More complexity
  - Model serving library must be "compatible" with training system



# Updating Models in Production



## Model Updates

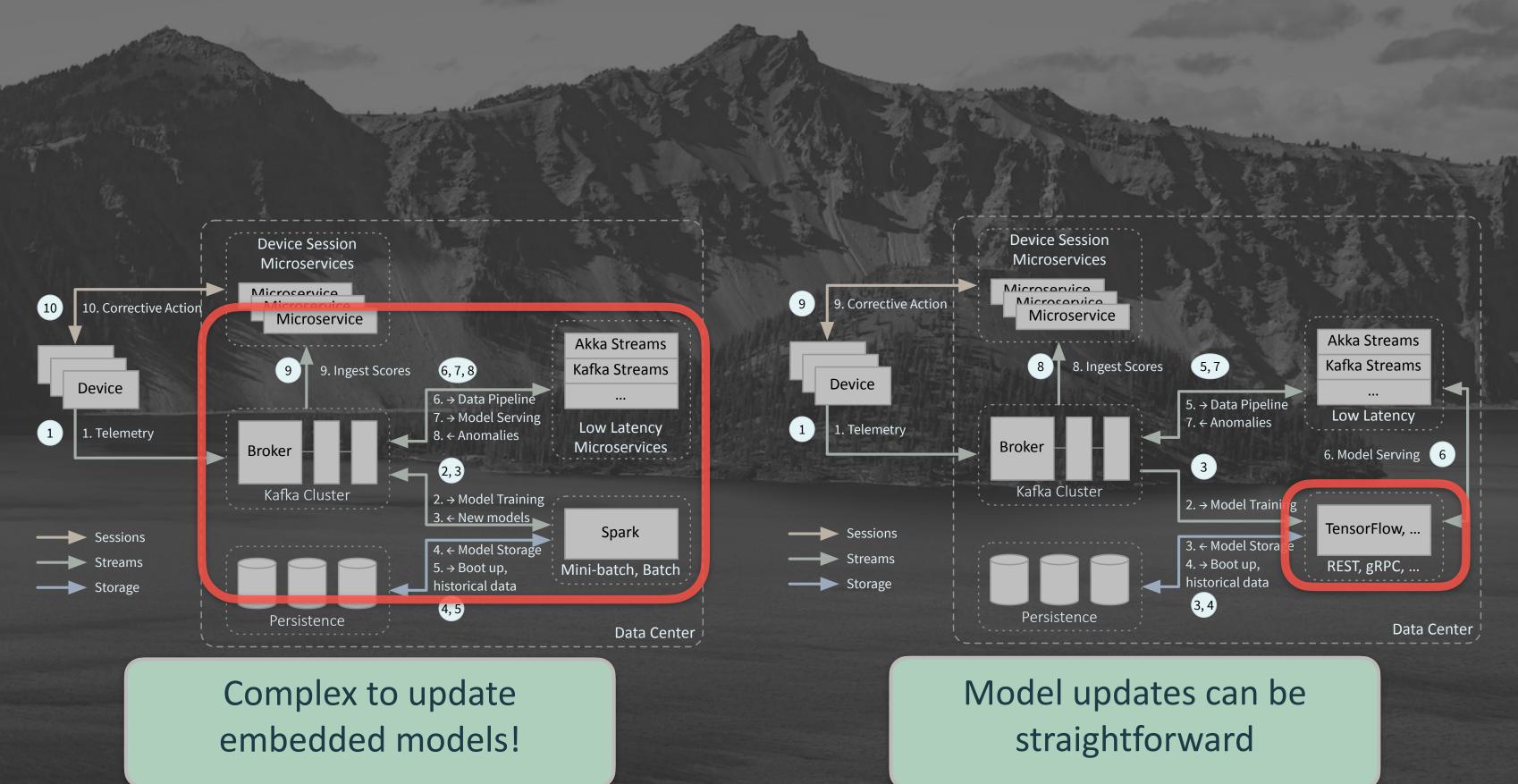
 Concept Drift - models grow stale • They have a half life, too • So, periodically retrain, then serve the new model, ideally without downtime

## **Retraining Considerations**

• How do you measure model quality? • What's the trade-off between model

performance vs. retraining cost?

 How far back in the data set do you go when training?



## Auditing

### Kind of Model

- Parameters and hyperparameters
- When trained
- Data used for training
- When deployed, undeployed, etc.



## Auditing

### Quality metrics

- Serving metrics (how many records, scoring times...)
- Provenance of decision to retrain
  - The metrics gathered above that were used to decide when to retrain

#### Dusty Milky Way

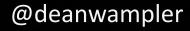
Mars last Summer

#### Ideas:

#### • Ben Lorica on 9 Al Trends

### Paco Nathan's Data Governance Talk

You can get these slides with the links here: polyglotprogramming.com/talks





#### Ideas:

### • O'Reilly Radar: Data, Al, others

- <u>distill.pub</u>
- <u>The Algorithm</u>
- The Gradient

polyglotprogramming.com/talks

### • A few research papers, etc.

### Incremental training

#### • <u>an example</u>

### • <u>Continual learning</u>

• Explainability

polyglotprogramming.com/talks



• <u>MLFlow</u>

• DVC



• Fiddler (explainable AI)

polyglotprogramming.com/talks

### General Information about Stream Processing

- My O'Reilly Report on Architectures
- Streaming Systems Book
- Stream Processing with Apache Spark
- <u>Designing Data-Intensive Apps book</u>

polyglotprogramming.com/talks



### Other Talks

### • Strata Talk on ML in a Streaming Context

#### <u>Stream All the Things! (video)</u>

### • Streaming Microservices with Akka Streams and Kafka Streams (video)

#### polyglotprogramming.com/talks

### Tutorials

### Model serving in streams

## Stream processing with Kafka and

microservices

polyglotprogramming.com/talks



### Questions?

@deanwampler dean@deanwampler.com polyglotprogramming.com/talks