OREILLY

Software Architecture

titll
Wit
i

- s
Py — B,
7> Doy e
(O Typesafe (©Typesafe 2014-2015, All Rights Resarved

== —=i 4
Thursday, March 19, 15
7 (11

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai

Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2000-2015, Dean Wampler. All Rights Reserved.

Thursday, March 19, 15

dean.wampler@typesafe.com
polyglotprogramming.com/talks
@deanwampler

S
Y
\

Programming

Functional
Programming

r { X' M’.,
O'REILLY" H Evand Cabriodo Dean Wampler & Alex Payne O'REILLY"

http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do

Typesafe
Reactive Big Data

typesafe.com/reactive-big-data

Thursday, March 19, 15

This is my role. We’re just getting started, but talk to me if you’re interested in what we’re doing.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data

cooursera Courses Specializations Institutions About~ Log In

M

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Functional Programming
Principles in Scala

Learn about functional programming, and how it can be effectively
combined with object-oriented programming. Gain practice in writing
clean functional code, using the Scala programming language.

Ty

Thursday, March 19, 15
Want to learn FP? Here’s a great way to learn.

covursera Courses Specializations Institutions About~ Log In

(gl L®

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

(= _—\
I
|
I
|

/"*—"_“‘\

Principles of Reactive &R W
Prog ram ming
Learn how to write composable software that stays responsive at all times

by being elastic under load and resilient in the presence of failures. Model
systems after human organizations or inter-human communication.

Thursday, March 19, 15
Want to learn Reactive? Here’s a great way to learn.

Resilient

Responsive
Message Driven

Thursday, March 19, 15

MNCcopPuUIISIVE

Failures are
first class?

|
Y el aVaVWallal I \ isiy 7. A A
Thursday, March 19, 15

Truly resilient systems must make failures first class citizens, in some sense of the word, because they are inevitable
when the systems are big enough and run long enough.

FUNCTIONAL AND REACTIVE
DOMAIN MODELING

DEBASISH GHOSH

. '3
LE e
. ¥ e

IIM/\NNING 8

Thursday, March 19, 15

I’ve structured parts of this talk around points made in Debasish’s new book, which has lots of interesting practical
ideas for combining functional programming and reactive approaches with classic Domain-Driven Design by Eric
Evans.

#1

Thrsday, March 19, 15
This is how we’ve always done it, right?

10

Thursday, March 19, 15

11

Thursday, March 19, 15

Communicating
Sequential
Processes

Message passing
via channels

Thursday, March 19, 15

See
http://en.wikipedia.org/wiki/Communicating sequential processes
://clojure.com 28 /clojure-core-async-channels.html
blog.drewolson.org/blog/2013/07 clojure-core-dot-async-and-go-a-code-com

and other references in the “bonus” slides at the end of the deck. | also have some slides that describe the core
primitives of CSP that | won’t have time to cover.

“Don‘t communicate
Dy sharing memory,
snare memory
Dy communicating”

- Rob Pike

From a talk Pike did at Google 1/0O 2012.

CSP: inspired Go &
Clojure’s core.async

Blocking
Channel

15

Thursday, March 19, 15
Simplest channel, a blocking, 1-element “connector” used to share values, one at a time between a source and a waiting sync. The put operation blocks if there is no sync waiting on the other end.

The channel can be typed (Go lang).

Doesn’t prevent the usual problems if mutable state is passed over a channel!

Bounded,
Nonblocking
Channel

D

16

Thursday, March 19, 15

A non-blocking queue, but bounded in size. Normally, N wouldn’t be this small. You DON’T want it to be infinite either, because eventually you’ll fill it and run out of memory! So, what should you do when it’s full? We’ll come back to this question when we discuss Reactive Streams
later.

Bounded,

Go Block Nonblocking

Go Block
Channel

Put
Value

17

Thursday, March 19, 15

So far, we haven’t supported any actual concurrency. I’'m using “Go Blocks” here to represent explicit threads in Clojure, when running on the JVM and you’re willing to dedicate a thread to the sequence of code, or core async “go blocks”, which provide thread-like async behavior,
but share real threads. This is the only option for clojure.js, since you only have one thread period.

Similarly for Go, “go blocks” would be “go routines”.

In all cases, they are analogous to Java/Scala futures.

Bounded,
Nonblocking
Channel

Go Block

Put
Value Go Block

Go Block

Put
Value

18

Thursday, March 19, 15
You can “select’ on several channels, analogous to socket select. l.e., read from the next channel with a value. In go, there is a “select” construct for this. In core async, there are the “alt!” (blocking) and “alt!!” (nonblocking) functions.

Fan out is also possible.

19

Thursday, March 19, 15

In other words, no one has extended the channel formalism outside process boundaries (compare to Actors...), but channels are often used to handle blocking 1/0,
etc.

Failure Handling
1N
Core Async

20

Thursday, March 19, 15

The situation is broadly similar for Go.
Some items here are adapted from a private conversation with Alex Miller (@puredanger).

pA

Thursday, March 19, 15

Using this feature is almost always what you should do, because you have almost no other good
options.

Py

Thursday, March 19, 15

Since it’s not a distributed system, core async only needs to handle errors in a single process, but you still can have multiple
threads.

Time

Go Block

Put
Value Go Block

Get
Value

o

i~
Handle Exception
Exception

23

Thursday, March 19, 15

One possible scheme is to push exceptions back through the channel and let the initializing go block decide what to do. It might rethrow the
exception.

Time

Go Block

Go Block

Error
Channel
Get

Value

Go Block

Handle

Exception Exception

24

Thursday, March 19, 15

Another possible scheme is to send exceptions down a specialized error
channel.

Blocking
Channel

Timeout

25

Thursday, March 19, 15

Thursday, March 19, 15
I’ll look at C# examples, but all the Rx language implementations work similarly.

Async Observable
Event Stream

LINQ

Thursday, March 19, 15

Uses classic patterns
for exception handling,
Wwith extensions.

OnError notification caught with a Catch
method.

e Switch to a second stream.

val stream = new Subject<MyType>();
val observer = stream.Catch(otherStream);

stream.OnNext(iteml) ;

stream.OnError (new UnhappyException(“error”));
// continue with otherStream.

Thursday, March 19, 15

Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
“observer” will watch for raised exceptions. If caught, it will switch to “otherStream”. OnNext and OnError generate events onto “stream”.

Variant for catching a specific exception,
with a function to construct a new

stream.

val stream = new Subject<MyType>();
val observer = stream.Catch<MyType, MyException>(
ex => [/*x create new MyType stream */);

stream.OnNext(iteml) ;

stream.OnError (new MyException(“error”));
// continue with generated stream.

Thursday, March 19, 15

Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
In this case, we only want to watch for MyException instances. The function is passed the caught exception “ex” and it must return a new stream of the same “MyType”.

31

Thursday, March 19, 15
Adapted from http:

OnErrorResumeNext: Swallows
exception, continues with alternative
stream(s).

public static IObservable<TSource> OnErrorResumeNext<TSource> (
this IObservable<TSource> first,
IObservable<TSource> second) {...}

public static IObservable<TSource> OnErrorResumeNext<TSource> (
params IObservable<TSource>[] sources) {...}

Thursday, March 19, 15

Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
2 of the 3 variants.

Retry: Are some exceptions expected, e.q.,
/O “hiccups”. Keeps trying. Optional max
retries.

public static void RetrySample<T>(
TObservable<T> source)
{
source.Retry(4) // retry up to 4 times.
.Subscribe(t => Console.WritelLine(t));
Console.ReadKey () ;

¥

Thursday, March 19, 15
Adapted from http://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html

CSP & RX:
Failure management
IS local to streams,
mixed with domain logic.

34

Thursday, March 19, 15

What CSP-derived and Rx concurrency systems do, they do well, but we need a larger strategy for reactive resiliency
at scale.

Before we consider such strategies, let’s discuss another technique.

Thrsday, March 19, 15
This is how we’ve always done it, right?

Reactive
Streams

Thursday, March 19, 15
Reactive Streams extend the capabilities of CSP channels and Rx by addressing flow control concerns.

Bounded or Unbounded Queue?

Consumer

Event/Data
Stream

Consumer

Thursday, March 19, 15

You want a queue in the middle of producer and consumer to buffer events and enable asynchrony, but should that
queue be bounded or unbounded? If unbounded, eventually, it will grow to exhaust memory. If bounded, what should
happen when it’s full? Should the producer just drop messages, block, crash...?

Bounded Queue

pressure

Consumer

Event/Data pressure
Stream

< back_ _ Consumer

pressure

38

Thursday, March 19, 15

The key element of reactive streams (over any others...) is the notion of back pressure, where the producer and
consumer coordinate on the rate of event delivery.

http://www.reactive-streams.org/
http://www.reactive-streams.org/

39

Thursday, March 19, 15

Benefits of back
pressure.

40

Thursday, March 19, 15

Clarification of an implementation
detail.

Thursday, March 19, 15

This is how we’ve always done it, right?

Express what'’s really happening
using types.

Can we prevent invalid states
at compile time?

ay, Marc ,
First, let’s at least be honest with the reader about what’s actually happening in blocks of code.

When code raises exceptions:

case class Order(
id: Long, cost: Money, items: Seq[(Int,SKU)])

object Order {

def parse(string: String): Try[Order] = Try {
val array = string.split("\t")
if (bad(array)) throw new ParseError(string)
new Order(...)

}
private def bad(array: Array[String]): Boolean = {...

;

-

Thursday, March 19, 15

Idiomatic Scala for “defensive” parsing of incoming data as strings. Wrap the parsing and construction logic in a Try {...}. Note the capital T; this will construct a Try instance, either a subclass Success, if everything works, or
a Failure, if an exception is thrown.
See the github repo for this presentation for a complete example: https://github.com/deanwampler/Presentations

Latency? Use Futures

* Or equivalents, like go blocks.

case class Account(
id: Long, orderlIds: Seqg[Long])

def getAccount(id: Long): Future[Account] =
Future { /*x Web service, DB query, etc... *x/ }

def getOrders(ids: Seq[Long]): Future[Seq[Order]] =
Future { /*x Web service, DB query, etc... *x/ }

Thursday, March 19, 15

See the github repo for this presentation for a complete example: https://github.com/deanwampler/
Presentations

Latency? Use Futures

* Or equivalents, like go blocks.

def ordersForAccount(accountlId: Long): Future[Seq[Order]] =
for {
account <- getAccount(accountld)
orders <- getOrders(account.orderlds)
} yield orders.toVector

-

Thursday, March 19, 15

Futures can be sequenced “monadically”, so our code has a nice synchronous feel to it, but we can exploit async. execution. “yield” specifies what’s returned, which will actually be wrapped in another Future by the for
comprehension. We convert orders to a Vector (a kind of Seq), which is a very efficient data structure in Scala.
See the github repo for this presentation for a complete example: https://github.com/deanwampler/Presentations

Latency? Use Futures

* Or equivalents, like go blocks.

val accountId =
val ordersFuture = ordersForAccount(accountId)

ordersFuture.onSuccess {
case orders =>
println(s"#SaccountId: Sorders'")
¥
ordersFuture.onFailure {
case exception => println(s"#SaccountId: " +
"Failed to process orders: Sexception")

;

-

Thursday, March 19, 15

See the github repo for this presentation for a complete example: https://github.com/deanwampler/
Presentations

Use types to
enforce correctness.

. Functional
- Reactive
2 Programming

Thursday, March 19, 15

On the subject of type safety, let’s briefly discuss FRP. It was invented in the Haskell community, where there’s a
strong commitment to type safety as a tool for correctness.

Represent evolving state by time-varying
values.

Reactor.flow { reactor =>
val path = new Path(
(reactor.await(mouseDown)) .position)
reactor. loopUntil(mouseUp) {
val m = reactor.awaitNext(mouseMove)
path.lineTo(m.position)
draw(path)

¥

path.close() From Deprecating the Observer

draw(path)
Pattern with Scala.React.

-

Thursday, March 19, 15

Draw a line on a Ul from the initial point to the current mouse point, as the mouse moves.
This APl is from a research paper. | could have used EIm (FRP for JavaScript) or one of the Haskell FRP APIs (where FRP was pioneered), but this DSL is reasonably easy to understand.

Here, we have a stream of data points, so it resembles Rx in its concepts.

http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf

Can you declaratively
prevent errors?

Sculthorpe and Nilsson, Safe functional reactive
programming through dependent types

ursday, Marc
True to |ts Haskell routes, FRP trles to use the type system to explicitly

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

Te}
~—
o
~—
<
(@)
=
1]
=
>
©
©
()
—
|3
L
T

Actor Model

Send
a message

-~ ActorRef

Handle
a message

Mail box
(message
gueue)

Thursday, March 19, 15

This is how they look in Akka, where there is a layer of indirection, the ActorRef, between actors. This helps with the drawback that actors know each other’s identities, but mostly it’s there to make the system more
resilient, where a failed actor can be restarted while keeping the same ActorRef that other actors hold on to.

http://akka.io
http://akka.io

Send
a message

-~ ActorRef

Handle
a message

Mail box
(message
gueue)

Thursday, March 19, 15

This is how they look in Akka, where there is a layer of indirection, the ActorRef, between actors. This helps with the drawback that actors know each other’s identities, but mostly it’s there to make the system more
resilient, where a failed actor can be restarted while keeping the same ActorRef that other actors hold on to.

55

Thursday, March 19, 15

56

Thursday, March 19, 15

CSP and Actors
are dual

Bounded,
Go Block Nonblocking Go Block

Channel
Put Get
Value Value

N=3

58

Thursday, March 19, 15

Bounded,
Go Block Nonblocking Go Block

Channel
Put Get
Value Value

N=3

59

Thursday, March 19, 15

In actors, the receiver doesn’t even need to be ready to receive messages
yet.

... but CSP and Actors
can implement
each other

Send

a message
————— . ActorRef
Bounded,

Go Block Nonblocking Go Block
Channel

Actor

Handle
a message

Put Get Mail box
Value Value (message
queue)

I
I
I
A

61

Thursday, March 19, 15

In actors, the receiver doesn’t even need to be ready to receive messages
yet.

62

Thursday, March 19, 15

63

Thursday, March 19, 15

blocking
message

- -
P 4 -

-~ ~

-—_ aoas o

Reply

64

Thursday, March 19, 15

Most actor systems provide a blocking message send primitive where the “thread” blocks until an answer message is
received.

Bounded,
Go Block Nonblocking Go Block

Channel
Put Get
Value Value

N=23

65

Thursday, March 19, 15

In actors, the receiver doesn’t even need to be ready to receive messages
yet.

Erlang
and
Akka

67

Thursday, March 19, 15

URL vs. URI?? See http://danielmiessler.com/study/
url_vs_uri/

Failure-handling
In Actor Systems

letiit Crash!

Thursday, March 19, 15

Thursday, March 19, 15

Thursday, March 19, 15

Thursday, March 19, 15

Thursday, March 19, 15

75

Thursday, March 19, 15

Criticisms of Actors

77

Thursday, March 19, 15
From http://clojure.com/blog/2013/06/28/clojure-core-async-

channels.html

78

Thursday, March 19, 15

Most of these are based on his toy example, not a production-calibre implementation.

79

Thursday, March 19, 15

ANSWers

80

Thursday, March 19, 15

The fact that Actors and CSP can be used to implement each other suggests that the criticisms are less than meets
the eye...

81

Thursday, March 19, 15

In other words, ignore toy examples. The flow-orientation of CSP is an advantage, compared to Actors, but | think the emerging Reactive Streams implemented on top of Actors gives you the best of both worlds. You can
work at the abstraction level that’s most appropriate.

Bounded Queue

pressure

Consumer

Event/Data = 2k
Stream

<« back_ _ Consumer

pressure

82

Thursday, March 19, 15

The flow-orientation of CSP is an advantage, compared to Actors, but | think the emerging Reactive Streams implemented on top of Actors gives you the best of both worlds. You can work at the abstraction level that’s
most appropriate.

83

Thursday, March 19, 15

84

Thursday, March 19, 15

85

Thursday, March 19, 15

86

Thursday, March 19, 15

87

Thursday, March 19, 15

How should
we handle
failures?

Large-scale systems must
separate normal processing
from error-nandling strateqy.

Thursday, Marc ,
Not all concurrency problems require something as sweeping as an actor system with supervisors, but at a certain
scale, you’ll need some sort of separation between your recovery strategy and the normal processing logic.

Use Actors or...

N7
W = HYSTRIX

s \\\\\
‘ \\\

77N

DEFEND YOUR APP

? n
/////

| — Z

https://github.com/Netflix/Hystrix

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix

92

Thursday, March 19, 15

A #1 A #2

Normal Error Normal Error

B #1 B #2

Normal Error Normal Error

A #1 A #2 B #1 B #2

Normal Normal Normal Normal

Thursday, March 19, 15

Removed duplicated error-handling logic also makes the normal logic processes smaller, so you can run more of
them, etc.

Thursday, March 19, 15

95

Thursday, March 19, 15

96

Thursday, March 19, 15

97

Thursday, March 19, 15

98

Thursday, March 19, 15

| would include futures in the list of
derivatives.

99

Thursday, March 19, 15

()Typesafe

http://typesafte.com/reactive-big-data
dean.wampler@typesafre.com
poloyglotprogramming.com/talks

©Typesafe 2014-2015, All Rights Reserved

Thursday, March 19, 15

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai
Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2012-2015, Dean Wampler. All Rights Reserved.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
http://poloyglotprogramming.com/talks
http://poloyglotprogramming.com/talks

Communicating
Sequential
Processes

Message passing
via channels

Thursday, March 19, 15

See
http://en.wikipedia.org/wiki/Communicating sequential processes
://clojure.com 28 /clojure-core-async-channels.html
blog.drewolson.org/blog/2013/07 clojure-core-dot-async-and-go-a-code-com

and other references in the “bonus” slides at the end of the deck. | also have some slides that describe the core
primitives of CSP that | won’t have time to cover.

Communicating
Sequential Processes

C. A. R. Hoare

June 21, 2004

Thursday, March 19, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from the initial
programming language he defined in the 70’s to a theoretical model with a well-defined calculus by the mid 80’s
(with the help of other people, too). The book itself has been subsequently refined. The PDF is available for free.

Contents 1

The Theory and Practice of
Concurrency

A.W. Roscoe

Published 1997, revised to 2000 and lightly revised to 2005.

The original version is in print in April 2005 with Prentice-Hall (Pearson).

This version is made available for personal reference only. This version is
copyright ((©)) Pearson and Bill Roscoe.

Thursday, March 19, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
This treatment is perhaps more accessible than Hoare’s book.

CSP
Operators

106

Thursday, March 19, 15
A process communicates

107

Thursday, March 19, 15

108

Thursday, March 19, 15

109

Thursday, March 19, 15

110

Thursday, March 19, 15

111

Thursday, March 19, 15

FUNCTIONAL AND REACTIVE
DOMAIN MODELING

DEBASISH GHOSH

II MANNING

113

Thursday, March 19, 15

Lots of interesting practical ideas for combining functional programming and reactive approaches to class Domain-
Driven Design by Eric Evans.

Communicating
Sequential Processes

C. A. R. Hoare

June 21, 2004

Thursday, March 19, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from a programming

language to a theoretical model with a well-defined calculus. The book itself has been subsequently refined. The PDF
is available for free.

Contents 1

The Theory and Practice of
Concurrency

A.W. Roscoe

Published 1997, revised to 2000 and lightly revised to 2005.

The original version is in print in April 2005 with Prentice-Hall (Pearson).

This version is made available for personal reference only. This version is
copyright ((©)) Pearson and Bill Roscoe.

Thursday, March 19, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
The treatment is more accessible than Hoare’s book.

PROGRAMMING
DISTRIBUTED

COMPUTING SYSTEMS

A Foundational Approach

CARLOS A. VARELA

/’ o JUE # 9 N
r’ L “'(S Y '« '.\:" .
e A’ N | e 3 "“. ~ 2.
R A oo B - i
- 5 £ "3 N .
B2 i "&b ™
’ ’ % e o

- T . ‘
- \». - -Y. P e
U > ~ - -
/ - < 4 N .
f \"" v - v
‘4 ':?:-\(/
~4 \'\ -
" e -
. . 4 » ~
" -9 'S \ 2\ f : \'.:
V! v YA V f
‘a
N ,
e l' A d
v/ ',’7“
Mos! .
- s A S
\" > </
o :
‘4
o Q. P
r\' - s\\ - s ’ 2 . -,c..‘:v |
-'r:" P - -~ V < . - -k y.' e > J
R \ ad - ' _
‘d”“*’ _ ¥ .Q” =) ;" ?’
v ” s e
. o) - ’ gy
e AN VLN A

116

Thursday, March 19, 15

A survey of theoretical models of distributed computing, starting with a summary of lambda calculus, then discussing
the pi, join, and ambient calculi. Also discusses the actor model. The treatment is somewhat dry and could use more
discussion of real-world implementations of these ideas, such as the Actor model in Erlang and Akka.

Gul Agha

117

Thursday, March 19, 15

Gul Agha was a grad student at MIT during the 80s and worked on the actor model with Hewitt and others. This book
is based on his dissertation.

It doesn’t discuss error handling, actor supervision, etc. as these concepts .

His thesis, http://dspace.mit.edu/handle/1721.1/6952, the basis for his book,http://mitpress.mit.edu/books/actors

See also Paper for a survey course with Rajesh Karmani, http://www.cs.ucla.edu/~palsberg/course/cs239/papers
karmani-agha.pdf

Michel Raynal

Distributed
Algorithms for
Message-Passing
Systems

@ Springer

118

Thursday, March 19, 15
Survey of the classic graph traversal algorithms, algorithms for detecting failures in a cluster, leader election, etc.

T
.........

DISTRIBUTED <L TN
- ALGORITHMS % B

AN INTUITIVE APPROACH

N =

e

"o
=

&

d

-

WAN FOKKINK

. ‘—’_ . -~

Thursday, March 19, 15
A less comprehensive and formal, but more intuitive approach to fundamental algorithms.

Christian Cachin
Rachid Guerraoui
Luis Rodrigues

Introduction to

Reliable and
Secure Distributed
Programming

Second Edition

@ Springer

120

Thursday, March 19, 15
Comprehensive and somewhat formal like Raynal’s book, but more focused on modeling common failures in real
systems.

Zohar Manna
Amir Pnueli

The Temporal Logic

of Reactive and
Concurrent Systems

e Specificatione

Springer-Verlag

121

Thursday, March 19, 15

1992: Yes, “Reactive” isn’t new ;) This book is lays out a theoretical model for specifying and proving “reactive”
concurrent systems based on temporal logic. While its goal is to prevent logic errors, It doesn’t discuss handling
failures from environmental or other external causes in great depth.

Algebraic Theory
of Processes

Matthew Hennessy

122

Thursday, March 19, 15
1988: Another treatment of concurrency using algebra. It’s not based on CSP, but it has similar constructs.

DISTRIBUTED COMPUTING

//Z/‘/'//(//Z

N

(COMBINATORIAL lOPOLOGY

uuuuuuuuuuuuuu

123

Thursday, March 19, 15

A recent text that applies combinatorics (counting things) and topology (properties of geometric shapes) to the
analysis of distributed systems. Aims to be pragmatic for real-world scenarios, like networks and other physical
systems where failures are practical concerns.

Engineering a Safer World

Nancy G. Leveson

124

Thursday, March 19, 15

http://mitpress.mit.edu/books/engineering-safer-world
Farther afield, this book discusses safety concerns from a systems engineering perspective.

125

Thursday, March 19, 15

http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

