
Error Handling in
Reactive Systems
Dean Wampler, Ph.D.
Typesafe

©Typesafe 2014-2015, All Rights Reserved

Thursday, March 19, 15

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai
Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2000-2015, Dean Wampler. All Rights Reserved.

2

dean.wampler@typesafe.com
polyglotprogramming.com/talks

@deanwampler

Thursday, March 19, 15

http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do

Typesafe
Reactive Big Data

3

typesafe.com/reactive-big-data

Thursday, March 19, 15

This is my role. We’re just getting started, but talk to me if you’re interested in what we’re doing.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data

4

Thursday, March 19, 15

Want to learn FP? Here’s a great way to learn.

5

Thursday, March 19, 15

Want to learn Reactive? Here’s a great way to learn.

6

Responsive

Elastic Resilient

Message Driven

Thursday, March 19, 15

7

Responsive

Elastic Resilient

Message Driven

Failures are
first class?

Thursday, March 19, 15

Truly resilient systems must make failures first class citizens, in some sense of the word, because they are inevitable
when the systems are big enough and run long enough.

8

Thursday, March 19, 15

I’ve structured parts of this talk around points made in Debasish’s new book, which has lots of interesting practical
ideas for combining functional programming and reactive approaches with classic Domain-Driven Design by Eric
Evans.

#1
Failure-handling

mixed with
domain logic.

9

Thursday, March 19, 15

This is how we’ve always done it, right?

10

Best for narrowly-scoped errors.
–Parsing user input.
–Transient stream interruption.
–Failover from one stream to a “backup”.

Thursday, March 19, 15

11

Limited to per-stream handling. Hard to
implement a larger strategy.

Thursday, March 19, 15

Message passing
via channels

Communicating
Sequential

Processes

Thursday, March 19, 15

See
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

and other references in the “bonus” slides at the end of the deck. I also have some slides that describe the core
primitives of CSP that I won’t have time to cover.

“Don’t communicate
by sharing memory,

share memory
by communicating”

13

-- Rob Pike

Thursday, March 19, 15

http://www.youtube.com/watch?v=f6kdp27TYZs&feature=youtu.be

From a talk Pike did at Google I/O 2012.

CSP: inspired Go &
Clojure’s core.async

Thursday, March 19, 15

15

Get
Value

Put
Value

Blocking
Channel

•Block on put if no one to get.
•Channel can be typed.
•Avoid passing mutable state!

Thursday, March 19, 15
Simplest	 channel,	 a	 blocking,	 1-‐element	 “connector”	 used	 to	 share	 values,	 one	 at	 a	 Dme	 between	 a	 source	 and	 a	 waiDng	 sync.	 The	 put	 operaDon	 blocks	 if	 there	 is	 no	 sync	 waiDng	 on	 the	 other	 end.

The	 channel	 can	 be	 typed	 (Go	 lang).	

Doesn’t	 prevent	 the	 usual	 problems	 if	 mutable	 state	 is	 passed	 over	 a	 channel!

16

•When full:
•Block on put.
•Drop newest put value.
•Drop oldest (“sliding” window).

Get
Value

Put
Value

Bounded,
Nonblocking

Channel

N = 3

Thursday, March 19, 15
A	 non-‐blocking	 queue,	 but	 bounded	 in	 size.	 Normally,	 N	 wouldn’t	 be	 this	 small.	 You	 DON’T	 want	 it	 to	 be	 infinite	 either,	 because	 eventually	 you’ll	 fill	 it	 and	 run	 out	 of	 memory!	 So,	 what	 should	 you	 do	 when	 it’s	 full?	 We’ll	 come	 back	 to	 this	 quesDon	 when	 we	 discuss	 ReacDve	 Streams	
later.

Go BlockGo Block

Get
Value

Put
Value

Bounded,
Nonblocking

Channel

N = 3

17

•Core Async: Go Blocks, Threads.
•Go: Go Routines.
•Analogous to futures.

Thursday, March 19, 15
So	 far,	 we	 haven’t	 supported	 any	 actual	 concurrency.	 I’m	 using	 “Go	 Blocks”	 here	 to	 represent	 explicit	 threads	 in	 Clojure,	 when	 running	 on	 the	 JVM	 and	 you’re	 willing	 to	 dedicate	 a	 thread	 to	 the	 sequence	 of	 code,	 or	 core	 async	 “go	 blocks”,	 which	 provide	 thread-‐like	 async	 behavior,	
but	 share	 real	 threads.	 This	 is	 the	 only	 opDon	 for	 clojure.js,	 since	 you	 only	 have	 one	 thread	 period.	

Similarly	 for	 Go,	 “go	 blocks”	 would	 be	 “go	 rouDnes”.

In	 all	 cases,	 they	 are	 analogous	 to	 Java/Scala	 futures.

18

Go Block

Put
Value

Go Block

Put
Value Go Block

Get
Value

Bounded,
Nonblocking

Channel

N = 3

•Blocking or nonblocking.
•Like socket select.

Thursday, March 19, 15
You	 can	 “select’	 on	 several	 channels,	 analogous	 to	 socket	 select.	 I.e.,	 read	 from	 the	 next	 channel	 with	 a	 value.	 In	 go,	 there	 is	 a	 “select”	 construct	 for	 this.	 In	 core	 async,	 there	 are	 the	 “alt!”	 (blocking)	 and	 “alt!!”	 (nonblocking)	 funcDons.

Fan	 out	 is	 also	 possible.

19

At this point, neither Go nor Core Async
have implemented distributed channels.

However, channels are often used
 to implement end points for

network and file I/O, etc.

Thursday, March 19, 15
In	 other	 words,	 no	 one	 has	 extended	 the	 channel	 formalism	 outside	 process	 boundaries	 (compare	 to	 Actors...),	 but	 channels	 are	 oden	 used	 to	 handle	 blocking	 I/O,	
etc.

Failure Handling
in

Core Async

20

Thursday, March 19, 15

The situation is broadly similar for Go.
Some items here are adapted from a private conversation with Alex Miller (@puredanger).

21

•The exception is passed to the function.
• If it returns non-nil, that value is put on
the channel.

Channel construction takes an optional
exception function.

Thursday, March 19, 15
Using	 this	 feature	 is	 almost	 always	 what	 you	 should	 do,	 because	 you	 have	 almost	 no	 other	 good	
opDons.

22

•Processing logic can span several threads!
•A general problem for concurrency
implemented using multithreading.

Which call stack?

Thursday, March 19, 15
Since	 it’s	 not	 a	 distributed	 system,	 core	 async	 only	 needs	 to	 handle	 errors	 in	 a	 single	 process,	 but	 you	 sDll	 can	 have	 mulDple	
threads.

23

Propagate exceptions back through
the channel.

Go Block

Get
Value

Go Block

Put
Value

Time

ExceptionHandle
Exception

Thursday, March 19, 15
One	 possible	 scheme	 is	 to	 push	 excepDons	 back	 through	 the	 channel	 and	 let	 the	 iniDalizing	 go	 block	 decide	 what	 to	 do.	 It	 might	 rethrow	 the	
excepDon.

Go Block

Handle
Exception

Go Block

Get
Value

Go Block

Put
Value

Time

Exception

Error
Channel

24

Propagate exceptions to a
special error channel.

Thursday, March 19, 15
Another	 possible	 scheme	 is	 to	 send	 excepDons	 down	 a	 specialized	 error	
channel.

25

Deadlock is possible unless timeouts are
used.

Put
Value

Blocking
Channel

???

Timeout

Thursday, March 19, 15

Reactive Extensions

Thursday, March 19, 15

I’ll look at C# examples, but all the Rx language implementations work similarly.

27

Observable

LINQ

filter …map

Async
Event Stream

Schedulers

Thursday, March 19, 15

Uses classic patterns
for exception handling,

with extensions.

28

Thursday, March 19, 15

29

OnError notification caught with a Catch
method.
•Switch to a second stream.

val stream = new Subject<MyType>();
val observer = stream.Catch(otherStream);
...
stream.OnNext(item1);
...
stream.OnError(new UnhappyException(“error”));
// continue with otherStream.

Thursday, March 19, 15
Adapted	 from	 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
“observer”	 will	 watch	 for	 raised	 excepDons.	 If	 caught,	 it	 will	 switch	 to	 “otherStream”.	 OnNext	 and	 OnError	 generate	 events	 onto	 “stream”.

30

Variant for catching a specific exception,
with a function to construct a new
stream.

val stream = new Subject<MyType>();
val observer = stream.Catch<MyType, MyException>(
 ex => /* create new MyType stream */);
...
stream.OnNext(item1);
...
stream.OnError(new MyException(“error”));
// continue with generated stream.

Thursday, March 19, 15
Adapted	 from	 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
In	 this	 case,	 we	 only	 want	 to	 watch	 for	 MyExcepDon	 instances.	 The	 funcDon	 is	 passed	 the	 caught	 excepDon	 “ex”	 and	 it	 must	 return	 a	 new	 stream	 of	 the	 same	 “MyType”.

31

There is also a Finally method.
Analogous to
 try {...} finally {...}
clauses.

Thursday, March 19, 15
Adapted	 from	 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html

32

OnErrorResumeNext: Swallows
exception, continues with alternative
stream(s).

public static IObservable<TSource> OnErrorResumeNext<TSource>(
 this IObservable<TSource> first,
 IObservable<TSource> second) {...}

public static IObservable<TSource> OnErrorResumeNext<TSource>(
params IObservable<TSource>[] sources) {...}
...

Thursday, March 19, 15
Adapted	 from	 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
2	 of	 the	 3	 variants.

33

Retry: Are some exceptions expected, e.g.,
I/O “hiccups”. Keeps trying. Optional max
retries.

public static void RetrySample<T>(
 IObservable<T> source)
{
 source.Retry(4) // retry up to 4 times.
 .Subscribe(t => Console.WriteLine(t));
 Console.ReadKey();
}

Thursday, March 19, 15
Adapted	 from	 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html

CSP & Rx:
Failure management

is local to streams,
mixed with domain logic.

34

Thursday, March 19, 15

What CSP-derived and Rx concurrency systems do, they do well, but we need a larger strategy for reactive resiliency
at scale.

Before we consider such strategies, let’s discuss another technique.

#2
Prevent
common
problems.

35

Thursday, March 19, 15

This is how we’ve always done it, right?

Reactive
Streams

Thursday, March 19, 15

Reactive Streams extend the capabilities of CSP channels and Rx by addressing flow control concerns.

Reactive Streams

37

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

Bounded	 or	 Unbounded	 Queue?

Streams (data flows) are a natural model for many
distributed problems, i.e., one-way CSP channels at scale.

Thursday, March 19, 15

You want a queue in the middle of producer and consumer to buffer events and enable asynchrony, but should that
queue be bounded or unbounded? If unbounded, eventually, it will grow to exhaust memory. If bounded, what should
happen when it’s full? Should the producer just drop messages, block, crash...?

Reactive Streams

38

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

Bounded	 Queue

back
pressure

back
pressure

back
pressure

http://www.reactive-streams.org/

Thursday, March 19, 15

The key element of reactive streams (over any others...) is the notion of back pressure, where the producer and
consumer coordinate on the rate of event delivery.

http://www.reactive-streams.org/
http://www.reactive-streams.org/

39

•No OoM errors (unbounded queue).
•No arbitrary dropped events or blocking
(bounded).
•You decide when and where to drop
events or do something else.
-Enables strategic flow control.

Back pressure:

Thursday, March 19, 15
Benefits	 of	 back	
pressure.

40

•Is it push or pull?
•Both - push most of the time, pull when
flow control between producer &
consumer is necessary.

Back pressure:

Thursday, March 19, 15
ClarificaDon	 of	 an	 implementaDon	
detail.

#3
Leverage types

to prevent errors.

41

Thursday, March 19, 15

This is how we’ve always done it, right?

Express what’s really happening
using types.

42

Can we prevent invalid states
at compile time?

Thursday, March 19, 15

First, let’s at least be honest with the reader about what’s actually happening in blocks of code.

When code raises exceptions:

43

case class Order(
 id: Long, cost: Money, items: Seq[(Int,SKU)])

object Order {
 def parse(string: String): Try[Order] = Try {
 val array = string.split("\t")
 if (bad(array)) throw new ParseError(string)
 new Order(...)
 }
 private def bad(array: Array[String]): Boolean = {...}
}

Thursday, March 19, 15
IdiomaDc	 Scala	 for	 “defensive”	 parsing	 of	 incoming	 data	 as	 strings.	 Wrap	 the	 parsing	 and	 construcDon	 logic	 in	 a	 Try	 {...}.	 Note	 the	 capital	 T;	 this	 will	 construct	 a	 Try	 instance,	 either	 a	 subclass	 Success,	 if	 everything	 works,	 or	
a	 Failure,	 if	 an	 excepDon	 is	 thrown.
See	 the	 github	 repo	 for	 this	 presentaDon	 for	 a	 complete	 example:	 hfps://github.com/deanwampler/PresentaDons

Latency? Use Futures

44

• Or equivalents, like go blocks.

case class Account(
 id: Long, orderIds: Seq[Long])
...

def getAccount(id: Long): Future[Account] =
 Future { /* Web service, DB query, etc... */ }

def getOrders(ids: Seq[Long]): Future[Seq[Order]] =
 Future { /* Web service, DB query, etc... */ }
...

Thursday, March 19, 15
See	 the	 github	 repo	 for	 this	 presentaDon	 for	 a	 complete	 example:	 hfps://github.com/deanwampler/
PresentaDons

Latency? Use Futures
• Or equivalents, like go blocks.

45

...
def ordersForAccount(accountId: Long): Future[Seq[Order]] =
 for {
 account <- getAccount(accountId)
 orders <- getOrders(account.orderIds)
 } yield orders.toVector

Thursday, March 19, 15
Futures	 can	 be	 sequenced	 “monadically”,	 so	 our	 code	 has	 a	 nice	 synchronous	 feel	 to	 it,	 but	 we	 can	 exploit	 async.	 execuDon.	 “yield”	 specifies	 what’s	 returned,	 which	 will	 actually	 be	 wrapped	 in	 another	 Future	 by	 the	 for	
comprehension.	 We	 convert	 orders	 to	 a	 Vector	 (a	 kind	 of	 Seq),	 which	 is	 a	 very	 efficient	 data	 structure	 in	 Scala.
See	 the	 github	 repo	 for	 this	 presentaDon	 for	 a	 complete	 example:	 hfps://github.com/deanwampler/PresentaDons

Latency? Use Futures
• Or equivalents, like go blocks.

46

val accountId = ...
val ordersFuture = ordersForAccount(accountId)

ordersFuture.onSuccess {
 case orders =>
 println(s"#$accountId: $orders")
}
ordersFuture.onFailure {
 case exception => println(s"#$accountId: " +
 "Failed to process orders: $exception")
}

Thursday, March 19, 15
See	 the	 github	 repo	 for	 this	 presentaDon	 for	 a	 complete	 example:	 hfps://github.com/deanwampler/
PresentaDons

Use types to
enforce correctness.

47

Thursday, March 19, 15

Functional
Reactive

Programming
Thursday, March 19, 15

On the subject of type safety, let’s briefly discuss FRP. It was invented in the Haskell community, where there’s a
strong commitment to type safety as a tool for correctness.

Represent evolving state by time-varying
values.

49

Reactor.flow { reactor =>
 val path = new Path(
 (reactor.await(mouseDown)).position)
 reactor.loopUntil(mouseUp) {
 val m = reactor.awaitNext(mouseMove)
 path.lineTo(m.position)
 draw(path)
 }
 path.close()
 draw(path)
}

From Deprecating the Observer

Pattern with Scala.React.

Thursday, March 19, 15
Draw	 a	 line	 on	 a	 UI	 from	 the	 iniDal	 point	 to	 the	 current	 mouse	 point,	 as	 the	 mouse	 moves.
This	 API	 is	 from	 a	 research	 paper.	 I	 could	 have	 used	 Elm	 (FRP	 for	 JavaScript)	 or	 one	 of	 the	 Haskell	 FRP	 APIs	 (where	 FRP	 was	 pioneered),	 but	 this	 DSL	 is	 reasonably	 easy	 to	 understand.
Here,	 we	 have	 a	 stream	 of	 data	 points,	 so	 it	 resembles	 Rx	 in	 its	 concepts.

http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf

Can you declaratively
prevent errors?

50

Sculthorpe and Nilsson, Safe functional reactive
programming through dependent types

Thursday, March 19, 15

True to its Haskell routes, FRP tries to use the type system to explicitly
http://dl.acm.org/citation.cfm?doid=1596550.1596558

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

#4
Manage errors separately.

51

Thursday, March 19, 15

Actor Model

Thursday, March 19, 15

53

(Akka example - akka.io)

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

Thursday, March 19, 15
This	 is	 how	 they	 look	 in	 Akka,	 where	 there	 is	 a	 layer	 of	 indirecDon,	 the	 ActorRef,	 between	 actors.	 This	 helps	 with	 the	 drawback	 that	 actors	 know	 each	 other’s	 idenDDes,	 but	 mostly	 it’s	 there	 to	 make	 the	 system	 more	
resilient,	 where	 a	 failed	 actor	 can	 be	 restarted	 while	 keeping	 the	 same	 ActorRef	 that	 other	 actors	 hold	 on	 to.	

http://akka.io
http://akka.io

54

Superficially similar to channels.

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

Thursday, March 19, 15
This	 is	 how	 they	 look	 in	 Akka,	 where	 there	 is	 a	 layer	 of	 indirecDon,	 the	 ActorRef,	 between	 actors.	 This	 helps	 with	 the	 drawback	 that	 actors	 know	 each	 other’s	 idenDDes,	 but	 mostly	 it’s	 there	 to	 make	 the	 system	 more	
resilient,	 where	 a	 failed	 actor	 can	 be	 restarted	 while	 keeping	 the	 same	 ActorRef	 that	 other	 actors	 hold	 on	 to.	

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

55

In response to a message, an Actor can:

•Send 0-n msgs to other actors.
•Create 0-n new actors.
•Change its behavior for responding to the
next message.

Thursday, March 19, 15

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

56

Messages are:

•Handled asynchronously.
•Usually untyped.

Thursday, March 19, 15

CSP and Actors
are dual

57

Thursday, March 19, 15

CSP Processes are anonymous

58

... while actors have identities.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

Thursday, March 19, 15

CSP messaging is synchronous

59

A sender and receiver must rendezvous,
while actor messaging is asynchronous.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

Thursday, March 19, 15
In	 actors,	 the	 receiver	 doesn’t	 even	 need	 to	 be	 ready	 to	 receive	 messages	
yet.

... but CSP and Actors
can implement

each other

60

Thursday, March 19, 15

61

An actor mailbox looks a lot like a
channel.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

Thursday, March 19, 15
In	 actors,	 the	 receiver	 doesn’t	 even	 need	 to	 be	 ready	 to	 receive	 messages	
yet.

CSP Processes are anonymous

62

Actor identity can be hidden behind a
lookup service.
An actor can be used as a channel , i.e., a
“message broker”.

Thursday, March 19, 15

CSP Processes are anonymous

63

Conversely, a reference to the channel is
often shared between a sender and
receiver.

Thursday, March 19, 15

CSP messaging is synchronous

64

Actor messaging can be
synchronous if the sender
uses a blocking message
send that waits for a
response. blocking

message

Actor Actor

Reply

Thursday, March 19, 15
Most	 actor	 systems	 provide	 a	 blocking	 message	 send	 primiDve	 where	 the	 “thread”	 blocks	 unDl	 an	 answer	 message	 is	
received.

CSP messaging is synchronous

65

Buffered channels behave
asynchronously.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

Thursday, March 19, 15
In	 actors,	 the	 receiver	 doesn’t	 even	 need	 to	 be	 ready	 to	 receive	 messages	
yet.

Erlang
and

Akka

Thursday, March 19, 15

67

Distributed Actors

•Generalize actor identities to URLs.
•But distribution adds a number of failure
modes...

Thursday, March 19, 15
URL	 vs.	 URI??	 See	 hfp://danielmiessler.com/study/
url_vs_uri/

Failure-handling
in Actor Systems

68

Thursday, March 19, 15

Let it Crash!

69

Thursday, March 19, 15

70

Erlang introduced supervisors
A hierarchy of actors that manage each
“worker” actor’s lifecycle.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

Thursday, March 19, 15

71

Erlang introduced supervisors
Generalizes nicely to distributed actor
systems.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

Thursday, March 19, 15

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

72

X

Thursday, March 19, 15

73

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Thursday, March 19, 15

74

Actor 131 Actor 132

Supervisor 1

Actor 13

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Thursday, March 19, 15

Advantages

75

• Enables strategic error handling across
module boundaries.
• Separates normal and error logic.
• Failure handling is configurable and

pluggable.

Thursday, March 19, 15

Criticisms of Actors

76

Thursday, March 19, 15

Rich Hickey

77

[Actors] still couple the producer with the consumer. Yes,
one can emulate or implement certain kinds of queues
with actors, but since any actor mechanism already
incorporates a queue, it seems evident that queues are
more primitive. ... and channels are oriented towards the
flow aspects of a system.

Thursday, March 19, 15
From	 hfp://clojure.com/blog/2013/06/28/clojure-‐core-‐async-‐
channels.html

Other Criticisms

78

•Unbounded queues (mailboxes).
• Internal mutating state (hidden in function closures).
•Must send message to deref state. What if the mailbox is

backed up?
• Couples a queue, mutating state, and a process.
•Effectively “asynchronous OOP”.

Thursday, March 19, 15
From	 hfps://github.com/halgari/clojure-‐conj-‐2013-‐core.async-‐examples/blob/master/src/clojure_conj_talk/core.clj
Most	 of	 these	 are	 based	 on	 his	 toy	 example,	 not	 a	 producDon-‐calibre	 implementaDon.

I’ll add...

79

•Most actor systems are untyped.
•Typed channels add that extra bit of type safety.

Thursday, March 19, 15

Answers

80

Thursday, March 19, 15

The fact that Actors and CSP can be used to implement each other suggests that the criticisms are less than meets
the eye...

Unbounded queues

81

•Bounded queues are available in production-ready Actor
implementations.
•Reactive Streams with back pressure enable strategic

management of flow.
–Can be implemented with Actors...

Thursday, March 19, 15
In	 other	 words,	 ignore	 toy	 examples.	 The	 flow-‐orientaDon	 of	 CSP	 is	 an	 advantage,	 compared	 to	 Actors,	 but	 I	 think	 the	 emerging	 ReacDve	 Streams	 implemented	 on	 top	 of	 Actors	 gives	 you	 the	 best	 of	 both	 worlds.	 You	 can	
work	 at	 the	 abstracDon	 level	 that’s	 most	 appropriate.

Akka streams provide a higher-level abstraction on top of
Actors with better type safety (effectively, typed
channels) and operational semantics.

Reactive Streams

82

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

Bounded	 Queue

back
pressure

back
pressure

back
pressure

Thursday, March 19, 15
The	 flow-‐orientaDon	 of	 CSP	 is	 an	 advantage,	 compared	 to	 Actors,	 but	 I	 think	 the	 emerging	 ReacDve	 Streams	 implemented	 on	 top	 of	 Actors	 gives	 you	 the	 best	 of	 both	 worlds.	 You	 can	 work	 at	 the	 abstracDon	 level	 that’s	
most	 appropriate.

Internal mutating state

83

•Actually an advantage.
•Encapsulation of mutating state within an Actor is a

systematic approach to large-scale, reliable management
of state evolution.
• “Asynchronous OOP” is a fine strategy when it fits your

problem.

Thursday, March 19, 15

Must send message to get state

84

•Also an advantage.
• Protocol for coordinating and separating reads and

writes.
–But you could also have an actor send the new state as

a response message to the sender or broadcast to
“listeners”.

Thursday, March 19, 15

Couples a queue, mutable state, and a
process

85

• Production systems provide as much decoupling as you
need.

Thursday, March 19, 15

86

•While typed actor experiments continue, I think of actors
as analogs of OS processes:
•Clear abstraction boundaries.
•Must be paranoid about the data you’re ingesting.

Actors are untyped

Thursday, March 19, 15

87

•... but actually, Akka is adding typed ActorRefs.

Actors are untyped

Thursday, March 19, 15

How should
we handle

failures?

Thursday, March 19, 15

Large-scale systems must
separate normal processing

from error-handling strategy.

89

Thursday, March 19, 15

Not all concurrency problems require something as sweeping as an actor system with supervisors, but at a certain
scale, you’ll need some sort of separation between your recovery strategy and the normal processing logic.

Use Actors or...

90

Thursday, March 19, 15

91

https://github.com/Netflix/Hystrix

Thursday, March 19, 15

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix

92

• Better separation of concerns.
–Failure handling delegated to a separate
component or service.

• Strategy for failure handling can be
pluggable.
• Better scalability...

Thursday, March 19, 15

93

• Better scalability:
A #1

Normal Error

A #2

Normal Error

B #1

Normal Error

B #2

Normal Error

vs.

A #1

Normal

A Err

Error

A #2

Normal

B #1

Normal

B Err

Error

B #2

Normal

Thursday, March 19, 15

Removed duplicated error-handling logic also makes the normal logic processes smaller, so you can run more of
them, etc.

Conclusions

Thursday, March 19, 15

Actors

95

-Untyped interfaces.
-More OOP than FP.
-Overhead higher than function calls.

Thursday, March 19, 15

Actors

96

-Actually quite low level:
•Analog of OS processes.
•Reactive Streams is a functional, higher-

level abstraction that can be built on
actors.

Thursday, March 19, 15

Actors

97

+Industry proven scalability and resiliency.
+Native asynchrony.
+Distribution is a natural extension.

Best-in-class strategy for failure handling.

Thursday, March 19, 15

CSP, Rx, etc.

98

-Limited failure handling facilities.
-Distributed channels?

Thursday, March 19, 15
I	 would	 include	 futures	 in	 the	 list	 of	
derivaDves.

CSP, Rx, etc.

99

+Emphasize data flows.
+Typed channels.

Optimal replacement for multithreaded
(intra-process) programming.

Thursday, March 19, 15

©Typesafe 2014-2015, All Rights Reserved

http://typesafe.com/reactive-big-data
dean.wampler@typesafe.com

poloyglotprogramming.com/talks

Thursday, March 19, 15

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai
Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2012-2015, Dean Wampler. All Rights Reserved.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
http://poloyglotprogramming.com/talks
http://poloyglotprogramming.com/talks

Bonus Slides

101

Thursday, March 19, 15

Message passing
via channels

Communicating
Sequential

Processes

Thursday, March 19, 15

See
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

and other references in the “bonus” slides at the end of the deck. I also have some slides that describe the core
primitives of CSP that I won’t have time to cover.

103

Thursday, March 19, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from the initial
programming language he defined in the 70’s to a theoretical model with a well-defined calculus by the mid 80’s
(with the help of other people, too). The book itself has been subsequently refined. The PDF is available for free.

104

Thursday, March 19, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
This treatment is perhaps more accessible than Hoare’s book.

CSP
Operators

105

Thursday, March 19, 15

Prefix

106

A process communicates event a to its
environment. Afterwards the process
behaves like P.

a⟶P

Thursday, March 19, 15
A	 process	 communicates	

Deterministic Choice

107

A process communicates event a or b to
its environment. Afterwards the process
behaves like P or Q, respectively.

a⟶P ☐ b⟶Q

Thursday, March 19, 15

Nondeterministic Choice

108

The process doesn’t get to choose
which is communicated, a or b.

a⟶P ⊓ b⟶Q

Thursday, March 19, 15

Interleaving

109

Completely independent processes. The
events seen by them are interleaved in
time.

P ||| Q

Thursday, March 19, 15

Interface Parallel

110

Represents synchronization on event a
between P and Q.

P |[{a}]| Q

Thursday, March 19, 15

Hiding

111

A form of abstraction, by making some
events unobservable. P hides events a.

a⟶P \{a}

Thursday, March 19, 15

References

112

Thursday, March 19, 15

113

Thursday, March 19, 15

Lots of interesting practical ideas for combining functional programming and reactive approaches to class Domain-
Driven Design by Eric Evans.

114

Thursday, March 19, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from a programming
language to a theoretical model with a well-defined calculus. The book itself has been subsequently refined. The PDF
is available for free.

115

Thursday, March 19, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
The treatment is more accessible than Hoare’s book.

116

Thursday, March 19, 15

A survey of theoretical models of distributed computing, starting with a summary of lambda calculus, then discussing
the pi, join, and ambient calculi. Also discusses the actor model. The treatment is somewhat dry and could use more
discussion of real-world implementations of these ideas, such as the Actor model in Erlang and Akka.

117

Thursday, March 19, 15

Gul Agha was a grad student at MIT during the 80s and worked on the actor model with Hewitt and others. This book
is based on his dissertation.
It doesn’t discuss error handling, actor supervision, etc. as these concepts .

His thesis, http://dspace.mit.edu/handle/1721.1/6952, the basis for his book,http://mitpress.mit.edu/books/actors

See also Paper for a survey course with Rajesh Karmani, http://www.cs.ucla.edu/~palsberg/course/cs239/papers/
karmani-agha.pdf

118

Thursday, March 19, 15

Survey of the classic graph traversal algorithms, algorithms for detecting failures in a cluster, leader election, etc.

119

Thursday, March 19, 15

 A less comprehensive and formal, but more intuitive approach to fundamental algorithms.

120

Thursday, March 19, 15

Comprehensive and somewhat formal like Raynal’s book, but more focused on modeling common failures in real
systems.

121

Thursday, March 19, 15

1992: Yes, “Reactive” isn’t new ;) This book is lays out a theoretical model for specifying and proving “reactive”
concurrent systems based on temporal logic. While its goal is to prevent logic errors, It doesn’t discuss handling
failures from environmental or other external causes in great depth.

122

Thursday, March 19, 15

1988: Another treatment of concurrency using algebra. It’s not based on CSP, but it has similar constructs.

123

Thursday, March 19, 15

A recent text that applies combinatorics (counting things) and topology (properties of geometric shapes) to the
analysis of distributed systems. Aims to be pragmatic for real-world scenarios, like networks and other physical
systems where failures are practical concerns.

124

Thursday, March 19, 15

http://mitpress.mit.edu/books/engineering-safer-world
Farther afield, this book discusses safety concerns from a systems engineering perspective.

Others

125

• Rob Pike: Go Concurrency Patterns
–http://www.youtube.com/watch?v=f6kdp27TYZs&feature=youtu.be

• Comparison of Clojure Core Async and Go
–http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-

go-a-code-comparison/

Thursday, March 19, 15

http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

