
Error Handling in
Reactive Systems
Dean Wampler, Ph.D.
Typesafe

©Typesafe 2014-2015, All Rights Reserved

Thursday, March 19, 15

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai
Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2000-2015, Dean Wampler. All Rights Reserved.

2

dean.wampler@typesafe.com
polyglotprogramming.com/talks

@deanwampler

Thursday, March 19, 15

http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920021667.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920033073.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do
http://shop.oreilly.com/product/0636920023555.do

Typesafe
Reactive Big Data

3

typesafe.com/reactive-big-data

Thursday, March 19, 15

This is my role. We’re just getting started, but talk to me if you’re interested in what we’re doing.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data

4

Thursday, March 19, 15

Want to learn FP? Here’s a great way to learn.

5

Thursday, March 19, 15

Want to learn Reactive? Here’s a great way to learn.

6

Responsive

Elastic Resilient

Message Driven

Thursday, March 19, 15

7

Responsive

Elastic Resilient

Message Driven

Failures are
first class?

Thursday, March 19, 15

Truly resilient systems must make failures first class citizens, in some sense of the word, because they are inevitable
when the systems are big enough and run long enough.

8

Thursday, March 19, 15

I’ve structured parts of this talk around points made in Debasish’s new book, which has lots of interesting practical
ideas for combining functional programming and reactive approaches with classic Domain-Driven Design by Eric
Evans.

#1
Failure-handling

mixed with
domain logic.

9

Thursday, March 19, 15

This is how we’ve always done it, right?

10

Best for narrowly-scoped errors.
–Parsing user input.
–Transient stream interruption.
–Failover from one stream to a “backup”.

Thursday, March 19, 15

11

Limited to per-stream handling. Hard to
implement a larger strategy.

Thursday, March 19, 15

Message passing
via channels

Communicating
Sequential

Processes

Thursday, March 19, 15

See
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

and other references in the “bonus” slides at the end of the deck. I also have some slides that describe the core
primitives of CSP that I won’t have time to cover.

“Don’t communicate
by sharing memory,

share memory
by communicating”

13

-- Rob Pike

Thursday, March 19, 15

http://www.youtube.com/watch?v=f6kdp27TYZs&feature=youtu.be

From a talk Pike did at Google I/O 2012.

CSP: inspired Go &
Clojure’s core.async

Thursday, March 19, 15

15

Get
Value

Put
Value

Blocking
Channel

•Block on put if no one to get.
•Channel can be typed.
•Avoid passing mutable state!

Thursday, March 19, 15
Simplest	
 channel,	
 a	
 blocking,	
 1-­‐element	
 “connector”	
 used	
 to	
 share	
 values,	
 one	
 at	
 a	
 Dme	
 between	
 a	
 source	
 and	
 a	
 waiDng	
 sync.	
 The	
 put	
 operaDon	
 blocks	
 if	
 there	
 is	
 no	
 sync	
 waiDng	
 on	
 the	
 other	
 end.

The	
 channel	
 can	
 be	
 typed	
 (Go	
 lang).	

Doesn’t	
 prevent	
 the	
 usual	
 problems	
 if	
 mutable	
 state	
 is	
 passed	
 over	
 a	
 channel!

16

•When full:
•Block on put.
•Drop newest put value.
•Drop oldest (“sliding” window).

Get
Value

Put
Value

Bounded,
Nonblocking

Channel

N = 3

Thursday, March 19, 15
A	
 non-­‐blocking	
 queue,	
 but	
 bounded	
 in	
 size.	
 Normally,	
 N	
 wouldn’t	
 be	
 this	
 small.	
 You	
 DON’T	
 want	
 it	
 to	
 be	
 infinite	
 either,	
 because	
 eventually	
 you’ll	
 fill	
 it	
 and	
 run	
 out	
 of	
 memory!	
 So,	
 what	
 should	
 you	
 do	
 when	
 it’s	
 full?	
 We’ll	
 come	
 back	
 to	
 this	
 quesDon	
 when	
 we	
 discuss	
 ReacDve	
 Streams	

later.

Go BlockGo Block

Get
Value

Put
Value

Bounded,
Nonblocking

Channel

N = 3

17

•Core Async: Go Blocks, Threads.
•Go: Go Routines.
•Analogous to futures.

Thursday, March 19, 15
So	
 far,	
 we	
 haven’t	
 supported	
 any	
 actual	
 concurrency.	
 I’m	
 using	
 “Go	
 Blocks”	
 here	
 to	
 represent	
 explicit	
 threads	
 in	
 Clojure,	
 when	
 running	
 on	
 the	
 JVM	
 and	
 you’re	
 willing	
 to	
 dedicate	
 a	
 thread	
 to	
 the	
 sequence	
 of	
 code,	
 or	
 core	
 async	
 “go	
 blocks”,	
 which	
 provide	
 thread-­‐like	
 async	
 behavior,	

but	
 share	
 real	
 threads.	
 This	
 is	
 the	
 only	
 opDon	
 for	
 clojure.js,	
 since	
 you	
 only	
 have	
 one	
 thread	
 period.	

Similarly	
 for	
 Go,	
 “go	
 blocks”	
 would	
 be	
 “go	
 rouDnes”.

In	
 all	
 cases,	
 they	
 are	
 analogous	
 to	
 Java/Scala	
 futures.

18

Go Block

Put
Value

Go Block

Put
Value Go Block

Get
Value

Bounded,
Nonblocking

Channel

N = 3

•Blocking or nonblocking.
•Like socket select.

Thursday, March 19, 15
You	
 can	
 “select’	
 on	
 several	
 channels,	
 analogous	
 to	
 socket	
 select.	
 I.e.,	
 read	
 from	
 the	
 next	
 channel	
 with	
 a	
 value.	
 In	
 go,	
 there	
 is	
 a	
 “select”	
 construct	
 for	
 this.	
 In	
 core	
 async,	
 there	
 are	
 the	
 “alt!”	
 (blocking)	
 and	
 “alt!!”	
 (nonblocking)	
 funcDons.

Fan	
 out	
 is	
 also	
 possible.

19

At this point, neither Go nor Core Async
have implemented distributed channels.

However, channels are often used
 to implement end points for

network and file I/O, etc.

Thursday, March 19, 15
In	
 other	
 words,	
 no	
 one	
 has	
 extended	
 the	
 channel	
 formalism	
 outside	
 process	
 boundaries	
 (compare	
 to	
 Actors...),	
 but	
 channels	
 are	
 oden	
 used	
 to	
 handle	
 blocking	
 I/O,	

etc.

Failure Handling
in

Core Async

20

Thursday, March 19, 15

The situation is broadly similar for Go.
Some items here are adapted from a private conversation with Alex Miller (@puredanger).

21

•The exception is passed to the function.
• If it returns non-nil, that value is put on
the channel.

Channel construction takes an optional
exception function.

Thursday, March 19, 15
Using	
 this	
 feature	
 is	
 almost	
 always	
 what	
 you	
 should	
 do,	
 because	
 you	
 have	
 almost	
 no	
 other	
 good	

opDons.

22

•Processing logic can span several threads!
•A general problem for concurrency
implemented using multithreading.

Which call stack?

Thursday, March 19, 15
Since	
 it’s	
 not	
 a	
 distributed	
 system,	
 core	
 async	
 only	
 needs	
 to	
 handle	
 errors	
 in	
 a	
 single	
 process,	
 but	
 you	
 sDll	
 can	
 have	
 mulDple	

threads.

23

Propagate exceptions back through
the channel.

Go Block

Get
Value

Go Block

Put
Value

Time

ExceptionHandle
Exception

Thursday, March 19, 15
One	
 possible	
 scheme	
 is	
 to	
 push	
 excepDons	
 back	
 through	
 the	
 channel	
 and	
 let	
 the	
 iniDalizing	
 go	
 block	
 decide	
 what	
 to	
 do.	
 It	
 might	
 rethrow	
 the	

excepDon.

Go Block

Handle
Exception

Go Block

Get
Value

Go Block

Put
Value

Time

Exception

Error
Channel

24

Propagate exceptions to a
special error channel.

Thursday, March 19, 15
Another	
 possible	
 scheme	
 is	
 to	
 send	
 excepDons	
 down	
 a	
 specialized	
 error	

channel.

25

Deadlock is possible unless timeouts are
used.

Put
Value

Blocking
Channel

???

Timeout

Thursday, March 19, 15

Reactive Extensions

Thursday, March 19, 15

I’ll look at C# examples, but all the Rx language implementations work similarly.

27

Observable

LINQ

filter …map

Async
Event Stream

Schedulers

Thursday, March 19, 15

Uses classic patterns
for exception handling,

with extensions.

28

Thursday, March 19, 15

29

OnError notification caught with a Catch
method.
•Switch to a second stream.

val stream = new Subject<MyType>();
val observer = stream.Catch(otherStream);
...
stream.OnNext(item1);
...
stream.OnError(new UnhappyException(“error”));
// continue with otherStream.

Thursday, March 19, 15
Adapted	
 from	
 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
“observer”	
 will	
 watch	
 for	
 raised	
 excepDons.	
 If	
 caught,	
 it	
 will	
 switch	
 to	
 “otherStream”.	
 OnNext	
 and	
 OnError	
 generate	
 events	
 onto	
 “stream”.

30

Variant for catching a specific exception,
with a function to construct a new
stream.

val stream = new Subject<MyType>();
val observer = stream.Catch<MyType, MyException>(
 ex => /* create new MyType stream */);
...
stream.OnNext(item1);
...
stream.OnError(new MyException(“error”));
// continue with generated stream.

Thursday, March 19, 15
Adapted	
 from	
 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
In	
 this	
 case,	
 we	
 only	
 want	
 to	
 watch	
 for	
 MyExcepDon	
 instances.	
 The	
 funcDon	
 is	
 passed	
 the	
 caught	
 excepDon	
 “ex”	
 and	
 it	
 must	
 return	
 a	
 new	
 stream	
 of	
 the	
 same	
 “MyType”.

31

There is also a Finally method.
Analogous to
 try {...} finally {...}
clauses.

Thursday, March 19, 15
Adapted	
 from	
 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html

32

OnErrorResumeNext: Swallows
exception, continues with alternative
stream(s).

public static IObservable<TSource> OnErrorResumeNext<TSource>(
 this IObservable<TSource> first,
 IObservable<TSource> second) {...}

public static IObservable<TSource> OnErrorResumeNext<TSource>(
params IObservable<TSource>[] sources) {...}
...

Thursday, March 19, 15
Adapted	
 from	
 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html
2	
 of	
 the	
 3	
 variants.

33

Retry: Are some exceptions expected, e.g.,
I/O “hiccups”. Keeps trying. Optional max
retries.

public static void RetrySample<T>(
 IObservable<T> source)
{
 source.Retry(4) // retry up to 4 times.
 .Subscribe(t => Console.WriteLine(t));
 Console.ReadKey();
}

Thursday, March 19, 15
Adapted	
 from	
 hfp://www.introtorx.com/content/v1.0.10621.0/11_AdvancedErrorHandling.html

CSP & Rx:
Failure management

is local to streams,
mixed with domain logic.

34

Thursday, March 19, 15

What CSP-derived and Rx concurrency systems do, they do well, but we need a larger strategy for reactive resiliency
at scale.

Before we consider such strategies, let’s discuss another technique.

#2
Prevent
common
problems.

35

Thursday, March 19, 15

This is how we’ve always done it, right?

Reactive
Streams

Thursday, March 19, 15

Reactive Streams extend the capabilities of CSP channels and Rx by addressing flow control concerns.

Reactive Streams

37

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

Bounded	
 or	
 Unbounded	
 Queue?

Streams (data flows) are a natural model for many
distributed problems, i.e., one-way CSP channels at scale.

Thursday, March 19, 15

You want a queue in the middle of producer and consumer to buffer events and enable asynchrony, but should that
queue be bounded or unbounded? If unbounded, eventually, it will grow to exhaust memory. If bounded, what should
happen when it’s full? Should the producer just drop messages, block, crash...?

Reactive Streams

38

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

Bounded	
 Queue

back
pressure

back
pressure

back
pressure

http://www.reactive-streams.org/

Thursday, March 19, 15

The key element of reactive streams (over any others...) is the notion of back pressure, where the producer and
consumer coordinate on the rate of event delivery.

http://www.reactive-streams.org/
http://www.reactive-streams.org/

39

•No OoM errors (unbounded queue).
•No arbitrary dropped events or blocking
(bounded).
•You decide when and where to drop
events or do something else.
-Enables strategic flow control.

Back pressure:

Thursday, March 19, 15
Benefits	
 of	
 back	

pressure.

40

•Is it push or pull?
•Both - push most of the time, pull when
flow control between producer &
consumer is necessary.

Back pressure:

Thursday, March 19, 15
ClarificaDon	
 of	
 an	
 implementaDon	

detail.

#3
Leverage types

to prevent errors.

41

Thursday, March 19, 15

This is how we’ve always done it, right?

Express what’s really happening
using types.

42

Can we prevent invalid states
at compile time?

Thursday, March 19, 15

First, let’s at least be honest with the reader about what’s actually happening in blocks of code.

When code raises exceptions:

43

case class Order(
 id: Long, cost: Money, items: Seq[(Int,SKU)])

object Order {
 def parse(string: String): Try[Order] = Try {
 val array = string.split("\t")
 if (bad(array)) throw new ParseError(string)
 new Order(...)
 }
 private def bad(array: Array[String]): Boolean = {...}
}

Thursday, March 19, 15
IdiomaDc	
 Scala	
 for	
 “defensive”	
 parsing	
 of	
 incoming	
 data	
 as	
 strings.	
 Wrap	
 the	
 parsing	
 and	
 construcDon	
 logic	
 in	
 a	
 Try	
 {...}.	
 Note	
 the	
 capital	
 T;	
 this	
 will	
 construct	
 a	
 Try	
 instance,	
 either	
 a	
 subclass	
 Success,	
 if	
 everything	
 works,	
 or	

a	
 Failure,	
 if	
 an	
 excepDon	
 is	
 thrown.
See	
 the	
 github	
 repo	
 for	
 this	
 presentaDon	
 for	
 a	
 complete	
 example:	
 hfps://github.com/deanwampler/PresentaDons

Latency? Use Futures

44

• Or equivalents, like go blocks.

case class Account(
 id: Long, orderIds: Seq[Long])
...

def getAccount(id: Long): Future[Account] =
 Future { /* Web service, DB query, etc... */ }

def getOrders(ids: Seq[Long]): Future[Seq[Order]] =
 Future { /* Web service, DB query, etc... */ }
...

Thursday, March 19, 15
See	
 the	
 github	
 repo	
 for	
 this	
 presentaDon	
 for	
 a	
 complete	
 example:	
 hfps://github.com/deanwampler/
PresentaDons

Latency? Use Futures
• Or equivalents, like go blocks.

45

...
def ordersForAccount(accountId: Long): Future[Seq[Order]] =
 for {
 account <- getAccount(accountId)
 orders <- getOrders(account.orderIds)
 } yield orders.toVector

Thursday, March 19, 15
Futures	
 can	
 be	
 sequenced	
 “monadically”,	
 so	
 our	
 code	
 has	
 a	
 nice	
 synchronous	
 feel	
 to	
 it,	
 but	
 we	
 can	
 exploit	
 async.	
 execuDon.	
 “yield”	
 specifies	
 what’s	
 returned,	
 which	
 will	
 actually	
 be	
 wrapped	
 in	
 another	
 Future	
 by	
 the	
 for	

comprehension.	
 We	
 convert	
 orders	
 to	
 a	
 Vector	
 (a	
 kind	
 of	
 Seq),	
 which	
 is	
 a	
 very	
 efficient	
 data	
 structure	
 in	
 Scala.
See	
 the	
 github	
 repo	
 for	
 this	
 presentaDon	
 for	
 a	
 complete	
 example:	
 hfps://github.com/deanwampler/PresentaDons

Latency? Use Futures
• Or equivalents, like go blocks.

46

val accountId = ...
val ordersFuture = ordersForAccount(accountId)

ordersFuture.onSuccess {
 case orders =>
 println(s"#$accountId: $orders")
}
ordersFuture.onFailure {
 case exception => println(s"#$accountId: " +
 "Failed to process orders: $exception")
}

Thursday, March 19, 15
See	
 the	
 github	
 repo	
 for	
 this	
 presentaDon	
 for	
 a	
 complete	
 example:	
 hfps://github.com/deanwampler/
PresentaDons

Use types to
enforce correctness.

47

Thursday, March 19, 15

Functional
Reactive

Programming
Thursday, March 19, 15

On the subject of type safety, let’s briefly discuss FRP. It was invented in the Haskell community, where there’s a
strong commitment to type safety as a tool for correctness.

Represent evolving state by time-varying
values.

49

Reactor.flow { reactor =>
 val path = new Path(
 (reactor.await(mouseDown)).position)
 reactor.loopUntil(mouseUp) {
 val m = reactor.awaitNext(mouseMove)
 path.lineTo(m.position)
 draw(path)
 }
 path.close()
 draw(path)
}

From Deprecating the Observer

Pattern with Scala.React.

Thursday, March 19, 15
Draw	
 a	
 line	
 on	
 a	
 UI	
 from	
 the	
 iniDal	
 point	
 to	
 the	
 current	
 mouse	
 point,	
 as	
 the	
 mouse	
 moves.
This	
 API	
 is	
 from	
 a	
 research	
 paper.	
 I	
 could	
 have	
 used	
 Elm	
 (FRP	
 for	
 JavaScript)	
 or	
 one	
 of	
 the	
 Haskell	
 FRP	
 APIs	
 (where	
 FRP	
 was	
 pioneered),	
 but	
 this	
 DSL	
 is	
 reasonably	
 easy	
 to	
 understand.
Here,	
 we	
 have	
 a	
 stream	
 of	
 data	
 points,	
 so	
 it	
 resembles	
 Rx	
 in	
 its	
 concepts.

http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf
http://infoscience.epfl.ch/record/176887/files/DeprecatingObservers2012.pdf

Can you declaratively
prevent errors?

50

Sculthorpe and Nilsson, Safe functional reactive
programming through dependent types

Thursday, March 19, 15

True to its Haskell routes, FRP tries to use the type system to explicitly
http://dl.acm.org/citation.cfm?doid=1596550.1596558

http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/

#4
Manage errors separately.

51

Thursday, March 19, 15

Actor Model

Thursday, March 19, 15

53

(Akka example - akka.io)

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

Thursday, March 19, 15
This	
 is	
 how	
 they	
 look	
 in	
 Akka,	
 where	
 there	
 is	
 a	
 layer	
 of	
 indirecDon,	
 the	
 ActorRef,	
 between	
 actors.	
 This	
 helps	
 with	
 the	
 drawback	
 that	
 actors	
 know	
 each	
 other’s	
 idenDDes,	
 but	
 mostly	
 it’s	
 there	
 to	
 make	
 the	
 system	
 more	

resilient,	
 where	
 a	
 failed	
 actor	
 can	
 be	
 restarted	
 while	
 keeping	
 the	
 same	
 ActorRef	
 that	
 other	
 actors	
 hold	
 on	
 to.	

http://akka.io
http://akka.io

54

Superficially similar to channels.

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

Thursday, March 19, 15
This	
 is	
 how	
 they	
 look	
 in	
 Akka,	
 where	
 there	
 is	
 a	
 layer	
 of	
 indirecDon,	
 the	
 ActorRef,	
 between	
 actors.	
 This	
 helps	
 with	
 the	
 drawback	
 that	
 actors	
 know	
 each	
 other’s	
 idenDDes,	
 but	
 mostly	
 it’s	
 there	
 to	
 make	
 the	
 system	
 more	

resilient,	
 where	
 a	
 failed	
 actor	
 can	
 be	
 restarted	
 while	
 keeping	
 the	
 same	
 ActorRef	
 that	
 other	
 actors	
 hold	
 on	
 to.	

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

55

In response to a message, an Actor can:

•Send 0-n msgs to other actors.
•Create 0-n new actors.
•Change its behavior for responding to the
next message.

Thursday, March 19, 15

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

56

Messages are:

•Handled asynchronously.
•Usually untyped.

Thursday, March 19, 15

CSP and Actors
are dual

57

Thursday, March 19, 15

CSP Processes are anonymous

58

... while actors have identities.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

Thursday, March 19, 15

CSP messaging is synchronous

59

A sender and receiver must rendezvous,
while actor messaging is asynchronous.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

Thursday, March 19, 15
In	
 actors,	
 the	
 receiver	
 doesn’t	
 even	
 need	
 to	
 be	
 ready	
 to	
 receive	
 messages	

yet.

... but CSP and Actors
can implement

each other

60

Thursday, March 19, 15

61

An actor mailbox looks a lot like a
channel.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

ActorRef

Mail box
(message

queue)

Handle
a message

Send
a message

Actor Actor

Thursday, March 19, 15
In	
 actors,	
 the	
 receiver	
 doesn’t	
 even	
 need	
 to	
 be	
 ready	
 to	
 receive	
 messages	

yet.

CSP Processes are anonymous

62

Actor identity can be hidden behind a
lookup service.
An actor can be used as a channel , i.e., a
“message broker”.

Thursday, March 19, 15

CSP Processes are anonymous

63

Conversely, a reference to the channel is
often shared between a sender and
receiver.

Thursday, March 19, 15

CSP messaging is synchronous

64

Actor messaging can be
synchronous if the sender
uses a blocking message
send that waits for a
response. blocking

message

Actor Actor

Reply

Thursday, March 19, 15
Most	
 actor	
 systems	
 provide	
 a	
 blocking	
 message	
 send	
 primiDve	
 where	
 the	
 “thread”	
 blocks	
 unDl	
 an	
 answer	
 message	
 is	

received.

CSP messaging is synchronous

65

Buffered channels behave
asynchronously.

Go BlockGo Block

Put
Value

Bounded,
Nonblocking

Channel

Get
Value

N = 3

Thursday, March 19, 15
In	
 actors,	
 the	
 receiver	
 doesn’t	
 even	
 need	
 to	
 be	
 ready	
 to	
 receive	
 messages	

yet.

Erlang
and

Akka

Thursday, March 19, 15

67

Distributed Actors

•Generalize actor identities to URLs.
•But distribution adds a number of failure
modes...

Thursday, March 19, 15
URL	
 vs.	
 URI??	
 See	
 hfp://danielmiessler.com/study/
url_vs_uri/

Failure-handling
in Actor Systems

68

Thursday, March 19, 15

Let it Crash!

69

Thursday, March 19, 15

70

Erlang introduced supervisors
A hierarchy of actors that manage each
“worker” actor’s lifecycle.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

Thursday, March 19, 15

71

Erlang introduced supervisors
Generalizes nicely to distributed actor
systems.

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

Thursday, March 19, 15

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Actor 131 Actor 132

Supervisor 1

Actor 13

72

X

Thursday, March 19, 15

73

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Thursday, March 19, 15

74

Actor 131 Actor 132

Supervisor 1

Actor 13

Supervisor 1

Actor 12

Actor 111 Actor 112

Supervisor 11

Thursday, March 19, 15

Advantages

75

• Enables strategic error handling across
module boundaries.
• Separates normal and error logic.
• Failure handling is configurable and

pluggable.

Thursday, March 19, 15

Criticisms of Actors

76

Thursday, March 19, 15

Rich Hickey

77

[Actors] still couple the producer with the consumer. Yes,
one can emulate or implement certain kinds of queues
with actors, but since any actor mechanism already
incorporates a queue, it seems evident that queues are
more primitive. ... and channels are oriented towards the
flow aspects of a system.

Thursday, March 19, 15
From	
 hfp://clojure.com/blog/2013/06/28/clojure-­‐core-­‐async-­‐
channels.html

Other Criticisms

78

•Unbounded queues (mailboxes).
• Internal mutating state (hidden in function closures).
•Must send message to deref state. What if the mailbox is

backed up?
• Couples a queue, mutating state, and a process.
•Effectively “asynchronous OOP”.

Thursday, March 19, 15
From	
 hfps://github.com/halgari/clojure-­‐conj-­‐2013-­‐core.async-­‐examples/blob/master/src/clojure_conj_talk/core.clj
Most	
 of	
 these	
 are	
 based	
 on	
 his	
 toy	
 example,	
 not	
 a	
 producDon-­‐calibre	
 implementaDon.

I’ll add...

79

•Most actor systems are untyped.
•Typed channels add that extra bit of type safety.

Thursday, March 19, 15

Answers

80

Thursday, March 19, 15

The fact that Actors and CSP can be used to implement each other suggests that the criticisms are less than meets
the eye...

Unbounded queues

81

•Bounded queues are available in production-ready Actor
implementations.
•Reactive Streams with back pressure enable strategic

management of flow.
–Can be implemented with Actors...

Thursday, March 19, 15
In	
 other	
 words,	
 ignore	
 toy	
 examples.	
 The	
 flow-­‐orientaDon	
 of	
 CSP	
 is	
 an	
 advantage,	
 compared	
 to	
 Actors,	
 but	
 I	
 think	
 the	
 emerging	
 ReacDve	
 Streams	
 implemented	
 on	
 top	
 of	
 Actors	
 gives	
 you	
 the	
 best	
 of	
 both	
 worlds.	
 You	
 can	

work	
 at	
 the	
 abstracDon	
 level	
 that’s	
 most	
 appropriate.

Akka streams provide a higher-level abstraction on top of
Actors with better type safety (effectively, typed
channels) and operational semantics.

Reactive Streams

82

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

t

Ev
en

tEvent/Data
Stream

Consumer

Consumer

Bounded	
 Queue

back
pressure

back
pressure

back
pressure

Thursday, March 19, 15
The	
 flow-­‐orientaDon	
 of	
 CSP	
 is	
 an	
 advantage,	
 compared	
 to	
 Actors,	
 but	
 I	
 think	
 the	
 emerging	
 ReacDve	
 Streams	
 implemented	
 on	
 top	
 of	
 Actors	
 gives	
 you	
 the	
 best	
 of	
 both	
 worlds.	
 You	
 can	
 work	
 at	
 the	
 abstracDon	
 level	
 that’s	

most	
 appropriate.

Internal mutating state

83

•Actually an advantage.
•Encapsulation of mutating state within an Actor is a

systematic approach to large-scale, reliable management
of state evolution.
• “Asynchronous OOP” is a fine strategy when it fits your

problem.

Thursday, March 19, 15

Must send message to get state

84

•Also an advantage.
• Protocol for coordinating and separating reads and

writes.
–But you could also have an actor send the new state as

a response message to the sender or broadcast to
“listeners”.

Thursday, March 19, 15

Couples a queue, mutable state, and a
process

85

• Production systems provide as much decoupling as you
need.

Thursday, March 19, 15

86

•While typed actor experiments continue, I think of actors
as analogs of OS processes:
•Clear abstraction boundaries.
•Must be paranoid about the data you’re ingesting.

Actors are untyped

Thursday, March 19, 15

87

•... but actually, Akka is adding typed ActorRefs.

Actors are untyped

Thursday, March 19, 15

How should
we handle

failures?

Thursday, March 19, 15

Large-scale systems must
separate normal processing

from error-handling strategy.

89

Thursday, March 19, 15

Not all concurrency problems require something as sweeping as an actor system with supervisors, but at a certain
scale, you’ll need some sort of separation between your recovery strategy and the normal processing logic.

Use Actors or...

90

Thursday, March 19, 15

91

https://github.com/Netflix/Hystrix

Thursday, March 19, 15

https://github.com/Netflix/Hystrix
https://github.com/Netflix/Hystrix

92

• Better separation of concerns.
–Failure handling delegated to a separate
component or service.

• Strategy for failure handling can be
pluggable.
• Better scalability...

Thursday, March 19, 15

93

• Better scalability:
A #1

Normal Error

A #2

Normal Error

B #1

Normal Error

B #2

Normal Error

vs.

A #1

Normal

A Err

Error

A #2

Normal

B #1

Normal

B Err

Error

B #2

Normal

Thursday, March 19, 15

Removed duplicated error-handling logic also makes the normal logic processes smaller, so you can run more of
them, etc.

Conclusions

Thursday, March 19, 15

Actors

95

-Untyped interfaces.
-More OOP than FP.
-Overhead higher than function calls.

Thursday, March 19, 15

Actors

96

-Actually quite low level:
•Analog of OS processes.
•Reactive Streams is a functional, higher-

level abstraction that can be built on
actors.

Thursday, March 19, 15

Actors

97

+Industry proven scalability and resiliency.
+Native asynchrony.
+Distribution is a natural extension.

Best-in-class strategy for failure handling.

Thursday, March 19, 15

CSP, Rx, etc.

98

-Limited failure handling facilities.
-Distributed channels?

Thursday, March 19, 15
I	
 would	
 include	
 futures	
 in	
 the	
 list	
 of	

derivaDves.

CSP, Rx, etc.

99

+Emphasize data flows.
+Typed channels.

Optimal replacement for multithreaded
(intra-process) programming.

Thursday, March 19, 15

©Typesafe 2014-2015, All Rights Reserved

http://typesafe.com/reactive-big-data
dean.wampler@typesafe.com

poloyglotprogramming.com/talks

Thursday, March 19, 15

Photos from Jantar Mantar (“instrument”, “calculation”), the astronomical observatory built in Jaipur, India, by Sawai Jai
Singh, a Rajput King, in the 1720s-30s. He built four others around India. This is the largest and best preserved.
All photos are copyright (C) 2012-2015, Dean Wampler. All Rights Reserved.

http://typesafe.com/reactive-big-data
http://typesafe.com/reactive-big-data
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
mailto:dean.wampler@typesafe.com?subject=Follow%20Up%20after%20Your%20Spark%20Workshop
http://poloyglotprogramming.com/talks
http://poloyglotprogramming.com/talks

Bonus Slides

101

Thursday, March 19, 15

Message passing
via channels

Communicating
Sequential

Processes

Thursday, March 19, 15

See
http://en.wikipedia.org/wiki/Communicating_sequential_processes
http://clojure.com/blog/2013/06/28/clojure-core-async-channels.html
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

and other references in the “bonus” slides at the end of the deck. I also have some slides that describe the core
primitives of CSP that I won’t have time to cover.

103

Thursday, March 19, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from the initial
programming language he defined in the 70’s to a theoretical model with a well-defined calculus by the mid 80’s
(with the help of other people, too). The book itself has been subsequently refined. The PDF is available for free.

104

Thursday, March 19, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
This treatment is perhaps more accessible than Hoare’s book.

CSP
Operators

105

Thursday, March 19, 15

Prefix

106

A process communicates event a to its
environment. Afterwards the process
behaves like P.

a⟶P

Thursday, March 19, 15
A	
 process	
 communicates	

Deterministic Choice

107

A process communicates event a or b to
its environment. Afterwards the process
behaves like P or Q, respectively.

a⟶P ☐ b⟶Q

Thursday, March 19, 15

Nondeterministic Choice

108

The process doesn’t get to choose
which is communicated, a or b.

a⟶P ⊓ b⟶Q

Thursday, March 19, 15

Interleaving

109

Completely independent processes. The
events seen by them are interleaved in
time.

P ||| Q

Thursday, March 19, 15

Interface Parallel

110

Represents synchronization on event a
between P and Q.

P |[{a}]| Q

Thursday, March 19, 15

Hiding

111

A form of abstraction, by making some
events unobservable. P hides events a.

a⟶P \{a}

Thursday, March 19, 15

References

112

Thursday, March 19, 15

113

Thursday, March 19, 15

Lots of interesting practical ideas for combining functional programming and reactive approaches to class Domain-
Driven Design by Eric Evans.

114

Thursday, March 19, 15

Hoare’s book on CSP, originally published in ’85 after CSP had been significantly evolved from a programming
language to a theoretical model with a well-defined calculus. The book itself has been subsequently refined. The PDF
is available for free.

115

Thursday, March 19, 15

Modern treatment of CSP. Roscoe helped transform the original CSP language into its more rigorous, process algebra
form, which was influenced by Milner’s Calculus of Communicating Systems work. This book’s PDF is available free.
The treatment is more accessible than Hoare’s book.

116

Thursday, March 19, 15

A survey of theoretical models of distributed computing, starting with a summary of lambda calculus, then discussing
the pi, join, and ambient calculi. Also discusses the actor model. The treatment is somewhat dry and could use more
discussion of real-world implementations of these ideas, such as the Actor model in Erlang and Akka.

117

Thursday, March 19, 15

Gul Agha was a grad student at MIT during the 80s and worked on the actor model with Hewitt and others. This book
is based on his dissertation.
It doesn’t discuss error handling, actor supervision, etc. as these concepts .

His thesis, http://dspace.mit.edu/handle/1721.1/6952, the basis for his book,http://mitpress.mit.edu/books/actors

See also Paper for a survey course with Rajesh Karmani, http://www.cs.ucla.edu/~palsberg/course/cs239/papers/
karmani-agha.pdf

118

Thursday, March 19, 15

Survey of the classic graph traversal algorithms, algorithms for detecting failures in a cluster, leader election, etc.

119

Thursday, March 19, 15

 A less comprehensive and formal, but more intuitive approach to fundamental algorithms.

120

Thursday, March 19, 15

Comprehensive and somewhat formal like Raynal’s book, but more focused on modeling common failures in real
systems.

121

Thursday, March 19, 15

1992: Yes, “Reactive” isn’t new ;) This book is lays out a theoretical model for specifying and proving “reactive”
concurrent systems based on temporal logic. While its goal is to prevent logic errors, It doesn’t discuss handling
failures from environmental or other external causes in great depth.

122

Thursday, March 19, 15

1988: Another treatment of concurrency using algebra. It’s not based on CSP, but it has similar constructs.

123

Thursday, March 19, 15

A recent text that applies combinatorics (counting things) and topology (properties of geometric shapes) to the
analysis of distributed systems. Aims to be pragmatic for real-world scenarios, like networks and other physical
systems where failures are practical concerns.

124

Thursday, March 19, 15

http://mitpress.mit.edu/books/engineering-safer-world
Farther afield, this book discusses safety concerns from a systems engineering perspective.

Others

125

• Rob Pike: Go Concurrency Patterns
–http://www.youtube.com/watch?v=f6kdp27TYZs&feature=youtu.be

• Comparison of Clojure Core Async and Go
–http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-

go-a-code-comparison/

Thursday, March 19, 15

http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/
http://blog.drewolson.org/blog/2013/07/04/clojure-core-dot-async-and-go-a-code-comparison/

