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Lessons from
the trenches...
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10 mistakes
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and how to 
avoid them.
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Mistake #1: Comment everything!
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public double withdraw(double amount) {
    balance -= amount;
    return balance;
  }
}

Version 1
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public double withdraw(double amount) {
    balance -= amount;
    return balance;
  }
}

Version 1

Command-query
separation?
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(double amount) {
    balance -= amount;
  
  }
}

Version 2
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(double amount) {
    balance -= amount;
  
  }
}

Version 2

What about 
overdrafts?
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(double amount)
      throws OverdraftException {
    if (balance < amount)
      throw new OverdraftException(
        balance, amount);
    balance -= amount;
  }}

Version 3
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(double amount)
      throws OverdraftException {
    if (balance < amount)
      throw new OverdraftException(
        balance, amount);
    balance -= amount;
  }}

Version 3
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(double amount)
      throws OverdraftException {
    if (balance < amount)
      throw new OverdraftException(
        balance, amount);
    balance -= amount;
  }}

Version 3Doubles???
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(Currency amount)
      throws OverdraftException {
    if (balance.lessThan(amount))
      throw new OverdraftException(
        balance, amount);
    balance = balance.minus(amount);
  }}

Version 4
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(Currency amount)
      throws OverdraftException {
    if (balance.lessThan(amount))
      throw new OverdraftException(
        balance, amount);
    balance = balance.minus(amount);
  }}

Version 4
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public class Account { …
  /**
   * Withdraw money from account.
   * @param amount to withdraw (double)
   * @return new balance (double).  
   */
  public void withdraw(Currency amount)
      throws OverdraftException {
    if (balance.lessThan(amount))
      throw new OverdraftException(
        balance, amount);
    balance = balance.minus(amount);
  }}

Version 4

Still 
Accurate??
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How do you 
test-drive

comments?
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Why comments?

To communicate.

Tuesday, June 2, 2009



19

Communicate
with literate 

code and tests.
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class AccountTest { …
  @Test(expected=OverdraftException.class)
  public void overdraftThrowsException() {
    Currency c1 = new Currency(1000.00,…);
    Currency c2 = new Currency(1000.01,…);
    Account account = new Account(c1);
    account.withdraw(c2);
  }
} Tests as

documentation

Tuesday, June 2, 2009



#2: Here, have an exception!
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#2: Here, have an exception!
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“Use checked 
exceptions.”
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import java.io.*
public class FileFilter {

  public static interface Filter { 
    String filterLine(String line);
  }
  … 

Tuesday, June 2, 2009
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  … 
  public void filter(File src, File dest,
      Filter filter) {
    String lineSeparator = …;          
    BufferedReader in = new BufferedReader(
      new FileReader(src));
    BufferedWriter out= new BufferedWriter(
      new FileWriter(dest));
    … 

Tuesday, June 2, 2009
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  … 
  public void filter(File src, File dest,
      Filter filter) {
    String lineSeparator = “…”;          
    BufferedReader in = new BufferedReader(
      new FileReader(source));
    BufferedWriter out= new BufferedWriter(
      new FileWriter(destination));
    … 

FileFilter.java:10: unreported exception 
java.io.FileNotFoundException; must be caught ...
         BufferedReader in  = new BufferedReader(new …

Tuesday, June 2, 2009
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  … 
  public void filter(File src, File dest,
      Filter filter)
    throws FileNotFoundException, 
           IOException {
    String lineSeparator = “…”;          
    BufferedReader in = new BufferedReader(
      new FileReader(source));
    BufferedWriter out= new BufferedWriter(
      new FileWriter(destination));
    … 

Tuesday, June 2, 2009
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How are the 
exceptions
handled?

Tuesday, June 2, 2009
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… main(String[] args) {
  … workFlowProcess(…) {
    … stuffInTheMiddle(…) {
      … manipulateFiles(…) {
        FileFilter fileFilter = new …;
        fileFilter.filter(…);
        … 

Who handles the 
FileNotFoundException 

and IOException?

Tuesday, June 2, 2009
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Could add throws
at every level
of the stack...

Namespace pollution

Tuesday, June 2, 2009
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Could eat
the exception 
immediately...

Do you really know how to recover??
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#2: Here, have an exception!

31http://www.damnit.org/2008-02/29osqid.jpg/view

“Handle every 
exception as soon 

as you can.”
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… main(String[] args) {
  … workFlowProcess(…) {
    … stuffInTheMiddle(…) {
      … manipulateFiles(…) {
        try {
          FileFilter fileFilter = new …;
          fileFilter.filter(…);
        } catch (Throwable th) {
          log(th);
          // Now what!!
        }
        … 

Eat it…?

Tuesday, June 2, 2009
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… main(String[] args) {
  … workFlowProcess(…) {
    … stuffInTheMiddle(…) {
      … manipulateFiles(…) {
        FileFilter fileFilter = new …;
        fileFilter.filter(…);
        … 

One of these methods
knows what to do.

Tuesday, June 2, 2009



34

Use
unchecked
exceptions.
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Handle
exceptions

strategically.
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… main(String[] args) {
  … workFlowProcess(…) {
    … stuffInTheMiddle(…) {
      … manipulateFiles(…) {
        FileFilter fileFilter = new …;
        fileFilter.filter(…);
        … 

Maybe you catch file IO 
exceptions and attempt

recovery...

Tuesday, June 2, 2009



#3: Just because youʼre paranoid doesnʼt mean 
you shouldnʼt check for nulls...

37http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/

Tuesday, June 2, 2009

http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/
http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/


38

  … 
  public void filter(File src, File dest,
      Filter filter)
    throws FileNotFoundException, 
           IOException {
    if (src == null || dest == null ||
        filter == null)
      panic(“…”);
    … 

Tuesday, June 2, 2009
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  … 
  public void filter(File src, File dest,
      Filter filter)
    throws FileNotFoundException, 
           IOException {
    if (src == null || dest == null ||
        filter == null)
      panic(“…”);
    … 

Tuesday, June 2, 2009
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Null checks
obscure
code.
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Null checks
have to be
test driven.
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But, isnʼt
defensive 

programming
good?
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Use strategic
data validation.
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Check at 
module

boundaries.
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Weed out 
nulls with

automated tests.
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#4: We can build a better X in house.
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http://picturethis.channel4.com/photo/9075
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NIH
syndrome.

Tuesday, June 2, 2009



48

Examples:
message queues.
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Examples:
rules engines.
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Examples:
web template 

engines.
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Whatʼs the cost of 
development?
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Whatʼs the cost of 
long-term

maintenance?
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In-house tools 
become a

maintenance 
burden.
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Porting to a 3rd-
party tool is

painful.
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#5: Iʼll grab my own JDBC connection, thank you 
very much!

55© Dean Wampler
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public void transfer(
    Account src, Account dest,
    Currency amount) {
  try {
    src.withdraw(amount);
    dest.deposit(amount);
    Class.forName("sun.jdbc...");
    Connection con = 
      DriverManager.getConnection(…);
    Statement stmt = con.createStatement();
    … 

Tuesday, June 2, 2009
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public void transfer(
    Account src, Account dest,
    Currency amount) {
  try {
    src.withdraw(amount);
    dest.deposit(amount);
    Class.forName("sun.jdbc...");
    Connection con = 
      DriverManager.getConnection(…);
    Statement stmt = con.createStatement();
    … 

… or any other “hard” dependency.

Tuesday, June 2, 2009
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How do you 
unit test transfer?

Tuesday, June 2, 2009
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Hide 
dependencies 

behind 
abstractions.

Tuesday, June 2, 2009



60

Inject 
dependencies: 

inversion of control.
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public void transfer(
    Account src, Account dest,
    Currency amount) {
  try {
    src.withdraw(amount);
    dest.deposit(amount);
    accountPersister.persist(src);
    accountPersister.persist(dest);
    … 

Tuesday, June 2, 2009
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public void transfer(
    Account src, Account dest,
    Currency amount) {
  try {
    src.withdraw(amount);
    dest.deposit(amount);
    accountPersister.persist(src);
    accountPersister.persist(dest);
    … 

accountPersister set through 
constructor or setter.
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For testing, set 
accountPersister 
to a test double.
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For production, set 
accountPersister 

using Spring.
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You can remove 
the persistence 

code completely...
E.g., using Aspects.
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#6: Why retest when you can copy and paste?
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“Manual testing 
hurts.
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So donʼt  edit, 
retest and 

redeploy code.
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Copy, paste, and 
tweak it instead!”
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⇒ Massive 
duplication!
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Automated 
testing eliminates 

the pain.
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#7: This code doesnʼt need to be thread safe.
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Folk definition of insanity:
Do the same thing over and 
over again and expect the 

results to be different.

“The Problem with Threads”, IEEE Computer, May 2006
Tuesday, June 2, 2009
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Thatʼs 
multithreaded 
programming 
in a nutshell.
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Code should 
tell its story.

Tuesday, June 2, 2009



76

public class Account { …
  public void withdraw(Currency amount)
      throws OverdraftException {
    if (balance.lessThan(amount))
      throw new OverdraftException(
        balance, amount);
    balance = balance.minus(amount);
  }
}

Tuesday, June 2, 2009
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public class Account { …
  public void withdraw(Currency amount)
      throws OverdraftException {
    if (balance.lessThan(amount))
      throw new OverdraftException(
        balance, amount);
    balance = balance.minus(amount);
  }
} With threads, this code isnʼt 

telling me the whole story.
Tuesday, June 2, 2009
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public class Account { …
  public void withdraw(Currency amount)
      throws OverdraftException {
    if (balance.lessThan(amount))
      throw new OverdraftException(
        balance, amount);
    balance = balance.minus(amount);
  }
} These two operations 

must be atomic!
Tuesday, June 2, 2009
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2 ways to 
fix this code:
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#1: Use thread 
synchronization 

primitives.
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#2: Write 
concurrent code 
without threads.
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Use Actors.
Go to Jonas Bonérʼs talk 

tomorrow for other options...
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Actors
Message passing 

between autonomous Actors.
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Actors
No shared, mutable state.
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Actors
Made famous by Erlang.
Also supported in Scala.

Google: Java actors

Tuesday, June 2, 2009



#8: Sophisticated code needs sophisticated APIʼs.
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“Enterprise apps
require EJBs.”
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Accidental 
vs.

essential 
complexity.
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“Do the 
simplest thing 

that could 
possibly work!”
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2 ways to 
stay focused:
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#1: Use 
Test-Driven 

Development 
(TDD).

Tuesday, June 2, 2009



93

#2: Use 
Domain-Specific 

Languages (DSLs).
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Vacation vacation = vacation()
  .starting("10/09/2007")
  .ending("10/17/2007")
  .city("Paris")
  .hotel("Hilton")
  .airline("United")
  .flight("UA-6886"); 

http://www.infoq.com/articles/internal-dsls-java
Tuesday, June 2, 2009
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Vacation vacation = vacation()
  .starting("10/09/2007")
  .ending("10/17/2007")
  .city("Paris")
  .hotel("Hilton")
  .airline("United")
  .flight("UA-6886"); 

Expresses business logic.

http://www.infoq.com/articles/internal-dsls-java
Tuesday, June 2, 2009

http://www.infoq.com/articles/internal-dsls-java
http://www.infoq.com/articles/internal-dsls-java


96

Vacation vacation = vacation()
  .starting("10/09/2007")
  .ending("10/17/2007")
  .city("Paris")
  .hotel("Hilton")
  .airline("United")
  .flight("UA-6886"); 

Hides implementation.

http://www.infoq.com/articles/internal-dsls-java
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What are the 
appropriate details 

at this level of 
abstraction?
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#9: Everything is an object.
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Most apps
are CRUD.
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Do you really need
ORM and OO 
middleware?
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Business rules:
objects

or 
functions?
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Why are 
map/reduce and 
key-value DBs

so hot?
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Embrace other
paradigms:

functional, aspects, 
logic, ...
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#10: Java and XML are all we really need.
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Why did we enter
XML Hell?
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XML is for data,
not scripting.
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Application

Kernel of Components

Built-in Scripts User Scripts

(Java Components) + 
(Groovy/JRuby/Jython/... Scripts) 

= Applications!
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Application

Kernel of Components

Built-in Scripts User Scripts

Components + Scripts = 
Applications
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Why is Emacs
still relevant?

C + ELisp = Emacs
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A Way Forward...
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Communicate thru
code and tests.

#1: Comments
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Handle them
strategically.

#2: Exceptions
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Validate data at 
boundaries.

#3: Paranoid?
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Use inversion of 
control.

#4: Dependencies
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What is central to 
your business?

#5: NIH Syndrome
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Avoid duplication.
Automate testing.

#6: Copy & Paste
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Avoid shared, 
mutable state.

#7: Thread Safety
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Focus using TDD. 
Use DSLs.

#8: Complexity
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Use FP, AOP, 
Relational, Logic...

#9: Objects Only?
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Components + 
Scripts = Apps

#10: Java Only?

Tuesday, June 2, 2009



Dean Wampler
Object Mentor, Inc.

dean@objectmentor.com
@deanwampler
blog.objectmentor.com
polyglotprogramming.com/papers
programmingscala.com

Tuesday, June 2, 2009

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://blog.objectmentor.com
http://blog.objectmentor.com
http://polyglotprogramming.com/papers
http://polyglotprogramming.com/papers
http://programmingscala.com
http://programmingscala.com

