
Don't Do This!
How Not To Write Java™
Technology-Based
Software
Dean Wampler
Object Mentor, Inc.
dean@objectmentor.com @deanwampler

Speaker logo
centered below photo

Tuesday, June 2, 2009

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com

> Mentor, Trainer, Consultant at
Object Mentor, Inc.
objectmentor.com
polyglotprogramming.com

2

Tuesday, June 2, 2009

http://objectmentor.com
http://objectmentor.com
http://objectmentor.com
http://objectmentor.com

> September 2009
oreilly.com/catalog/
9780596157746/

> Read it now:
programmingscala.com

3

Tuesday, June 2, 2009

http://oreilly.com/catalog/9780596157746/
http://oreilly.com/catalog/9780596157746/
http://oreilly.com/catalog/9780596157746/
http://oreilly.com/catalog/9780596157746/
http://programmingscala.com
http://programmingscala.com

4

Lessons from
the trenches...

http://everystockphoto.com/photo.php?imageId=4027778http://everystockphoto.com/photo.php?imageId=4027778
Tuesday, June 2, 2009

http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/
http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/

5

10 mistakes

http://everystockphoto.com/photo.php?imageId=4027778http://everystockphoto.com/photo.php?imageId=4027778

and how to
avoid them.

Tuesday, June 2, 2009

http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/
http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/

Mistake #1: Comment everything!

6© Dean Wampler
Tuesday, June 2, 2009

7

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public double withdraw(double amount) {
 balance -= amount;
 return balance;
 }
}

Version 1

Tuesday, June 2, 2009

8

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public double withdraw(double amount) {
 balance -= amount;
 return balance;
 }
}

Version 1

Command-query
separation?

Tuesday, June 2, 2009

9

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(double amount) {
 balance -= amount;

 }
}

Version 2

Tuesday, June 2, 2009

10

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(double amount) {
 balance -= amount;

 }
}

Version 2

What about
overdrafts?

Tuesday, June 2, 2009

11

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(double amount)
 throws OverdraftException {
 if (balance < amount)
 throw new OverdraftException(
 balance, amount);
 balance -= amount;
 }}

Version 3

Tuesday, June 2, 2009

12

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(double amount)
 throws OverdraftException {
 if (balance < amount)
 throw new OverdraftException(
 balance, amount);
 balance -= amount;
 }}

Version 3

Tuesday, June 2, 2009

13

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(double amount)
 throws OverdraftException {
 if (balance < amount)
 throw new OverdraftException(
 balance, amount);
 balance -= amount;
 }}

Version 3Doubles???

Tuesday, June 2, 2009

14

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(Currency amount)
 throws OverdraftException {
 if (balance.lessThan(amount))
 throw new OverdraftException(
 balance, amount);
 balance = balance.minus(amount);
 }}

Version 4

Tuesday, June 2, 2009

15

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(Currency amount)
 throws OverdraftException {
 if (balance.lessThan(amount))
 throw new OverdraftException(
 balance, amount);
 balance = balance.minus(amount);
 }}

Version 4

Tuesday, June 2, 2009

16

public class Account { …
 /**
 * Withdraw money from account.
 * @param amount to withdraw (double)
 * @return new balance (double).
 */
 public void withdraw(Currency amount)
 throws OverdraftException {
 if (balance.lessThan(amount))
 throw new OverdraftException(
 balance, amount);
 balance = balance.minus(amount);
 }}

Version 4

Still
Accurate??

Tuesday, June 2, 2009

17

How do you
test-drive

comments?

Tuesday, June 2, 2009

18

Why comments?

To communicate.

Tuesday, June 2, 2009

19

Communicate
with literate

code and tests.

Tuesday, June 2, 2009

20

class AccountTest { …
 @Test(expected=OverdraftException.class)
 public void overdraftThrowsException() {
 Currency c1 = new Currency(1000.00,…);
 Currency c2 = new Currency(1000.01,…);
 Account account = new Account(c1);
 account.withdraw(c2);
 }
} Tests as

documentation

Tuesday, June 2, 2009

#2: Here, have an exception!

21http://www.damnit.org/2008-02/29osqid.jpg/view
Tuesday, June 2, 2009

http://www.damnit.org/2008-02/29osqid.jpg/view
http://www.damnit.org/2008-02/29osqid.jpg/view

#2: Here, have an exception!

22http://www.damnit.org/2008-02/29osqid.jpg/view

“Use checked
exceptions.”

Tuesday, June 2, 2009

http://www.damnit.org/2008-02/29osqid.jpg/view
http://www.damnit.org/2008-02/29osqid.jpg/view

23

import java.io.*
public class FileFilter {

 public static interface Filter {
 String filterLine(String line);
 }
 …

Tuesday, June 2, 2009

24

 …
 public void filter(File src, File dest,
 Filter filter) {
 String lineSeparator = …;
 BufferedReader in = new BufferedReader(
 new FileReader(src));
 BufferedWriter out= new BufferedWriter(
 new FileWriter(dest));
 …

Tuesday, June 2, 2009

25

 …
 public void filter(File src, File dest,
 Filter filter) {
 String lineSeparator = “…”;
 BufferedReader in = new BufferedReader(
 new FileReader(source));
 BufferedWriter out= new BufferedWriter(
 new FileWriter(destination));
 …

FileFilter.java:10: unreported exception
java.io.FileNotFoundException; must be caught ...
 BufferedReader in = new BufferedReader(new …

Tuesday, June 2, 2009

26

 …
 public void filter(File src, File dest,
 Filter filter)
 throws FileNotFoundException,
 IOException {
 String lineSeparator = “…”;
 BufferedReader in = new BufferedReader(
 new FileReader(source));
 BufferedWriter out= new BufferedWriter(
 new FileWriter(destination));
 …

Tuesday, June 2, 2009

27

How are the
exceptions
handled?

Tuesday, June 2, 2009

28

… main(String[] args) {
 … workFlowProcess(…) {
 … stuffInTheMiddle(…) {
 … manipulateFiles(…) {
 FileFilter fileFilter = new …;
 fileFilter.filter(…);
 …

Who handles the
FileNotFoundException

and IOException?

Tuesday, June 2, 2009

29

Could add throws
at every level
of the stack...

Namespace pollution

Tuesday, June 2, 2009

30

Could eat
the exception
immediately...

Do you really know how to recover??

Tuesday, June 2, 2009

#2: Here, have an exception!

31http://www.damnit.org/2008-02/29osqid.jpg/view

“Handle every
exception as soon

as you can.”

Tuesday, June 2, 2009

http://www.damnit.org/2008-02/29osqid.jpg/view
http://www.damnit.org/2008-02/29osqid.jpg/view

32

… main(String[] args) {
 … workFlowProcess(…) {
 … stuffInTheMiddle(…) {
 … manipulateFiles(…) {
 try {
 FileFilter fileFilter = new …;
 fileFilter.filter(…);
 } catch (Throwable th) {
 log(th);
 // Now what!!
 }
 …

Eat it…?

Tuesday, June 2, 2009

33

… main(String[] args) {
 … workFlowProcess(…) {
 … stuffInTheMiddle(…) {
 … manipulateFiles(…) {
 FileFilter fileFilter = new …;
 fileFilter.filter(…);
 …

One of these methods
knows what to do.

Tuesday, June 2, 2009

34

Use
unchecked
exceptions.

Tuesday, June 2, 2009

35

Handle
exceptions

strategically.

Tuesday, June 2, 2009

36

… main(String[] args) {
 … workFlowProcess(…) {
 … stuffInTheMiddle(…) {
 … manipulateFiles(…) {
 FileFilter fileFilter = new …;
 fileFilter.filter(…);
 …

Maybe you catch file IO
exceptions and attempt

recovery...

Tuesday, June 2, 2009

#3: Just because youʼre paranoid doesnʼt mean
you shouldnʼt check for nulls...

37http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/

Tuesday, June 2, 2009

http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/
http://www.flickr.com/photos/brewedfreshdaily89/2909152638/in/photostream/

38

 …
 public void filter(File src, File dest,
 Filter filter)
 throws FileNotFoundException,
 IOException {
 if (src == null || dest == null ||
 filter == null)
 panic(“…”);
 …

Tuesday, June 2, 2009

39

 …
 public void filter(File src, File dest,
 Filter filter)
 throws FileNotFoundException,
 IOException {
 if (src == null || dest == null ||
 filter == null)
 panic(“…”);
 …

Tuesday, June 2, 2009

40

Null checks
obscure
code.

Tuesday, June 2, 2009

41

Null checks
have to be
test driven.

Tuesday, June 2, 2009

42

But, isnʼt
defensive

programming
good?

Tuesday, June 2, 2009

43

Use strategic
data validation.

Tuesday, June 2, 2009

44

Check at
module

boundaries.

Tuesday, June 2, 2009

45

Weed out
nulls with

automated tests.

Tuesday, June 2, 2009

#4: We can build a better X in house.

46

http://picturethis.channel4.com/photo/9075

Tuesday, June 2, 2009

http://picturethis.channel4.com/photo/9075
http://picturethis.channel4.com/photo/9075

47

NIH
syndrome.

Tuesday, June 2, 2009

48

Examples:
message queues.

Tuesday, June 2, 2009

49

Examples:
rules engines.

Tuesday, June 2, 2009

50

Examples:
web template

engines.

Tuesday, June 2, 2009

51

Whatʼs the cost of
development?

Tuesday, June 2, 2009

52

Whatʼs the cost of
long-term

maintenance?

Tuesday, June 2, 2009

53

In-house tools
become a

maintenance
burden.

Tuesday, June 2, 2009

54

Porting to a 3rd-
party tool is

painful.

Tuesday, June 2, 2009

#5: Iʼll grab my own JDBC connection, thank you
very much!

55© Dean Wampler
Tuesday, June 2, 2009

56

public void transfer(
 Account src, Account dest,
 Currency amount) {
 try {
 src.withdraw(amount);
 dest.deposit(amount);
 Class.forName("sun.jdbc...");
 Connection con =
 DriverManager.getConnection(…);
 Statement stmt = con.createStatement();
 …

Tuesday, June 2, 2009

57

public void transfer(
 Account src, Account dest,
 Currency amount) {
 try {
 src.withdraw(amount);
 dest.deposit(amount);
 Class.forName("sun.jdbc...");
 Connection con =
 DriverManager.getConnection(…);
 Statement stmt = con.createStatement();
 …

… or any other “hard” dependency.

Tuesday, June 2, 2009

58

How do you
unit test transfer?

Tuesday, June 2, 2009

59

Hide
dependencies

behind
abstractions.

Tuesday, June 2, 2009

60

Inject
dependencies:

inversion of control.

Tuesday, June 2, 2009

61

public void transfer(
 Account src, Account dest,
 Currency amount) {
 try {
 src.withdraw(amount);
 dest.deposit(amount);
 accountPersister.persist(src);
 accountPersister.persist(dest);
 …

Tuesday, June 2, 2009

62

public void transfer(
 Account src, Account dest,
 Currency amount) {
 try {
 src.withdraw(amount);
 dest.deposit(amount);
 accountPersister.persist(src);
 accountPersister.persist(dest);
 …

accountPersister set through
constructor or setter.

Tuesday, June 2, 2009

63

For testing, set
accountPersister
to a test double.

Tuesday, June 2, 2009

64

For production, set
accountPersister

using Spring.

Tuesday, June 2, 2009

65

You can remove
the persistence

code completely...
E.g., using Aspects.

Tuesday, June 2, 2009

#6: Why retest when you can copy and paste?

66© Dean Wampler
Tuesday, June 2, 2009

67

“Manual testing
hurts.

Tuesday, June 2, 2009

68

So donʼt edit,
retest and

redeploy code.

Tuesday, June 2, 2009

69

Copy, paste, and
tweak it instead!”

Tuesday, June 2, 2009

70

⇒ Massive
duplication!

Tuesday, June 2, 2009

71

Automated
testing eliminates

the pain.

Tuesday, June 2, 2009

#7: This code doesnʼt need to be thread safe.

72http://www.flickr.com/photos/billward/359774589/
Tuesday, June 2, 2009

http://www.flickr.com/photos/billward/359774589/
http://www.flickr.com/photos/billward/359774589/

73

Folk definition of insanity:
Do the same thing over and
over again and expect the

results to be different.

“The Problem with Threads”, IEEE Computer, May 2006
Tuesday, June 2, 2009

74

Thatʼs
multithreaded
programming
in a nutshell.

Tuesday, June 2, 2009

75

Code should
tell its story.

Tuesday, June 2, 2009

76

public class Account { …
 public void withdraw(Currency amount)
 throws OverdraftException {
 if (balance.lessThan(amount))
 throw new OverdraftException(
 balance, amount);
 balance = balance.minus(amount);
 }
}

Tuesday, June 2, 2009

77

public class Account { …
 public void withdraw(Currency amount)
 throws OverdraftException {
 if (balance.lessThan(amount))
 throw new OverdraftException(
 balance, amount);
 balance = balance.minus(amount);
 }
} With threads, this code isnʼt

telling me the whole story.
Tuesday, June 2, 2009

78

public class Account { …
 public void withdraw(Currency amount)
 throws OverdraftException {
 if (balance.lessThan(amount))
 throw new OverdraftException(
 balance, amount);
 balance = balance.minus(amount);
 }
} These two operations

must be atomic!
Tuesday, June 2, 2009

79

2 ways to
fix this code:

Tuesday, June 2, 2009

80

#1: Use thread
synchronization

primitives.

Tuesday, June 2, 2009

81

Tuesday, June 2, 2009

82

#2: Write
concurrent code
without threads.

Tuesday, June 2, 2009

83

Use Actors.
Go to Jonas Bonérʼs talk

tomorrow for other options...

Tuesday, June 2, 2009

84

Actors
Message passing

between autonomous Actors.

Tuesday, June 2, 2009

85

Actors
No shared, mutable state.

Tuesday, June 2, 2009

86

Actors
Made famous by Erlang.
Also supported in Scala.

Google: Java actors

Tuesday, June 2, 2009

#8: Sophisticated code needs sophisticated APIʼs.

87http://www.flickr.com/photos/randomurl/440190706/
Tuesday, June 2, 2009

http://www.flickr.com/photos/billward/359774589/
http://www.flickr.com/photos/billward/359774589/

88

“Enterprise apps
require EJBs.”

Tuesday, June 2, 2009

89

Accidental
vs.

essential
complexity.

Tuesday, June 2, 2009

90

“Do the
simplest thing

that could
possibly work!”

Tuesday, June 2, 2009

91

2 ways to
stay focused:

Tuesday, June 2, 2009

92

#1: Use
Test-Driven

Development
(TDD).

Tuesday, June 2, 2009

93

#2: Use
Domain-Specific

Languages (DSLs).

Tuesday, June 2, 2009

94

Vacation vacation = vacation()
 .starting("10/09/2007")
 .ending("10/17/2007")
 .city("Paris")
 .hotel("Hilton")
 .airline("United")
 .flight("UA-6886");

http://www.infoq.com/articles/internal-dsls-java
Tuesday, June 2, 2009

http://www.infoq.com/articles/internal-dsls-java
http://www.infoq.com/articles/internal-dsls-java

95

Vacation vacation = vacation()
 .starting("10/09/2007")
 .ending("10/17/2007")
 .city("Paris")
 .hotel("Hilton")
 .airline("United")
 .flight("UA-6886");

Expresses business logic.

http://www.infoq.com/articles/internal-dsls-java
Tuesday, June 2, 2009

http://www.infoq.com/articles/internal-dsls-java
http://www.infoq.com/articles/internal-dsls-java

96

Vacation vacation = vacation()
 .starting("10/09/2007")
 .ending("10/17/2007")
 .city("Paris")
 .hotel("Hilton")
 .airline("United")
 .flight("UA-6886");

Hides implementation.

http://www.infoq.com/articles/internal-dsls-java
Tuesday, June 2, 2009

http://www.infoq.com/articles/internal-dsls-java
http://www.infoq.com/articles/internal-dsls-java

97

What are the
appropriate details

at this level of
abstraction?

Tuesday, June 2, 2009

#9: Everything is an object.

98© Dean Wampler
Tuesday, June 2, 2009

99

Most apps
are CRUD.

Tuesday, June 2, 2009

100

Do you really need
ORM and OO
middleware?

Tuesday, June 2, 2009

101

Business rules:
objects

or
functions?

Tuesday, June 2, 2009

102

Why are
map/reduce and
key-value DBs

so hot?
Tuesday, June 2, 2009

103

Embrace other
paradigms:

functional, aspects,
logic, ...

Tuesday, June 2, 2009

#10: Java and XML are all we really need.

104http://www.flickr.com/photos/randomurl/440190706/
Tuesday, June 2, 2009

http://www.flickr.com/photos/billward/359774589/
http://www.flickr.com/photos/billward/359774589/

105

Why did we enter
XML Hell?

Tuesday, June 2, 2009

106

XML is for data,
not scripting.

Tuesday, June 2, 2009

107

Application

Kernel of Components

Built-in Scripts User Scripts

(Java Components) +
(Groovy/JRuby/Jython/... Scripts)

= Applications!
Tuesday, June 2, 2009

108

Application

Kernel of Components

Built-in Scripts User Scripts

Components + Scripts =
Applications

Tuesday, June 2, 2009

109

Why is Emacs
still relevant?

C + ELisp = Emacs

Tuesday, June 2, 2009

A Way Forward...

110© Dean Wampler
Tuesday, June 2, 2009

111

Communicate thru
code and tests.

#1: Comments

Tuesday, June 2, 2009

112

Handle them
strategically.

#2: Exceptions

Tuesday, June 2, 2009

113

Validate data at
boundaries.

#3: Paranoid?

Tuesday, June 2, 2009

114

Use inversion of
control.

#4: Dependencies

Tuesday, June 2, 2009

115

What is central to
your business?

#5: NIH Syndrome

Tuesday, June 2, 2009

116

Avoid duplication.
Automate testing.

#6: Copy & Paste

Tuesday, June 2, 2009

117

Avoid shared,
mutable state.

#7: Thread Safety

Tuesday, June 2, 2009

118

Focus using TDD.
Use DSLs.

#8: Complexity

Tuesday, June 2, 2009

119

Use FP, AOP,
Relational, Logic...

#9: Objects Only?

Tuesday, June 2, 2009

120

Components +
Scripts = Apps

#10: Java Only?

Tuesday, June 2, 2009

Dean Wampler
Object Mentor, Inc.

dean@objectmentor.com
@deanwampler
blog.objectmentor.com
polyglotprogramming.com/papers
programmingscala.com

Tuesday, June 2, 2009

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://blog.objectmentor.com
http://blog.objectmentor.com
http://polyglotprogramming.com/papers
http://polyglotprogramming.com/papers
http://programmingscala.com
http://programmingscala.com

