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How would you 
build a city?
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Cities are modular

• They have appropriate 
levels of abstraction.

• They separate concerns.
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Your software systems?

• Appropriate abstractions?

• Clear separation of 
concerns?
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Clean systems 
are built on 
clean code

Leave now if code makes you squeamish...
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Separate 
construction 

from
use

#1
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During construction

• People in hard hats.

• Lots of heavy lifting.

• ...
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During use

• People in nicer clothes.

• Business tasks.

• ...
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Software construction 
vs. use

• Startup is one task.

• Component wiring.

• Running involves different tasks. 
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public Service getService() { 
  if (service == null) 
    // Good enough default for most cases? 
    service = new MyServiceImpl(...);  
  return service; 
}

An example

Lazy Initialization Pattern
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public Service getService() { 
  if (service == null) 
    // Good enough default for most cases? 
    service = new MyServiceImpl(...);  
  return service; 
}

What’s Wrong with LI?
“Wiring strategy” scattered and tangled.

Specific decisions hard coded.
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Other problems...

• Testing

• Must somehow set a mock for service 
before getService called.

• Must still compile with  MyServiceImpl.

• Is MyServiceImpl really the best default?

• Breaks the Single Responsibility Principle
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Setup concern

• Requires a global strategy.

• Consistent approach.

• Modularized decisions.
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Solution
Dependency Injection
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Dependency Injection

• Special type of Inversion of Control.

• Objects are given their dependencies 

• Passive vs. Active

• Authoritative mechanism makes wiring 
decisions.
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Options

• Attribute “setters”.

• Constructor arguments.

• Object leaves constructor fully formed.

• Slightly better.
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Spring Framework
<beans>
  <bean id="service"
 class="org.example.services.MyServiceImpl"/>

  <bean id="clientOfService" class="org.example.app.ClientImpl"
       p:service-name= "service"/>
  ...
</beans>

XmlBeanFactory bf = new XmlBeanFactory(
 new ClassPathResource("app.xml", getClass()));
Client client = (Client) bf.getBean("client");
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Dependency Injection

• Separates construction from use.

• Decouples abstractions from implementations.
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Scale up 
systems

on demand

#2
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Small vs. Large Systems
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Common Myth:

Why didn’t you get the design

right the first time? 
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Design Dilemma

• The perfect design for today’s system.

vs.

• The perfect design for tomorrow’s system.
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Agile methods

• Taught us to evolve the design to meet 
today’s needs,

• But keep it adaptable for tomorrow’s needs

• Without anticipatory design.
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Software is unique

• Unlike physical structures, 

• We can change everything in software, even 
the architecture.
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Software is unique

• … but only if we keep it agile!
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How not to keep it agile
EJB’s versions 1 and 2
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Enterprise Java Beans

• Forced tangling of concerns:

• Application logic mixed with

• Container life-cycle, etc. 

• Persistence,

• etc.
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public interface BankLocal 
    extends javax.ejb.EJBLocalObject {
  … 

Example: Bank EJB

• Forced to subclass an EJB class.

• Can’t use application domain hierarchy.

• Tight coupling to container details.
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  …
  String getCity() 
    throws java.ejb.EJBException;
  void addAccount(AccountDTO dto) 
    throws java.ejb.EJBException;
  …  

Example: Bank EJB

• Tight coupling for methods, too.
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public abstract class Bank 
    implements javax.ejb.EntityBean {
  … 

EJB implementation

• Forced to implement EJB interface
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EJB implementation
  …
  public void addAccount(AccountDTO dto)
  {
    InitialContext ctx = 
      new InitialContext();
    AccountHomeLocal accountHome = 
      ctx.lookup("AccountHomeLocal");
    AccountLocal account = 
      accountHome.create(dto);
    Collection accounts = getAccounts();
    accounts.add(account);
  }
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EJB Implementation

  …
  // Required container methods...
  public void ejbActivate() {}
  public void ejbPassivate() {}
  public void ejbLoad() {}
  public void ejbStore() {}
  public void ejbRemove() {}
  … 

35Wednesday, August 6, 2008



But wait, there’s more!

• Several more classes and interfaces.

• Many more methods.

• XML to define

• Transactions,

• Persistence mapping,

• Security, ...
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Forget about:

• Reuse.

• Object orientation of your domain model.

• => Lot’s of duplication between EJB’s and 
POJO domain objects.

• Easy TDD.

• High productivity...
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But, not all was wrong

• Using XML to specify transactional, 
persistence, and security behaviors,

• Separated these concerns from code.

• EJBs anticipated Aspect-Oriented 
Programming.
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Solution
Aspect-Oriented Programming
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public class BankAccount {
	 private Money balance;
	 public  Money getBalance () {…}
   
	 public void credit(Money amount) {
    balance += amount;
  }
	 public void debit(Money amount) {
    balance -= amount;
  }
  …
} 

Clean Code
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However,

real applications need:

Transactions

Persistence

Security

  public void credit(…) {
    …
  }
	 public void debit(…) {
    …
  }
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 public void credit(Money amount) 
    throws ApplicationException {
  try {
    Money oldBalance = balance;
    beginTransaction();
    balance += amount;
    persistChange(this);
    … 

So credit becomes…
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  catch (Throwable th) { 
    logError(th); 
    balance = oldBalance;
    throw new ApplicationException(th);
  } finally {
    endTransaction();
  }
}
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We’re mixing multiple domains, 
with fine-grained intersections.

Transactions

Persistence

Security

“Problem Domain”

“tangled” code

“scattered” logic
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Objects alone don’t 
prevent tangling.
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Aspects restore modularity by 
encapsulating the intersections.

Transactions

Persistence

Security

Transaction
Aspect

Persistence
Aspect

Security
Aspect
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AOP tool options

• AspectJ

• “Pure Java” Spring AOP or JBoss AOP
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public aspect PersistentBankAccount {
  pointcut stateChange(BankAccount ba):
    (call(* BankAccount.debit(..)) ||       
     call(* BankAccount.credit(..))) &&
     this(ba); 

  after(BankAccount ba): stateChange(ba) {
    persistChange(ba);
  }
} 

AspectJ
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public aspect PersistentBankAccount {
  pointcut stateChange(BankAccount ba):
    (call(* BankAccount.debit(..)) ||       
     call(* BankAccount.credit(..))) &&
     this(ba); 

  after(BankAccount ba): stateChange(ba) {
    persistChange(ba);
  }
} 

AspectJ
“Class-like” construct

When state changes occur.

When and how to persist changes.
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Spring AOP
<beans>
  <bean id="bankDataSource"
    class="org.apache.commons.dbcp.BasicDataSource"
    destroy-method="close"
    p:driverClassName="com.mysql.jdbc.Driver"
    p:url="jdbc:mysql://localhost:3306/mydb"
    p:username="me" />

  <bean id="bankDataAccessObject" 
    class="com.banking.persistence.BankDataAccessObject"
    p:dataSource-ref= "bankDataSource"/>

  <bean id="bank"
    class="com.banking.model.Bank"
    p:dataAccessObject-ref= "bankDataAccessObject"/>
</beans>
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: appDataSource

: bankDataAccessObject

: bank

getAccounts(): client

“Matryoshka” doll*

* i.e., Russian nested doll
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EJB version 3

• Largely adopted the POJO model of Spring 
AOP.
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Aspect-Oriented 
Programming

• Separates concerns with fine-grained 
coupling.

• Allows concerns to evolve and scale 
independently.

• Allows architectures to evolve and scale.
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Test drive
the 

system architecture

#3
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Cities are modular

• Discrete components.

• Minimal coupling.

• Concurrent 
modifications.

• Concurrent execution.
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They grow from villages

• Dirt roads are replaced by paved roads.

• Highways are added.

• Small buildings are replaced with towers.

The transition can be painful at times.
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Big Design Up Front?

• Architecture evolution is possible if,

• The components that implement concerns 
are decoupled from one another and

• The components are wired together using 
aspect-like mechanisms.
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Hazards of BDUF

• You’re thinking in a vacuum, without 
feedback from a running system.

• It’s hard to throw the design away when 
you’ve invested so much into it. 
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Solution
Test-Driven Development
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In TDD, 
tests are proxies for 

requirements
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Therefore, grow the 
system in response to 

“test pressure”
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Optimize
decision making

#4
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The best decisions:

• are made at the last responsible moment,

• when you have the most recent information.
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Solution
Incremental Evolution
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With a test-driven
architecture,

you can 
optimize decision making
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Timing decisions

• You can make 

• many small decisions,

• rather than big, risky decisions. 
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This is only possible 
with an agile architecture

67Wednesday, August 6, 2008



Use standards
wisely,

when they add 
demonstrable value

#5
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Benefits of Standards

• Reuse and encapsulation of 

• ideas.

• components.

• Shared expertise.
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Drawbacks of Standards

• Slow to emerge.

• Design by committee.

• Bloat.
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Does the standard
meet the needs it was 

intended to serve?
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Minimize the
mental gap 
between 

requirements and code

#6
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Does your code
read like the

problem domain?
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Solution
Domain-Specific Languages
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Every Domain has a 
Language

• Rich vocabulary.

• Idioms and patterns.

• Clear and concise 
communications.
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Code should read 
like the domain

• DSL’s

• Introduce appropriate levels of 
abstraction.

• Minimize mental gap between domain 
concepts and code. 

• Optimize communication.
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Recap

• Separate construction from use.

• Use dependency injection.

• Scale up on demand.

• Decouple concerns with Aspects. 
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Recap

• Test-drive the system architecture.

• Requires modular concerns.

• Optimize decision making.

• An agile architecture lets you make 
decisions at the most appropriate times. 
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Recap

• Use standards wisely.

• Only if they demonstrate value.

• Use domain-specific languages.

• Map the domain to code.

• Introduce appropriate levels of abstraction. 
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Final Thought:

Complexity kills. It sucks the life out of developers, it 
makes products difficult to plan, build and test. ... 

Each of us should ... explore and embrace techniques 
to reduce complexity.

Ray Ozzie, Chief Technology Officer, Microsoft 
Corporation 

80Wednesday, August 6, 2008



Thank You!

• dean@objectmentor.com

• http://blog.objectmentor.com

• http://aspectprogramming.com/papers
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