
Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Copious Data: The “Killer App”�
for Functional Programming

Detroit Tech Watch

March 8, 2022

dean@deanwampler.com

@deanwampler

polyglotprogramming.com/talks

mailto:dean@deanwampler.com?subject=About%20your%20Copious%20Data%20talk
http://twitter.com/deanwampler
http://polyglotprogramming.com/talks

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved2

What Is Big … err…
“Copious” Data?

Copyright © 2011-2014, Dean Wampler, Some Rights Reserved

Copious
Data

Data so big that
traditional solutions are
too slow, too small, or
too expensive to use.

3

Hat tip: Bob Korbus

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

3 Trends

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved5

Data Size ⬆
2022 update:

Or is it?

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved6

Formal Schemas ⬇
2022 update:
Or are they?

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved7

Data-Driven Programs ⬆
2022 update:

Still true!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved8

Probabilistic
Models vs.
Formal
Grammars

tor.com/blogs/...

http://www.tor.com/blogs/2011/06/norvig-vs-chomsky-and-the-fight-for-the-future-of-ai

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

What Is

MapReduce?

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Hadoop is the dominant
copious data platform

today.

10

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Hadoop is the dominant
copious data platform

today.

11

was

then

2022 update

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

A Hadoop Cluster

12

Hadoop v1.X Cluster

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

node

DiskDiskDiskDiskDisk

TaskTracker
DataNode

master
JobTracker
NameNode

backup master
Secondary
NameNodeNFS

Disk

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

MapReduce in Hadoop

Let’s look at a

MapReduce algorithm:

Inverted Index.
Used for text/web search.

13

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Crawl teh Interwebs

14

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Compute Inverse Index

15

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Compute Inverse Index

16

Key-values output
by first map task

Map Task

(hadoop,(wikipedia.org/hadoop,1))

(mapreduce,(wikipediate.org/hadoop, 1))

(hdfs,(wikipedia.org/hadoop, 1))

(provides,(wikipedia.org/hadoop,1))

(and,(wikipedia.org/hadoop,1))

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Compute Inverse Index

17

wikipedia.org/hadoop
Hadoop provides

MapReduce and HDFS

wikipedia.org/hbase

HBase stores data in HDFS

wikipedia.org/hive
Hive queries HDFS files and

HBase tables with SQL

...

...

Web Crawl

index
block

......

Hadoop provides...wikipedia.org/hadoop

......

block
......

HBase stores...wikipedia.org/hbase

......

block
......

Hive queries...wikipedia.org/hive

......

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase inverse index
block

hadoop (.../hadoop,1)

(.../hadoop,1),(.../hbase,1),(.../hive,1)hdfs

(.../hive,1)hive

(.../hbase,1),(.../hive,1)hbase

......

......

block
......

block
......

block
......

(.../hadoop,1),(.../hive,1)and

......

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved18

Map Task

Map Task

Map Task

Map Phase

So
rt,

 S
hu

ffl
e

Reduce Task

Reduce Task

Reduce Task

Reduce Task

Reduce Phase

Map (or Flatmap):

• Transform one input to
0-N outputs.

Reduce:

• Collect multiple inputs
into one output.

Anatomy: MapReduce Job

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

MapReduce and Its
Discontents

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

It’s hard to implement
many algorithms

in MapReduce.

20

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved21

MapReduce is very
course-grained.

1-Map, 1-Reduce
phase...

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved22

Multiple MR jobs
required for some

algorithms.
Each one flushes its

results to disk!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved23

MapReduce is designed
for offline, batch-mode

analytics.

High latency; not
suitable for event

processing.

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

The Hadoop Java API

is hard to use.

24

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Let’s look at code for a
simpler algorithm,

Word Count.
(Tokenize as before, but

ignore original
document locations.)

25

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved26

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved27

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

The
interesting

bits

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved28

import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import java.util.StringTokenizer;

class WCMapper extends MapReduceBase
 implements Mapper<LongWritable, Text, Text, IntWritable> {

 static final IntWritable one = new IntWritable(1);
 static final Text word = new Text; // Value will be set in a non-thread-safe way!

 @Override
 public void map(LongWritable key, Text valueDocContents,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 String[] tokens = valueDocContents.toString.split("\\s+");
 for (String wordString: tokens) {
 if (wordString.length > 0) {
 word.set(wordString.toLowerCase);
 output.collect(word, one);
 }
 }
 }
}

class Reduce extends MapReduceBase
 implements Reducer[Text, IntWritable, Text, IntWritable] {

 public void reduce(Text keyWord, java.util.Iterator<IntWritable> valuesCounts,
 OutputCollector<Text, IntWritable> output, Reporter reporter) {
 int totalCount = 0;
 while (valuesCounts.hasNext) {
 totalCount += valuesCounts.next.get;
 }
 output.collect(keyWord, new IntWritable(totalCount));
 }
}

The ‘90s called. They
want their EJBs back!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Use Cascalog (Clojure)

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

(defn lowercase [w] (.toLowerCase w))

(?<- (stdout) [?word ?count]
 (sentence ?s)
 (split ?s :> ?word1)
 (lowercase ?word1 :> ?word)
 (c/count ?count))

30

Datalog-style queries

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Use Spark

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved32

import org.apache.spark.SparkContext

object WordCountSpark {
 def main(args: Array[String]) {
 val sc = new SparkContext(...)
 sc.textFile(args(0))
 .flatMap(
 _.split("\\W+"))
 .map(word => (word, 1))
 .reduceByKey(_ + _)
 .saveAsTextFile(args(1))
 }
} Also small and concise!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

• Distributed computing with
in-memory caching.

• ~30x faster than MapReduce
(in part due to caching of
intermediate data).

Spark replaced
MapReduce:

33

2022
update:
Much
faster
now!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

• Originally designed for
machine learning applications.

• Developed by Berkeley AMP.

Spark replaced
MapReduce:

34

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Use SQL!

Hive, Spark SQL,

Impala, Presto, …

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

• Hive: SQL on top of MapReduce.

• Spark SQL: high perf. Spark API.

• Impala & Presto: HiveQL with
new, faster back ends.

 Use SQL when you can!

36

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved37

CREATE TABLE docs (line STRING); 
LOAD DATA INPATH '/path/to/docs'
INTO TABLE docs;

CREATE TABLE word_counts AS  
SELECT word, count(1) AS count FROM
(SELECT explode(split(line, '\W+'))
 AS word FROM docs) w
GROUP BY word  
ORDER BY word;

... and similarly for the other SQL tools.

Word Count in Hive SQL!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

We’re in the era where

The SQL Strikes Back!

(with apologies to
George Lucas...)

38

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Combinators

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Why were the

Scala, Clojure, and SQL

solutions so concise
and appealing??

40

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Data problems

are fundamentally

Mathematics!

41

evanmiller.org/mathematical-hacker.html

http://www.evanmiller.org/mathematical-hacker.html

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved42

• Functions that are side-effect
free.

• They get all their information
from their inputs and write all
their work to their outputs.

Combinators

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved43

• Relational Model.

• Data organized
into tuples,
grouped by
relations.

Set Theory and

First-Order Logic

http://dl.acm.org/citation.cfm?doid=362384.362685

http://dl.acm.org/citation.cfm?doid=362384.362685

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Let’s look at

a few relational operators

and the corresponding
functional combinators.

44

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved45

CREATE TABLE word_counts (
 word CHARACTER(64),
 count INTEGER);

(ANSI SQL syntax)

Recall our Word Counts:

val word_counts: Stream[(String,Int)]

(Scala)

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved46

SELECT * FROM word_counts
WHERE word = 'Chicago';

vs.

Restrict

word_counts.filter {
 case (word, count) =>
 word == "Chicago"
}

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved47

SELECT word FROM word_counts;

Project

vs.

word_counts.map {
 case (word, count) =>
 word
}

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved48

SELECT count, size(word) AS size
FROM word_counts
GROUP BY count
ORDER BY size DESC;

Group By

vs.

word_counts.groupBy {
 case (word, count) => count
}.toList.map {
 case (count, words) => (count, words.size)
}.sortBy {
 case (count, size) => -size
}

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved49

Example
scala> val word_counts = List(
("a", 1), ("b", 2), ("c", 3),
("d", 2), ("e", 2), ("f", 3))

scala> val out = word_counts.groupBy {
 case (word, count) => count
}.toList.map {
 case (count, words) => (count, words.size)
}.sortBy {
 case (count, size) => -size
}

out: List[(Int,Int)] = List((2,3), (3,2), (1,1))

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

We could go on, but
you get the point.

Declarative, functional
combinators are a

natural tool for data.

50

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved51

• SQL

• Optimized for data operations.

• FP

• Turing complete.

• More combinators.

• First class functions!

SQL vs. FP

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

FP to the
Rescue!

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Multicore concurrency
is driving FP adoption.

53

Popular Claim:

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Data will drive the next
wave of widespread

FP adoption.

54

My Claim:

2022
update:

Mostly true, in
terms of # of
developers…

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Hadoop and Data Lakes
(swamps?) are passé.

55

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

SQL is triumphant
(again) for most data,

because structured
data is what most

people want.
56

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

NoSQL databases are
still used, but more

cautiously.

57

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

SQL has driven
adoption of Spark SQL +

Delta Lakes and new
data warehouses like

Snowflake.
58

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

ML/AI is still a home for
(semi|uns)tructured

data.

59

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Like SQL, Python is
ascendant again for

ML/AI, even though it is
less “functional” than

Scala, Clojure, etc.
60

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Still for data
engineering, like ETL
pipelines, Scala is still

very popular.
61

2022 Postscript

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Questions?

dean@deanwampler.com

@deanwampler

polyglotprogramming.com/talks

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:dean@deanwampler.com?subject=About%20your%20Copious%20Data%20talk
http://twitter.com/deanwampler
https://twitter.com/deanwampler
http://polyglotprogramming.com/talks

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Bonus
Slides

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved64

Other branches of
Mathematics that are

very useful for Software

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved65

• Monads - Structure.

• Abstracting over collections.

• Control flow and mutability
containment.

 Category Theory

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved66

• Monoids, Groups, Rings, etc.

• Abstracting over addition,
subtraction, multiplication, and
division.

 Category Theory

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved67

• (a + b) + (c + d) for some a, b, c, d.

• “Add All the Things”, Avi Bryant,
StrangeLoop 2013.

 Monoid: Addition

infoq.com/presentations/abstract-algebra-analytics

http://www.infoq.com/presentations/abstract-algebra-analytics

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved68

• Eigenvector and Singular Value
Decomposition.

• Essential tools in machine
learning.

 Linear Algebra

Av vm=

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved69

• Represent images
as vectors.

• Solve for
“modes”.

• Top N modes
approx. faces!

Example: Eigenfaces

http://en.wikipedia.org/wiki/File:Eigenfaces.png

http://en.wikipedia.org/wiki/File:Eigenfaces.png

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved70

Join

Table for join examples.

CREATE TABLE dictionary (
 word CHARACTER(64),
 definition CHARACTER(256));

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved71

SELECT w.word, d.definition
FROM word_counts AS w
 dictionary AS d
WHERE w.word = d.word;

Join - SQL

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved72

SELECT w.word, d.definition
FROM word_counts AS w
 dictionary AS d
WHERE w.word = d.word;

Join

vs.
…
word_counts
 .joinWithLarger('wword -> 'dword,
 dictionary)
 .project('wword, 'definition)

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Joins are expensive.
Your data system needs

to exploit
optimizations.

73

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved

Data

Architectures

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved75

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved76

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2 Object-

Relational
Mapping

Other, Object-
Oriented

Domain Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved77

Relational/
Functional

Domain Logic

Database

Query

SQL

Result Set

1

2

Functional
Wrapper for

Relational Data

3

Functional
Abstractions

• Focus on:

• Lists

• Maps

• Sets

• Trees

• ...

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved78

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Copyright © 2011-2014, 2022, Dean Wampler, Some Rights Reserved79

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

FilesDatabase

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

Copyright © 2011-2014, Dean Wampler, Some Rights Reserved80

• Data Size ⬆

• Formal
Schema ⬇

• Data-Driven
Programs ⬆

Web Client 1 Web Client 2 Web Client 3

Process 1 Process 2 Process 3

FilesDatabase

