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Outline

● Why Ray?
● ML/AI Ray Libraries
● Ray for Microservices
● Adopting Ray
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Two Major Trends Hence, there is a pressing 
need for robust, easy to 

use solutions for 
distributed PythonModel sizes and therefore 

compute requirements 
outstripping Moore’s Law

Moore’s Law/Denard Scaling 

 (2x every two years)

35x every tw
o years!

GPU
CPU

Python growth driven by 
ML/AI and other data 

science workloads

2013            2014          2015          2016          2017           2018           2019

https://openai.com/blog/ai-and-compute/ 

https://openai.com/blog/ai-and-compute/
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Two Major Trends Hence, there is a pressing 
need for robust, easy to 

use solutions for 
distributed PythonModel sizes and therefore 

compute requirements 
outstripping Moore’s Law

Moore’s Law/Denard Scaling 

 (2x every two years)

35x every tw
o years!

GPU
CPU

Python growth driven by 
ML/AI and other data 

science workloads

2013            2014          2015          2016          2017           2018           2019

https://openai.com/blog/ai-and-compute/ 

Aimed at data scientists and engineers who are 
less interested in fine-grained distributed 

computing tools, who want something that 
“just works”.

https://openai.com/blog/ai-and-compute/
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Hyperparam 
Tuning

The ML Landscape Today

8

Training Model
ServingStreamingFeaturization

All require distributed 
implementations to scale

Simulation
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Hyperparam 
Tuning

The Ray Vision: Sharing a Common Framework

9

Training Model
ServingStreaming SimulationFeaturization

Framework for 
distributed Python (and 

other languages…)

Domain-specific libraries 
for each subsystem

More libraries 
coming soon
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API - Designed to Be Intuitive and Concise 

10

Functions -> Tasks

def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

def add_arrays(a, b): 
    return np.add(a, b) The Python you 

already know…
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@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

import ray 
import numpy as np 
ray.init()

API - Designed to Be Intuitive and Concise 

Functions -> Tasks For completeness, add these first:

Now these functions 
are remote “tasks"
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Node 1

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 

12

API - Designed to Be Intuitive and Concise 

make_array

ref1

Functions -> Tasks
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Node 1 Node 2

13

API - Designed to Be Intuitive and Concise 

make_array

ref1

make_array

ref2

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 

Functions -> Tasks
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Node 3

Node 1 Node 2

14

API - Designed to Be Intuitive and Concise 

make_array make_array

ref2

add_arrays

ref3

ref1

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 
ref3 = add_arrays.remote(ref1, ref2) 

Functions -> Tasks
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Node 3

Node 1 Node 2

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 
ref3 = add_arrays.remote(ref1, ref2) 
ray.get(ref3)

15

Ray handles sequencing 
of async dependencies

Ray handles extracting the 
arrays from the object refs

API - Designed to Be Intuitive and Concise 

Functions -> Tasks

make_array make_array

ref2

add_arrays

ref3

ref1
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API - Designed to Be Intuitive and Concise 

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 
ref3 = add_arrays.remote(ref1, ref2) 
ray.get(ref3)

Functions -> Tasks

What about 
distributed 

state?
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API - Designed to Be Intuitive and Concise 

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 
ref3 = add_arrays.remote(ref1, ref2) 
ray.get(ref3)

Functions -> Tasks

class Counter(object): 
    def __init__(self): 
        self.value = 0 
    def increment(self): 
        self.value += 1 
        return self.value 

Classes -> Actors

The Python 
classes you 

love…
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@ray.remote 
class Counter(object): 
    def __init__(self): 
        self.value = 0 
    def increment(self): 
        self.value += 1 
        return self.value 
    def get_count(self): 
       return self.value 

18

API - Designed to Be Intuitive and Concise 

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 
ref3 = add_arrays.remote(ref1, ref2) 
ray.get(ref3)

Functions -> Tasks Classes -> Actors

You need a 
“getter” method 
to read the state.

… now a remote 
“actor”
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@ray.remote 
class Counter(object): 
    def __init__(self): 
        self.value = 0 
    def increment(self): 
        self.value += 1 
        return self.value 
    def get_count(self): 
       return self.value 

c = Counter.remote() 
ref4 = c.increment.remote() 
ref5 = c.increment.remote() 
ray.get([ref4, ref5]) # [1, 2]

Classes -> Actors

19

API - Designed to Be Intuitive and Concise 

@ray.remote 
def make_array(…): 
    a = … # Construct a NumPy array 
    return a 

@ray.remote  
def add_arrays(a, b): 
    return np.add(a, b) 

ref1 = make_array.remote(…) 
ref2 = make_array.remote(…) 
ref3 = add_arrays.remote(ref1, ref2) 
ray.get(ref3)

Functions -> Tasks
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Machine Learning with
Ray-based Libraries
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Ray Libraries

22

Hyperparam 
Tuning Training Model

ServingStreaming SimulationFeaturization
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Reinforcement Learning - Ray RLlib

23

Hyperparam 
Tuning Training Model

ServingStreaming SimulationFeaturization

rllib.io

http://rllib.io
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Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial 
Processes

System 
Optimization

Advertising, 
Recommendations FinanceGames

Robotics, 
Autonomous 

Vehicles
RL applications
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https://www.geekwire.com/2016/alphago-ai-program-wins-1-million-prize-go-showdown-champion-lee-sedol/
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Go as a Reinforcement 
Learning Problem

AlphaGo (Silver et al. 2016)
● Observations:
○ board state

● Actions:
○ where to place the stones

● Rewards:
○ 1 if win
○ 0 otherwise

Decisions
(actions)

Consequences
(observations, rewards)

environmentagent
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RLlib: A Scalable, Unified Library for RL

Industrial 
Processes

System 
Optimization

Advertising, 
Recommendations FinanceGames

Robotics, 
Autonomous 

Vehicles
RL applications

OpenAI  
Gym

Multi-agent/
Hierarchical

Policy 
Serving

Offline 
Data (1) Application Support}

(2) Abstractions for RL}
Custom Algorithms RLlib Algorithms

RLlib Abstractions

Ray Tasks and Actors (3) Distributed Execution}
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A Broad Range of Popular Algorithms

● gradient-free
○ Augmented Random Search (ARS)
○ Evolution Strategies

● Multi-agent specific
○ QMIX Monotonic Value Factorisation 

(QMIX, VDN, IQN)

● Offline
○ Advantage Re-Weighted Imitation Learning 

(MARWIL)

● High-throughput architectures
○ Distributed Prioritized Experience Replay (Ape-X)
○ Importance Weighted Actor-Learner Architecture (IMPALA)
○ Asynchronous Proximal Policy Optimization (APPO)

● Gradient-based
○ Soft Actor-Critic (SAC)
○ Advantage Actor-Critic (A2C, A3C)
○ Deep Deterministic Policy Gradients (DDPG, TD3)
○ Deep Q Networks (DQN, Rainbow, Parametric DQN)
○ Policy Gradients
○ Proximal Policy Optimization (PPO)

https://ray.readthedocs.io/en/latest/rllib-algorithms.html#augmented-random-search-ars
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#evolution-strategies
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#distributed-prioritized-experience-replay-ape-x
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#importance-weighted-actor-learner-architecture-impala
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#asynchronous-proximal-policy-optimization-appo
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#soft-actor-critic-sac
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-actor-critic-a2c-a3c
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#policy-gradients
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#proximal-policy-optimization-ppo
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Now in Azure
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Diverse Compute Requirements Motivated Creation of Ray!

Decisions (actions)

Consequences
(observations, rewards)

environmentagent

Simulator (game 
engine, robot sim, 

factory floor sim…)

Neural network 
“stuff”

And repeated play, 
over and over again, 
to train for achieving 

the best reward

Complex agent?
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RLlib Provides a Unified Framework for Scalable RL
that Doesn’t Compromise on Performance

Distributed PPO

Evolution
Strategies

Ape-X Distributed 
DQN, DDPG
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Hyperparameter Tuning - Ray Tune

39

Hyperparam 
Tuning Training Model

ServingStreaming SimulationFeaturization
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What Is Hyperparameter Tuning?

Trivial example:
● What’s the best value for “k” in k-

means??
● k is a “hyperparameter”
● The resulting clusters are 

defined by “parameters”

credit: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif
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Nontrivial Example - Neural Networks

Every number 
shown is a 

hyperparameter!

How many layers? 
What kinds of layers?
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Tune is Built with Deep Learning as a Priority
Resource Aware 

Scheduling
Seamless 

Distributed Execution

Simple API for 
new algorithms

Framework Agnostic

tune.io

http://tune.io
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Hyperparameters Are Important for Performance
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Why We Need a Framework for Tuning Hyperparameters

Model training is time-
consuming

Resources are expensive

We want the best model
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Tuning + Distributed Training

tune.run(PytorchTrainable,
         config={
             "model_creator": PretrainBERT,
             "data_creator": create_data_loader,
             "use_gpu": True,
             "num_replicas": 8,
             "lr": tune.uniform(0.001, 0.1)
         }, 
         num_samples=100,
         search_alg=BayesianOptimization()

)
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Native Integration with TensorBoard HParams
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What about Ray
for Microservices?
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What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3
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What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3
What we mostly care 

about for today’s talk, the 
“Ops in DevOps”
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Conway’s Law - Embraced

● “Any organization that designs a 
system will produce a design whose 
structure is a copy of the 
organization's communication 
structure”

● Let each team own and manage the 
services for its part of the domain

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

en.wikipedia.org/wiki/Conway's_law

https://en.wikipedia.org/wiki/Conway's_law
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Separate Responsibilities

● Each microservice does “one 
thing”, a single responsibility 
with minimal coupling to the 
other microservices

● (Like, hopefully, the teams are 
organized, too…)

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

wikipedia.org/wiki/Single-responsibility_principle

https://en.wikipedia.org/wiki/Single-responsibility_principle
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Separate Management

● Each team manages its own 
instances

● Each microservice has a 
different number of instances 
for scalability and resiliency

● But they have to be managed 
explicitly

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2µ-service 1
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Management - Simplified

● With Ray, you have one 
“logical” instance to manage 
and Ray does the cluster-
wide scaling for you.

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3
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What about Kubernetes (and others…)?

● Ray scaling is very fine grained. 
● It operates within the “nodes” of 

coarse-grained managers
● Containers, pods, VMs, or 

physical machines

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Node Node

Node
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Adopting Ray 
and the Ray community
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If you’re already using…

● joblib
● multiprocessing.Pool

● Use Ray’s implementations 
● Drop-in replacements
● Change import statements 
● Break the one-node limitation!

For example, from this: 
   
  from multiprocessing.pool import Pool 

To this: 

  from ray.util.multiprocessing.pool import Pool 

See these blog posts:  
https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff 
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

● … And Ray is 
integrated with 
asyncio

https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33
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Ray Community and Resources

● ray.io
● Tutorials (free): anyscale.com/academy
● Need help?
● Ray Slack: ray-distributed.slack.com
● ray-dev Google group

https://ray.io
https://anyscale.com/academy/
https://forms.gle/9TSdDYUgxYs8SA9e8
https://groups.google.com/forum/?nomobile=true#!forum/ray-dev


Conclusion

● Ray is the new state-of-the-art for distributed computing
● The shortest path from your laptop to the cloud
● Run complex distributed tasks on large clusters from 

simple code on your laptop
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