Ray - Scalability from a Laptop to a Cluster

Dean Wampler - Nov 6, 2020 dean@deanwampler.com @deanwampler ray.io Domino Data Lab

Products ✓ Solutions ✓ Customers

System-of-Record for Enterprise Data Science Teams

Accelerate Research

Get self-serve access to the latest tools and scalable compute. Reuse past work and iterate more efficiently.

Learn More »

Centralize Infrastructure

Manage the availability of powerful data science resources in a secure and governed system-of-record.

Learn More »

Deploy and Monitor Models

Learn More »

Unify Data Science Teams

Make data science teams more productive and collaborative, and manage their work more efficiently.

Learn More »

Run	- Jobs	Timelin
All	Active	Comp
۲	08	0
	No. 🗘	Title
	474	para
	473	para
	472	parar
	471	parar
	470	para
	469	para
	468	para
	467	parar
	466	para
	462	

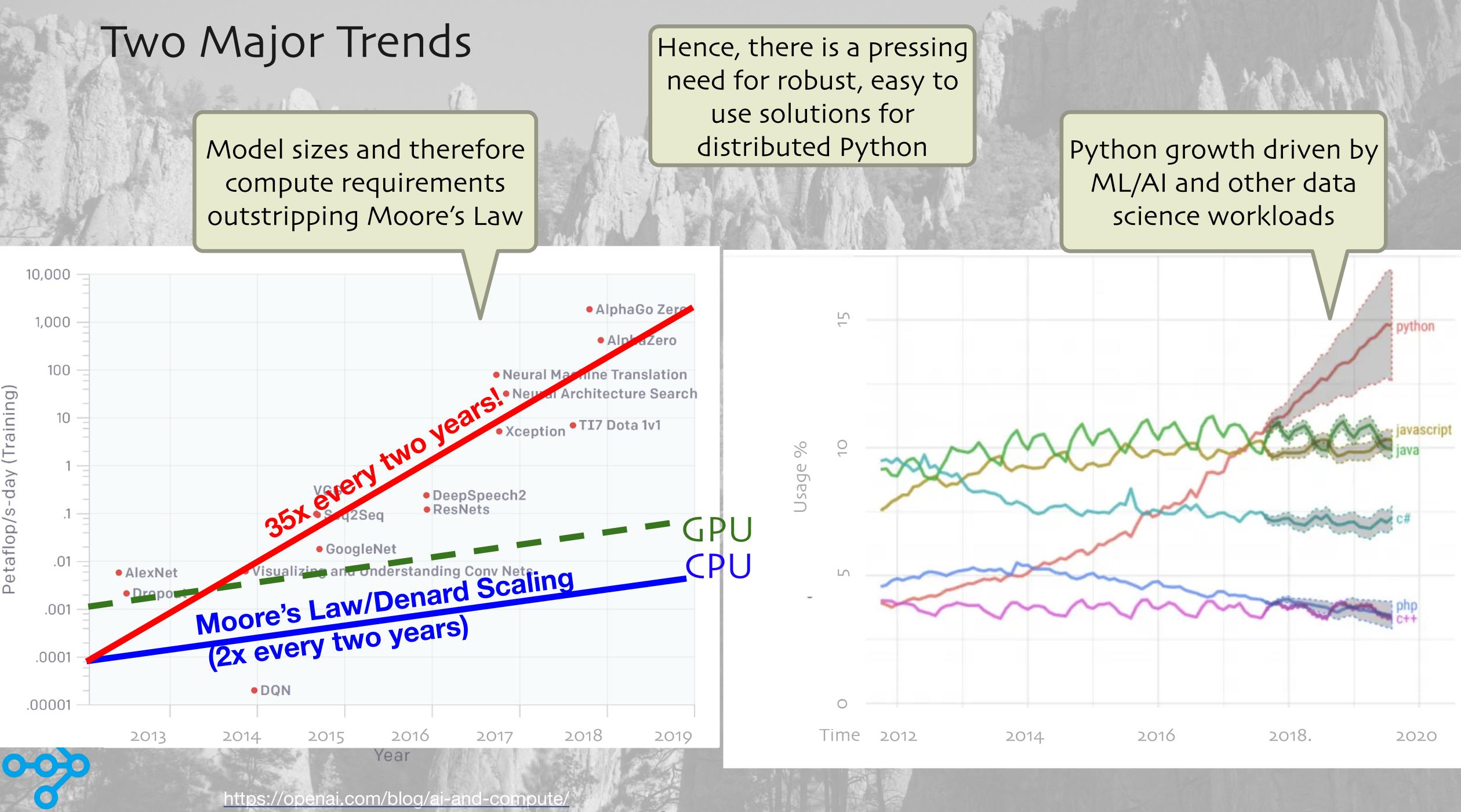
See Demo

dominodatalab.com

Outline

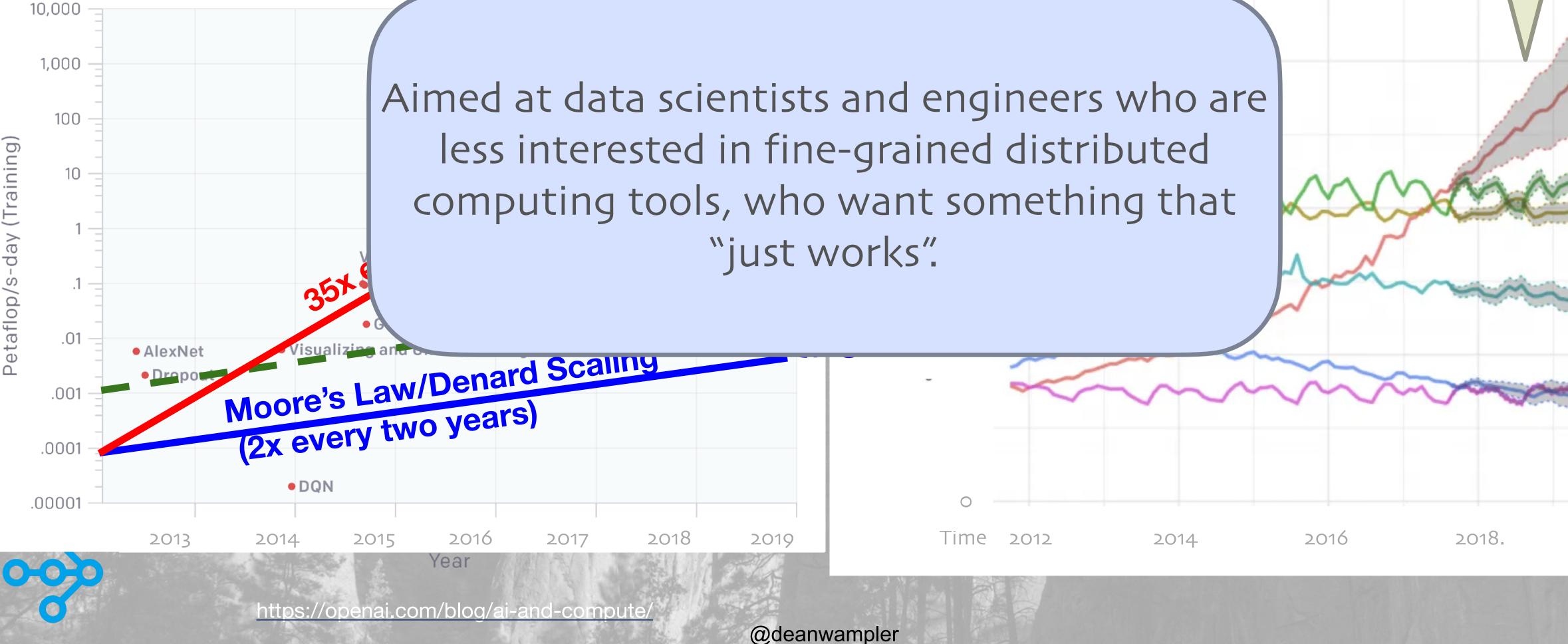
Why Ray?
ML/AI Ray Libraries
Ray for Microservices
Adopting Ray

Model sizes and therefore compute requirements outstripping Moore's Law



Two Major Trends

Model sizes and therefore compute requirements outstripping Moore's Law



Hence, there is a pressing need for robust, easy to use solutions for distributed Python

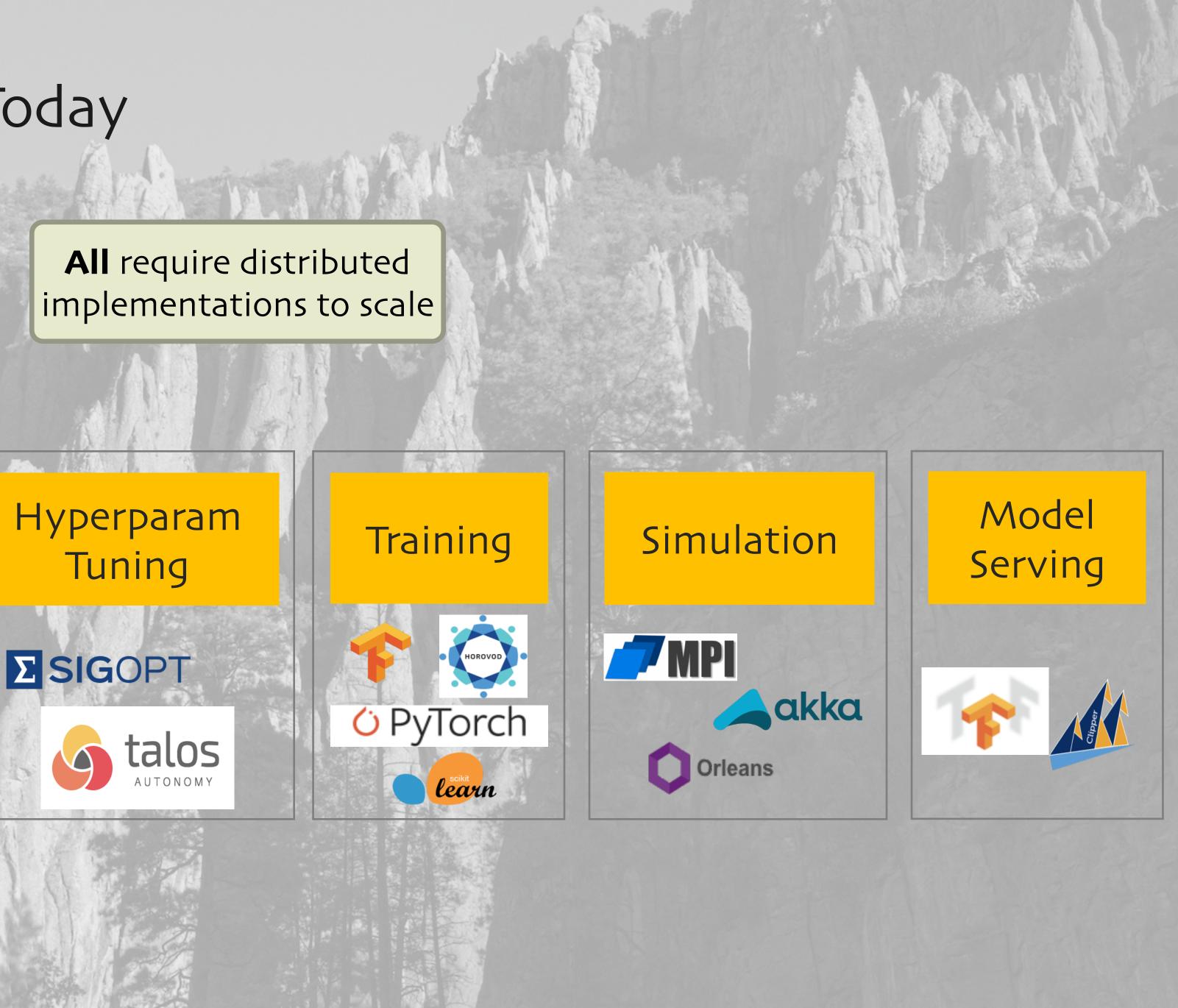
Python growth driven by ML/AI and other data science workloads

The ML Landscape Today

Featurization

Streaming

Tuning



The Ray Vision: Sharing a Common Framework

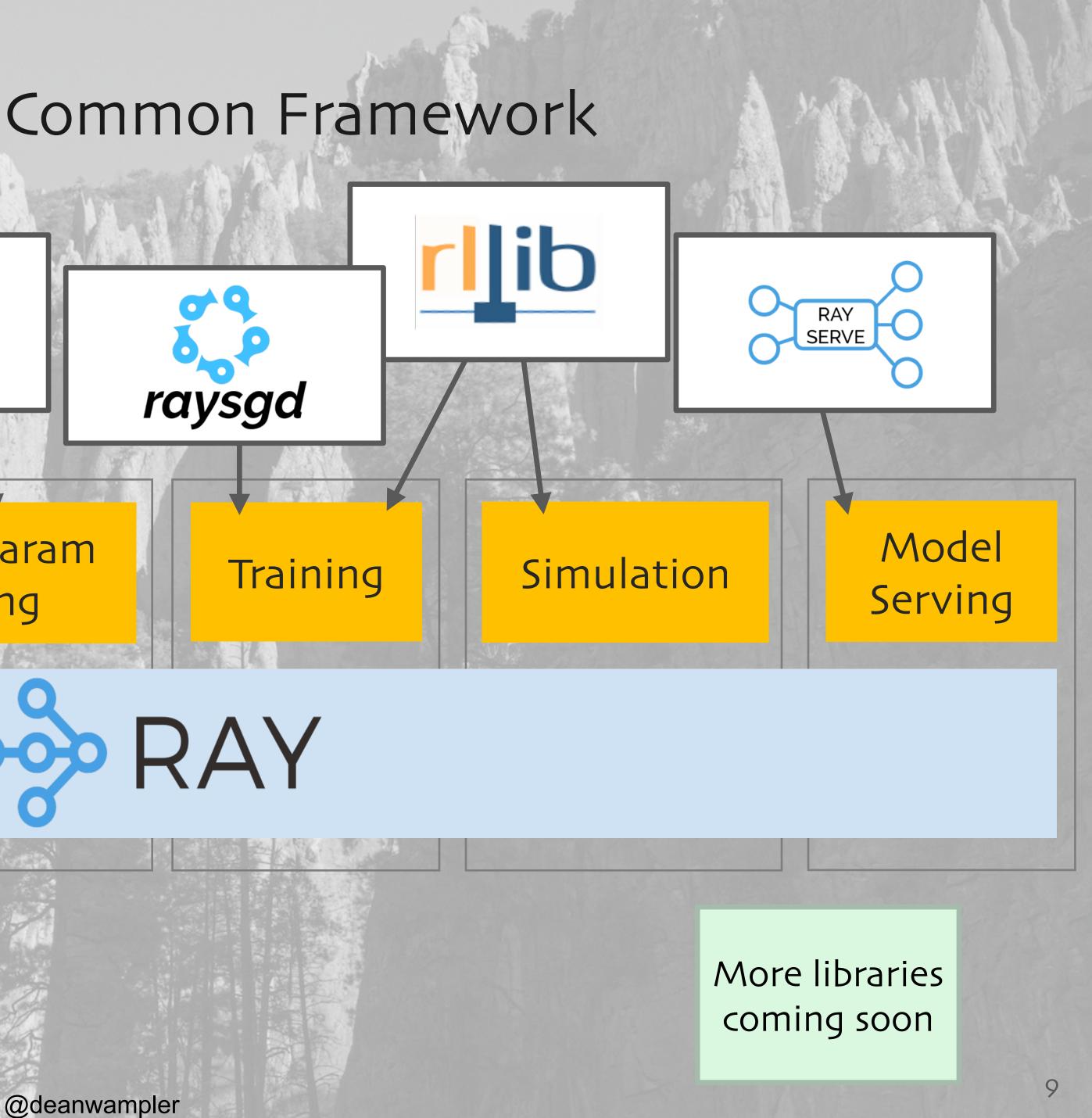
Domain-specific libraries for each subsystem

Featurization

Streaming

Hyperparam Tuning

Framework for distributed Python (and other languages...)



Functions -> Tasks

def make_array(...):
 a = ... # Construct a NumPy array
 return a

def add_arrays(a, b):
 return np.add(a, b)

The Python you already know...

Functions -> Tasks

@ray.remote

def make_array(...):

a = ... # Construct a NumPy array return a

@ray.remote def add_arrays(a, b): return np.add(a, b)

For completeness, add these first:

import ray import numpy as np ray.init()

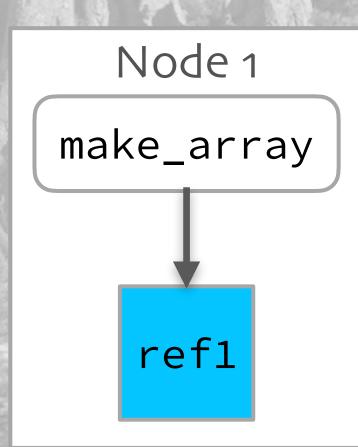
Now these functions are remote "tasks"

Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...)

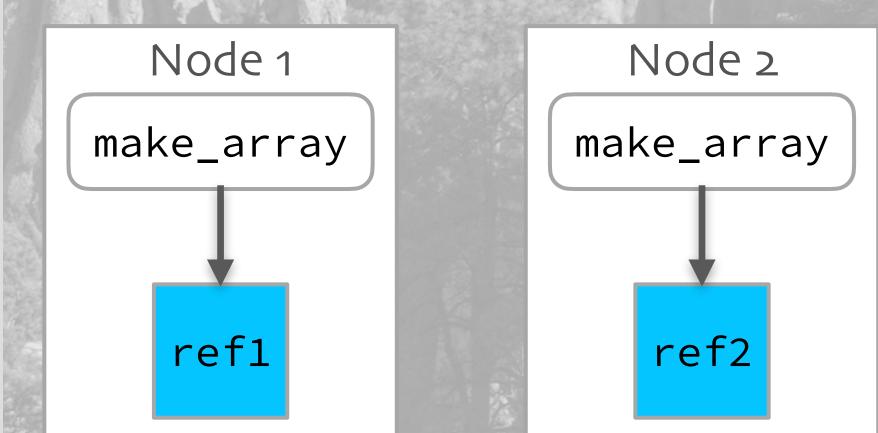


Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...) ref2 = make_array.remote(...)



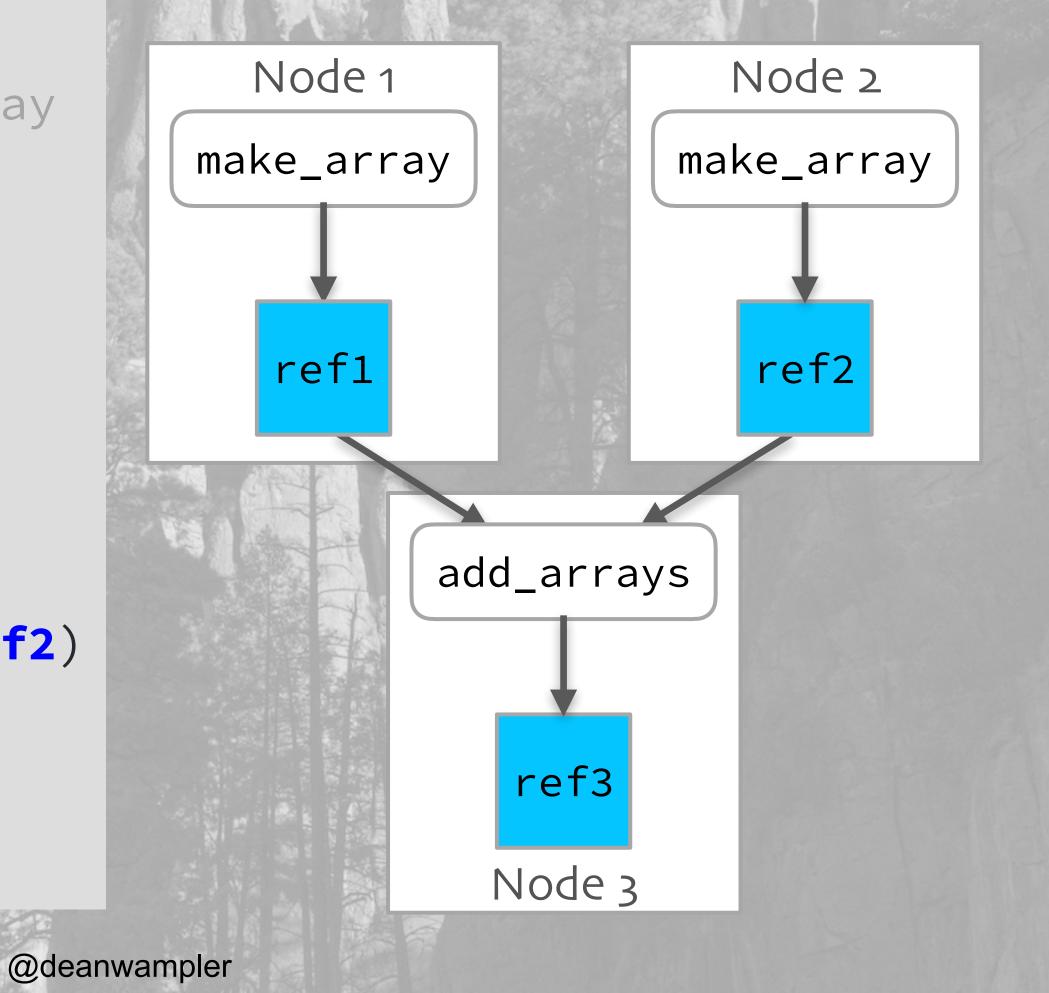
Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

@ray.remote def add_arrays(a, b): return np.add(a, b)

ref1 = make_array.remote(...) ref2 = make_array.remote(...)

ref3 = add_arrays.remote(ref1, ref2)



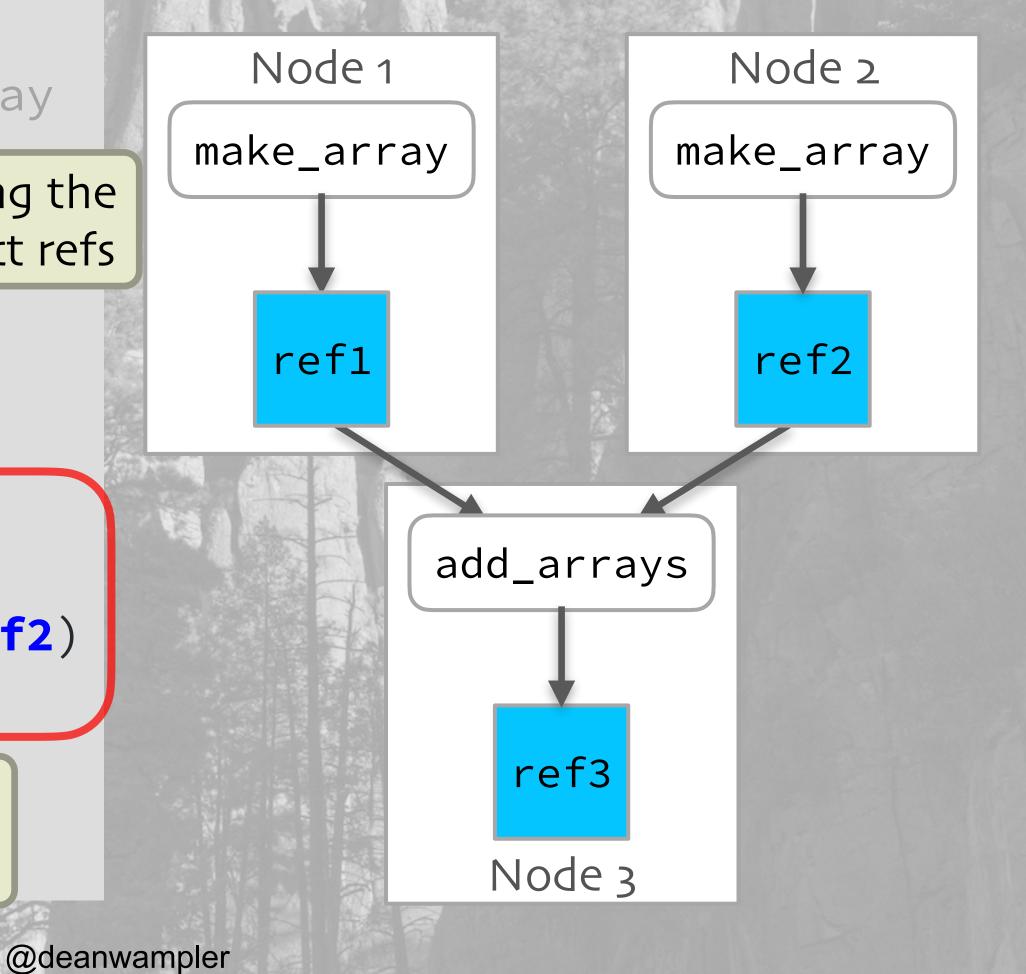
Functions -> Tasks

@ray.remote def make_array(...): a = ... # Construct a NumPy array return a @ray.remote def add_arrays(a, b): return np.add(a, b) ref1 = make_array.remote(...)

ref2 = make_array.remote(...)

ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Ray handles sequencing of async dependencies



Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...) ref2 = make_array.remote(...) ref3 = add_arrays.remote(ref1, ref2) ray.get(ref3)

What about distributed state?

Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...) ref2 = make_array.remote(...) ref3 = add_arrays.remote(ref1, ref2) ray.get(ref3)

Classes -> Actors

class Counter(object): def __init__(self): self.value = 0 def increment(self): self.value += 1 return self.value

The Python classes you love...

Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...) ref2 = make_array.remote(...) ref3 = add_arrays.remote(ref1, ref2) ray.get(ref3)

Classes -> Actors

@ray.remote class Counter(object): def __init__(self): self.value = 0 def increment(self): self.value += 1 return self.value ... now a remote def get_count(self): "actor" return self.value You need a "getter" method to read the state.

Functions -> Tasks

```
@ray.remote
def make_array(...):
    a = ... # Construct a NumPy array
    return a
```

```
@ray.remote
def add_arrays(a, b):
    return np.add(a, b)
```

ref1 = make_array.remote(...) ref2 = make_array.remote(...) ref3 = add_arrays.remote(ref1, ref2) ray.get(ref3)

Classes -> Actors

@ray.remote class Counter(object): def __init__(self): self.value = 0 def increment(self): self.value += 1 return self.value def get_count(self): return self.value

c = Counter.remote() ref4 = c.increment.remote() ref5 = c.increment.remote() ray.get([ref4, ref5]) # [1, 2]

Machine Learning with Ray-based Libraries

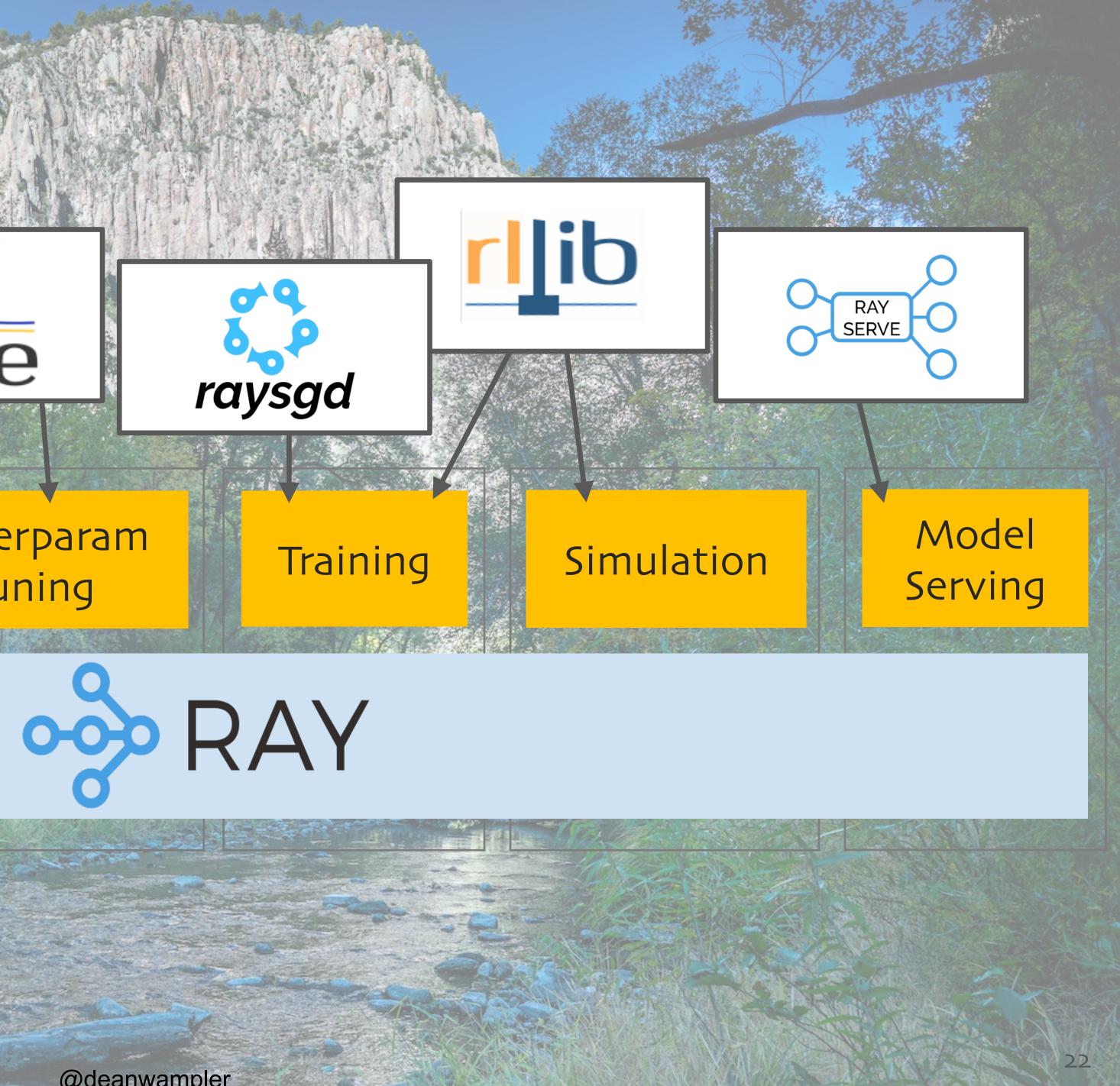
obo RAY

Ray Libraries

Featurization

Streaming

Hyperparam Tuning



Reinforcement Learning - Ray RLlib

Featurization

Streaming

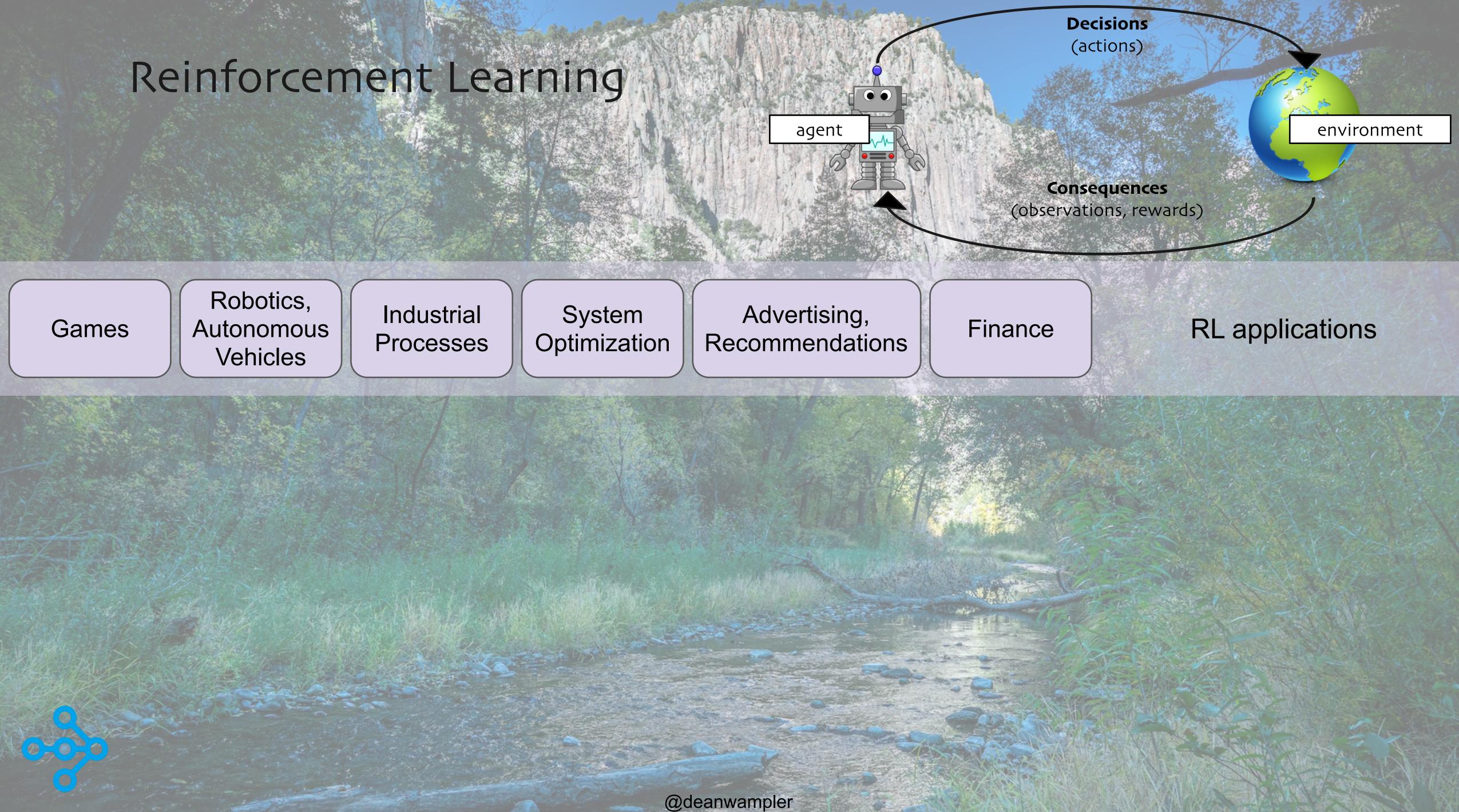
Hyperparam Tuning

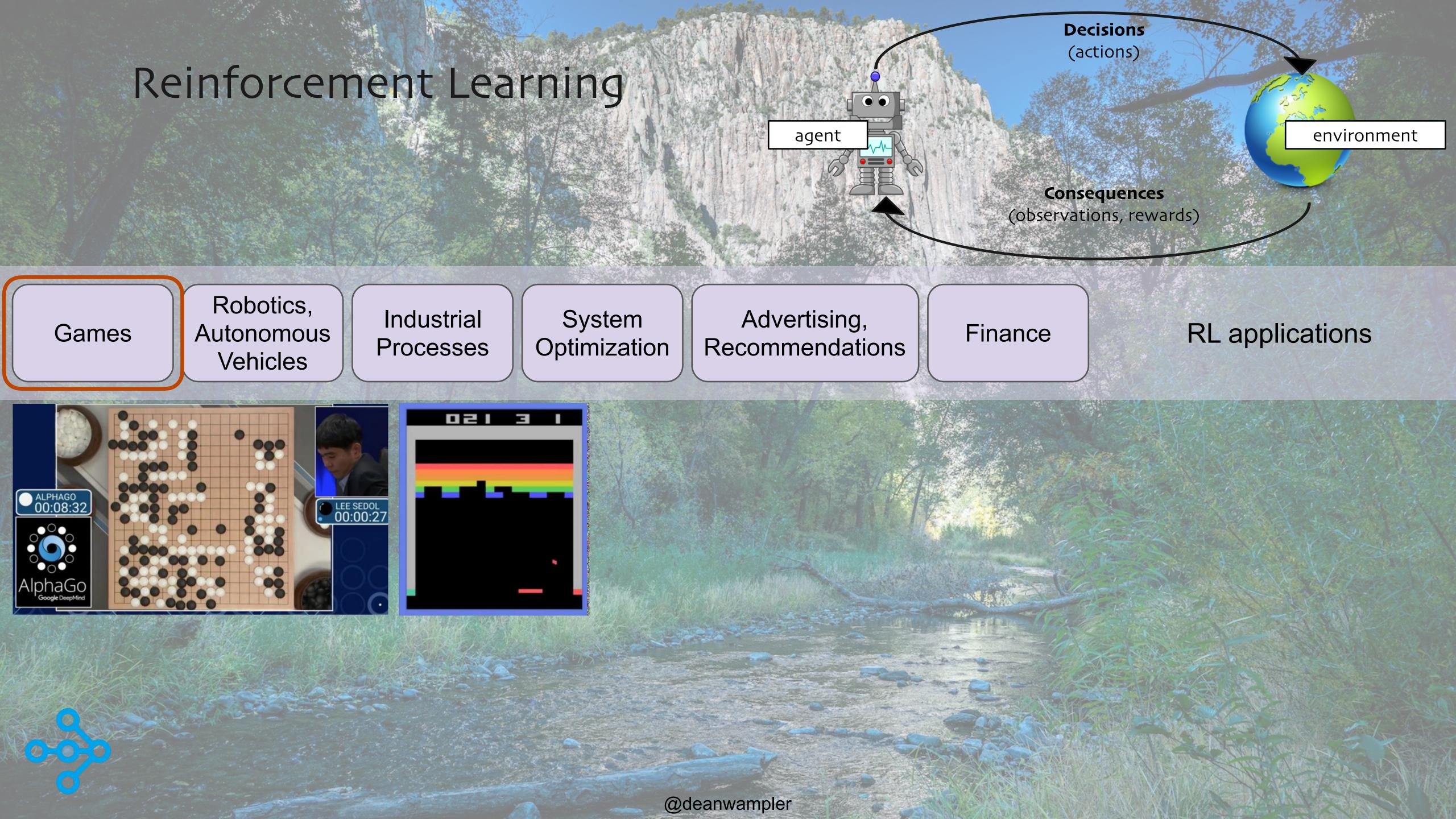
Training

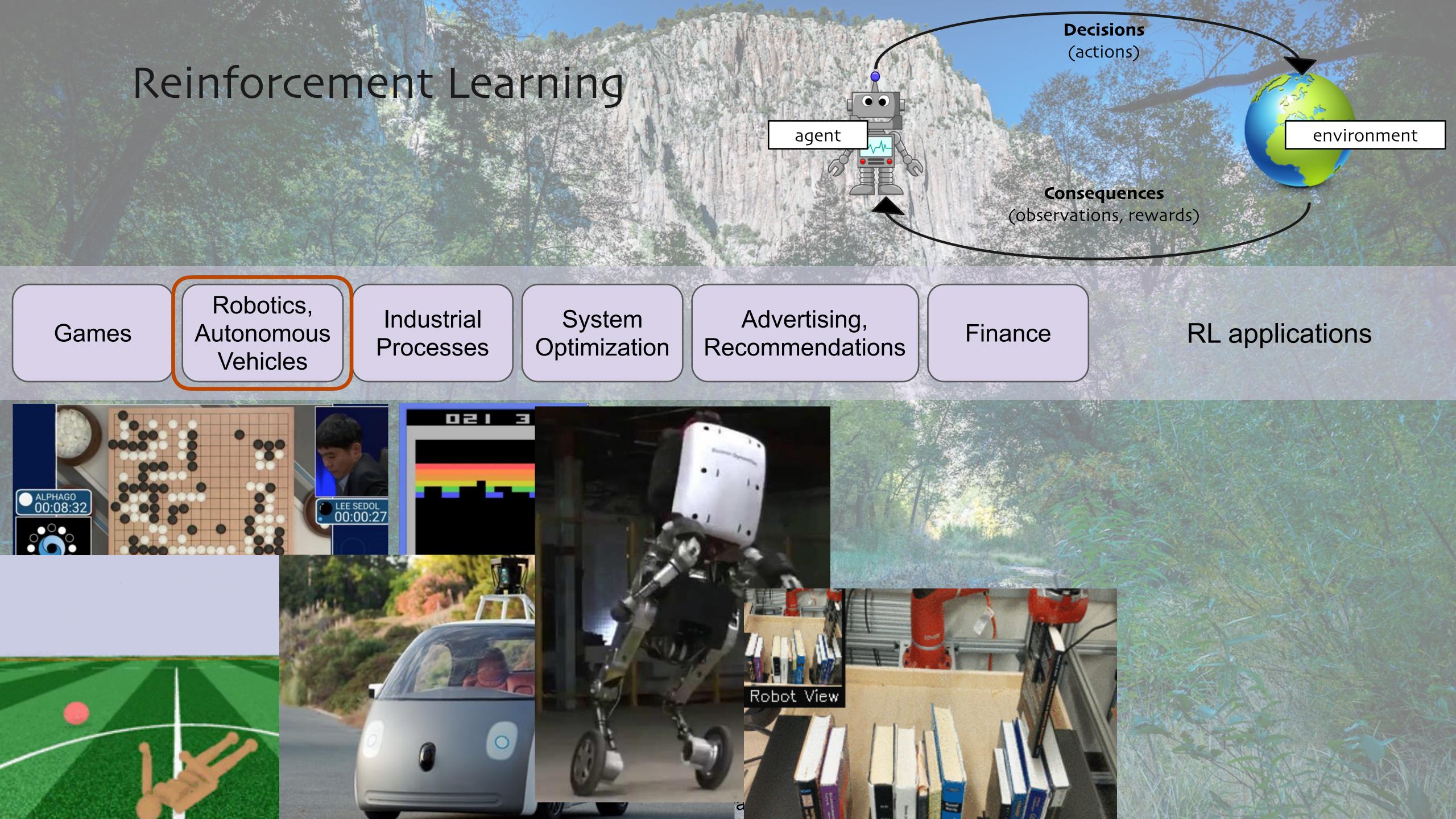
Simulation

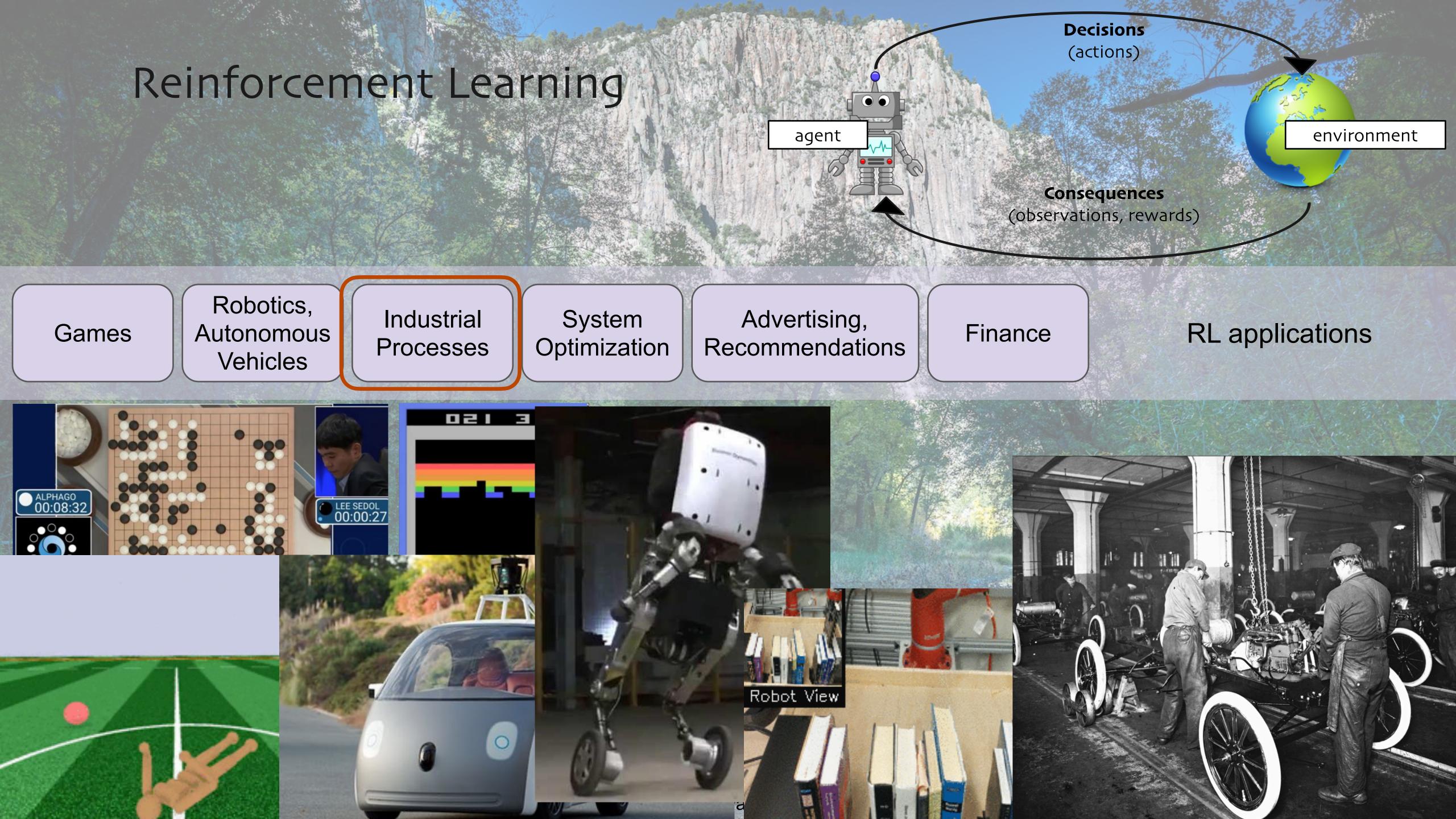
Model Serving

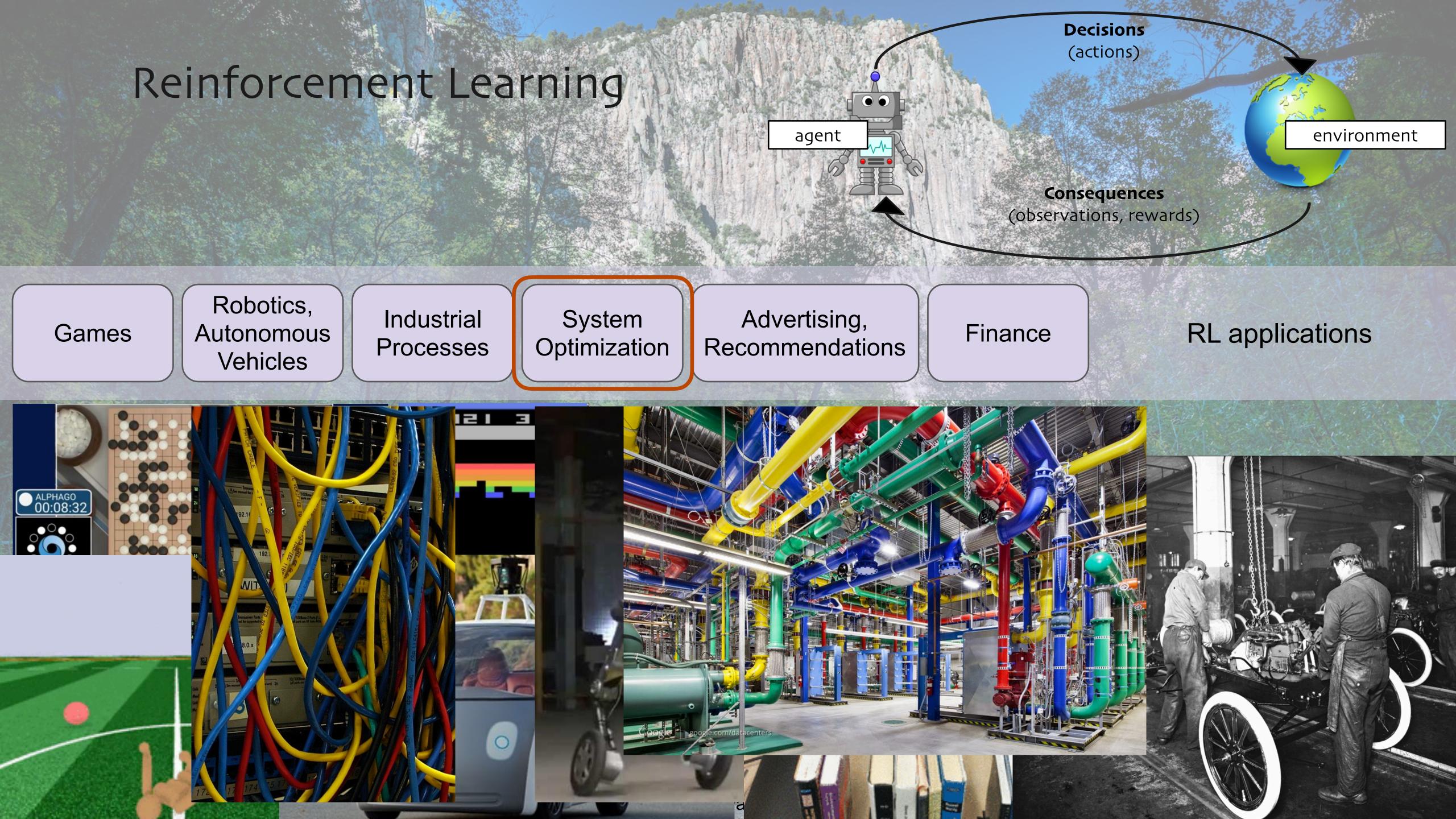
B

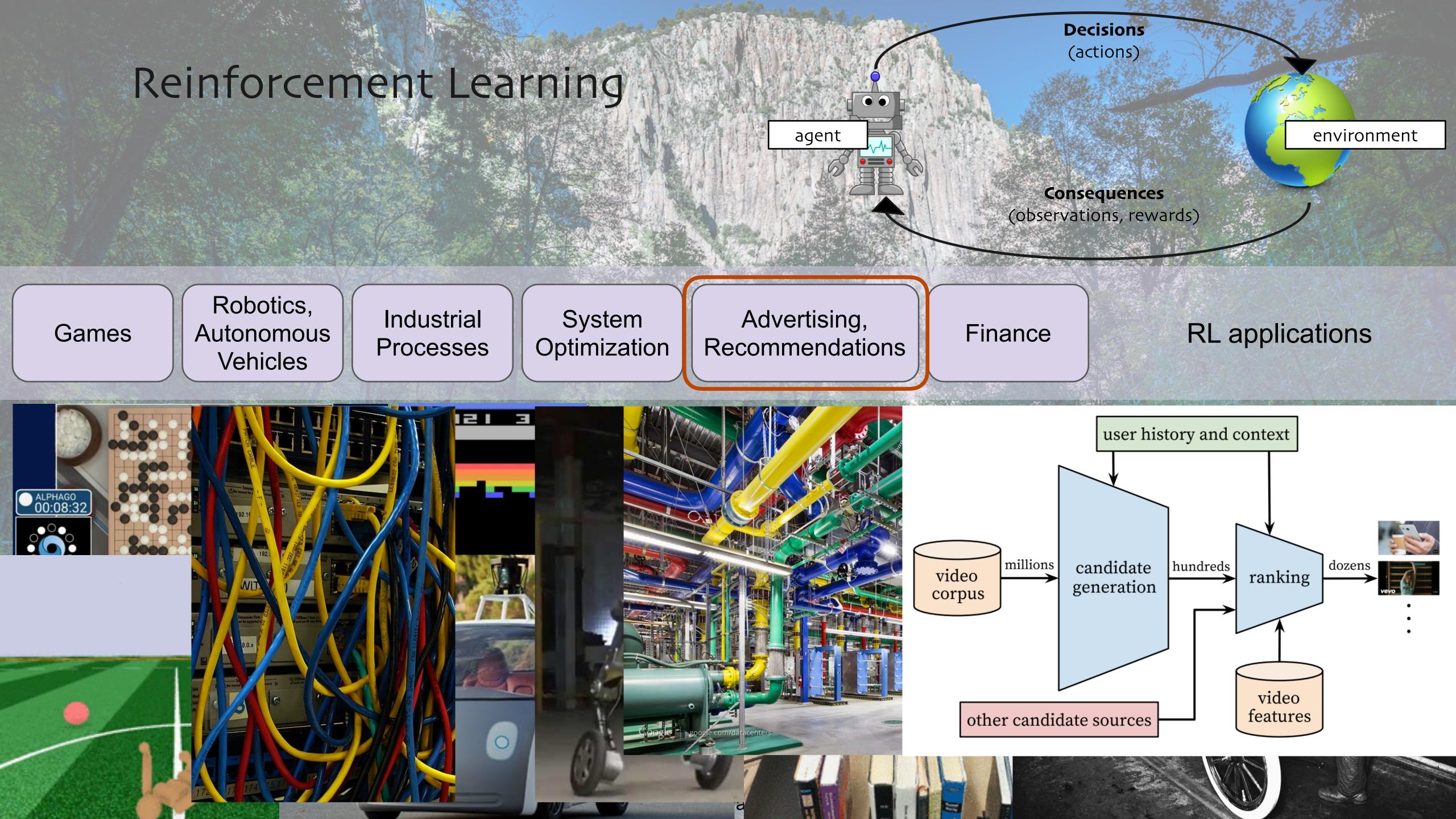


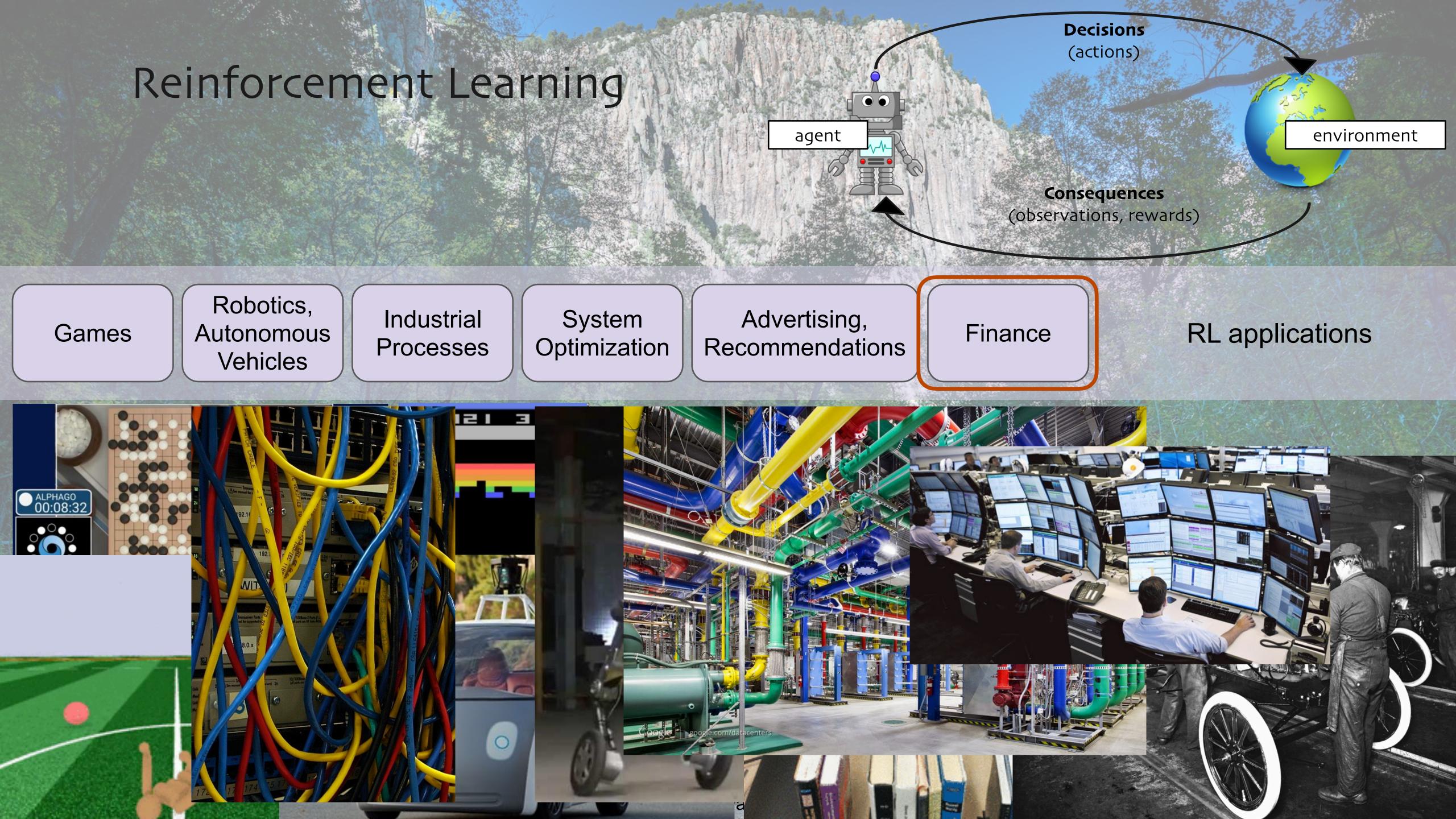












Go as a Reinforcement Learning Problem

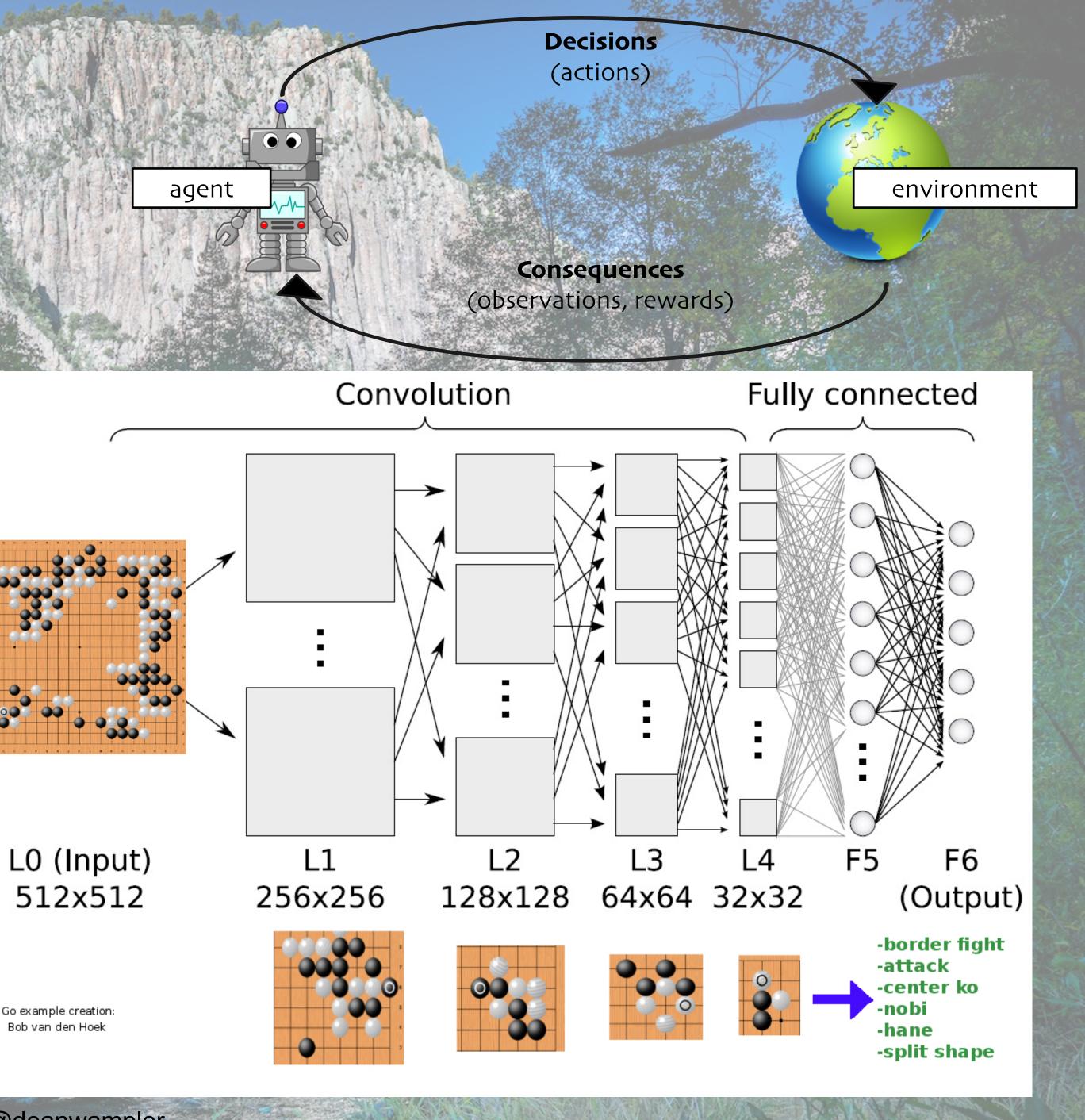
AlphaGo (Silver et al. 2016) • Observations:

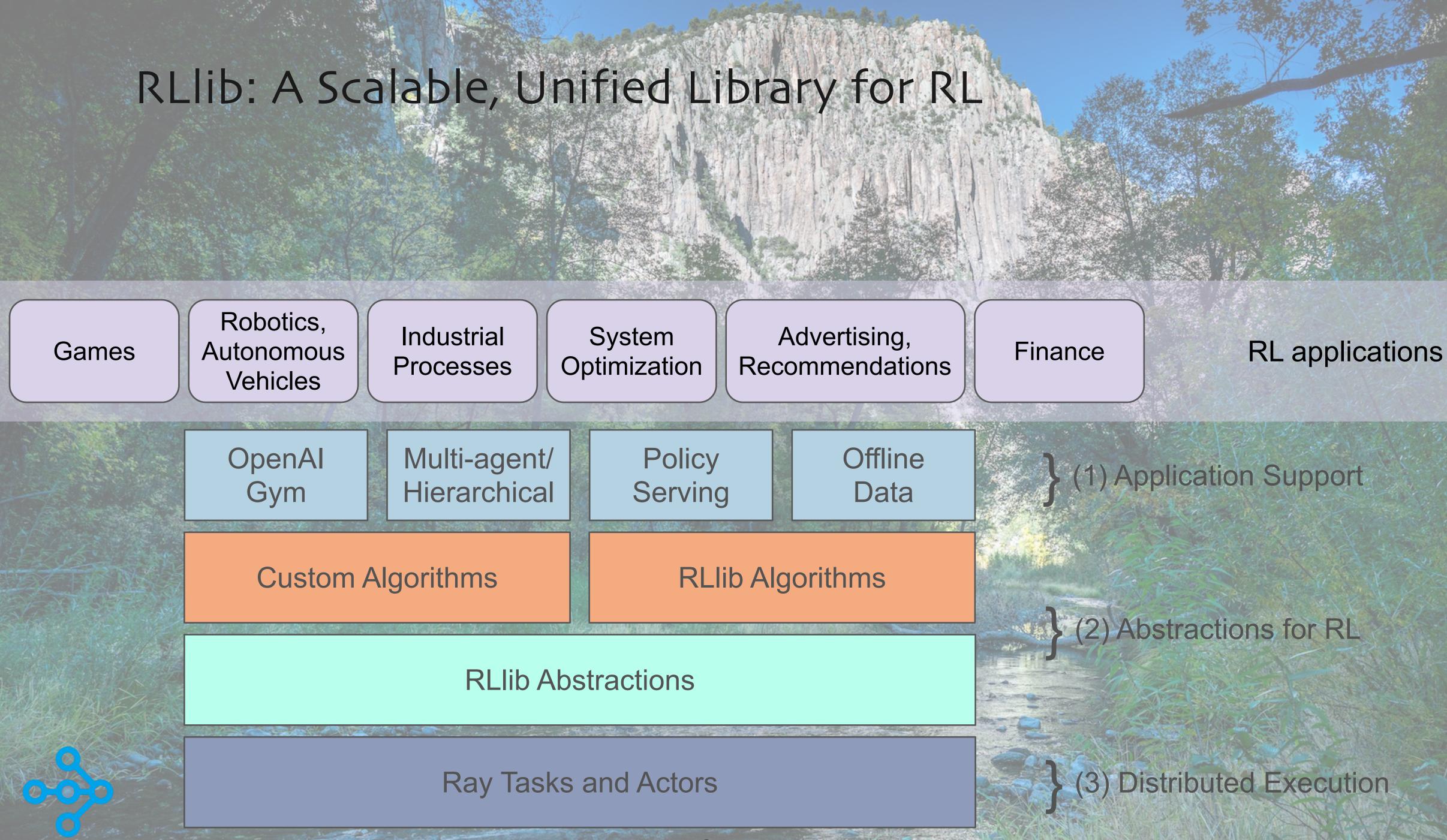
board state

Actions:

•

- where to place the stones 0 **Rewards**:
- \circ 1 if win
- o otherwise





A Broad Range of Popular Algorithms

High-throughput architectures

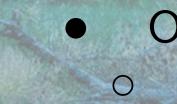
- Distributed Prioritized Experience Replay (Ape-X) 0
- Importance Weighted Actor-Learner Architecture (IMPALA) 0
- Asynchronous Proximal Policy Optimization (APPO) 0

Gradient-based

- Soft Actor-Critic (SAC) 0
- Advantage Actor-Critic (A2C, A3C) 0
- Deep Deterministic Policy Gradients (DDPG, TD3) 0
- Deep Q Networks (DQN, Rainbow, Parametric DQN) 0
- **Policy Gradients** 0
- Proximal Policy Optimization (PPO) 0

gradient-free Augmented Random Search (ARS) 0 **Evolution Strategies** 0

Multi-agent specific **QMIX** Monotonic Value Factorisation 0 (QMIX, VDN, IQN)



Offline Advantage Re-Weighted Imitation Learning (MARWIL)

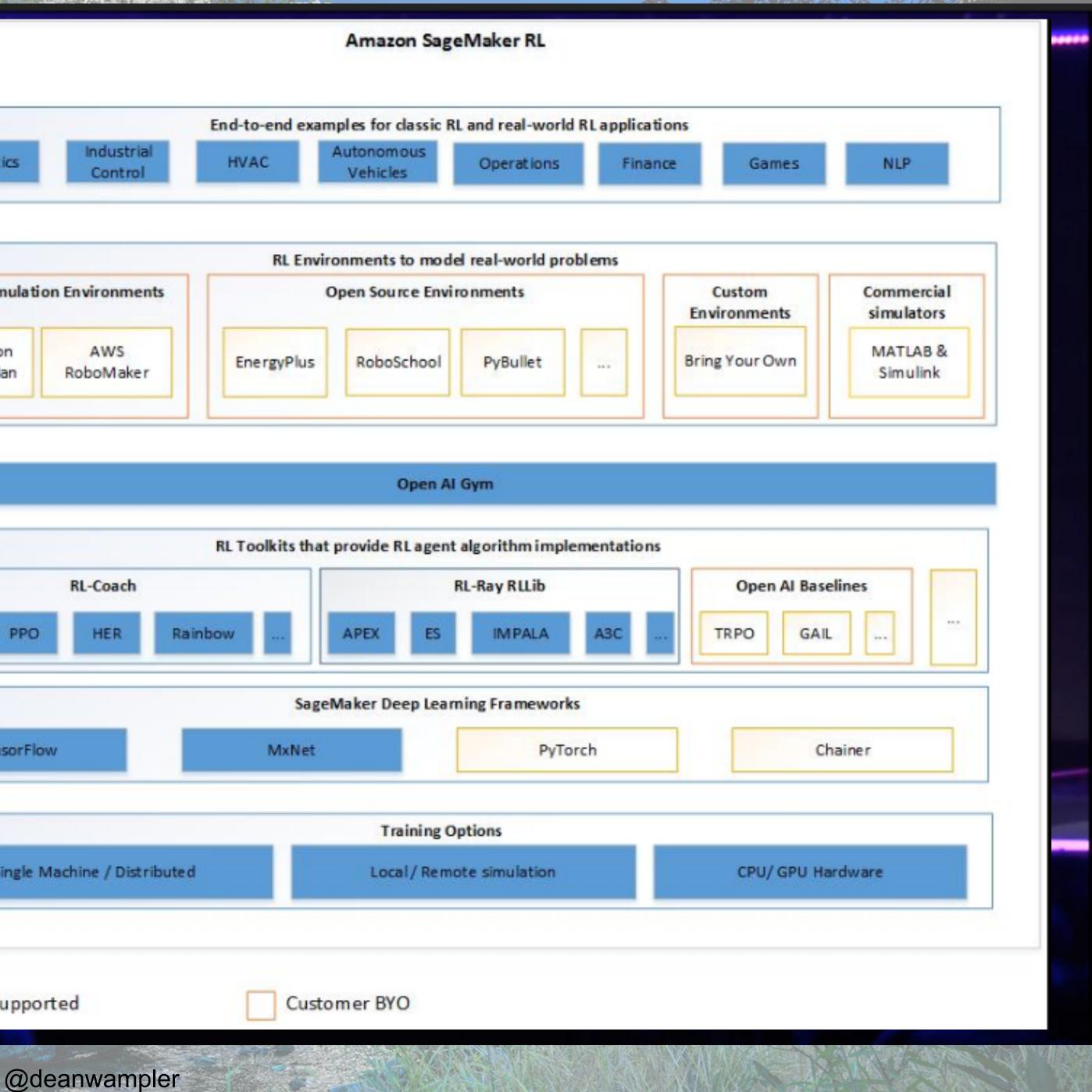
Amazon SageMaker RL

Reinforcement learning for every developer indicata scientist

390

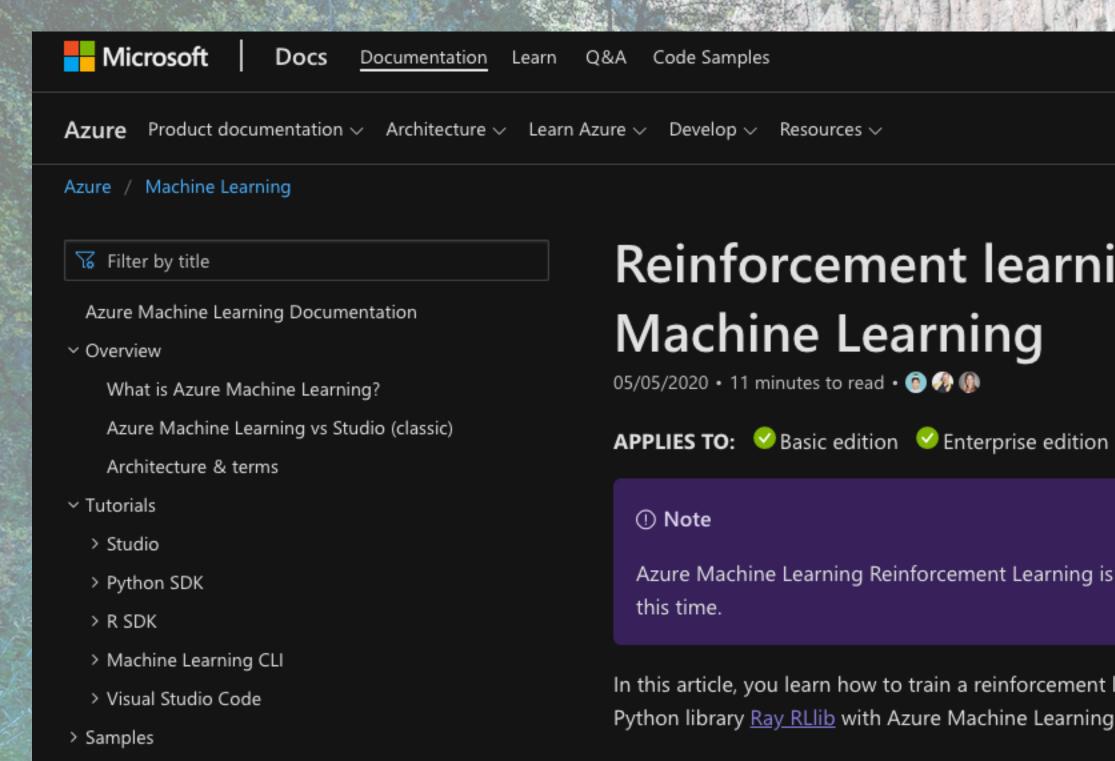
87.

Aws Simulation E Amazon Sumerian P DQN PPO TensorFlow	Robotics
Sumerian R DQN PPO	AWS Simulation
DQN PPO	
DQN PPO	
DQN PPO	
TensorFlow	DQN PPO
	TensorFlow

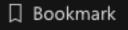


Now in Azure

> Concepts



In this article you will learn how to:



Reinforcement learning (preview) with Azure

(Upgrade to Enterprise edition)

Azure Machine Learning Reinforcement Learning is currently a preview feature. Only Ray and RLlib frameworks are supported at

In this article, you learn how to train a reinforcement learning (RL) agent to play the video game Pong. You will use the open-source Python library Ray RLlib with Azure Machine Learning to manage the complexity of distributed RL jobs.

Diverse Compute Requirements Motivated Creation of Ray!

Neural network

"stuff"

And repeated play, over and over again, to train for achieving the best reward

> Simulator (game engine, robot sim, factory floor sim...)

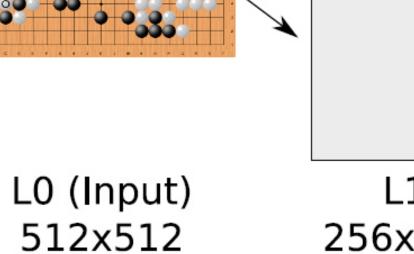
Complex agent?

agent

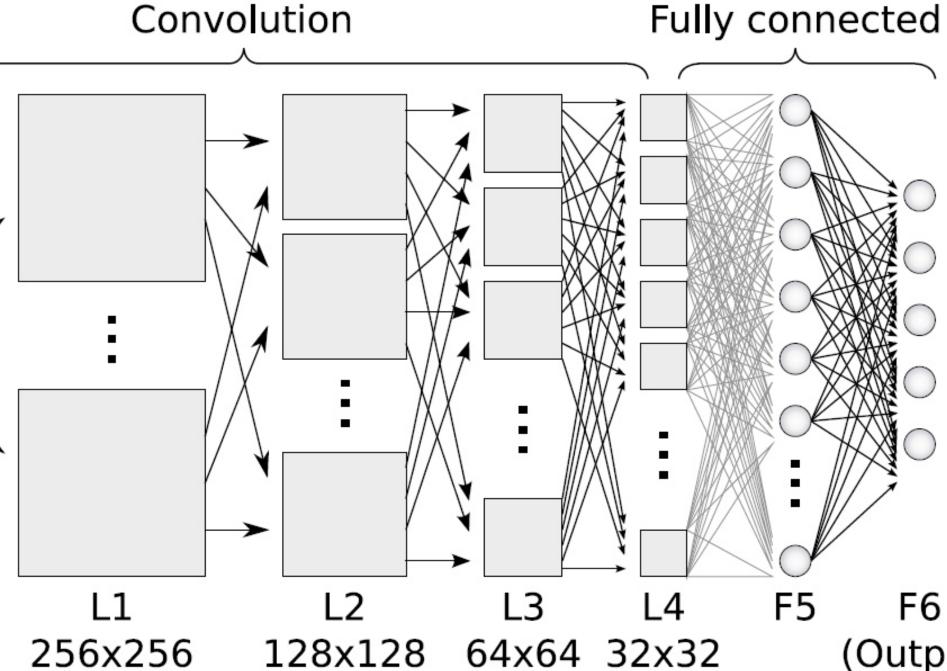
Decisions (actions)

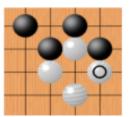
environment

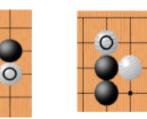
Consequences (**observations, rewards**)

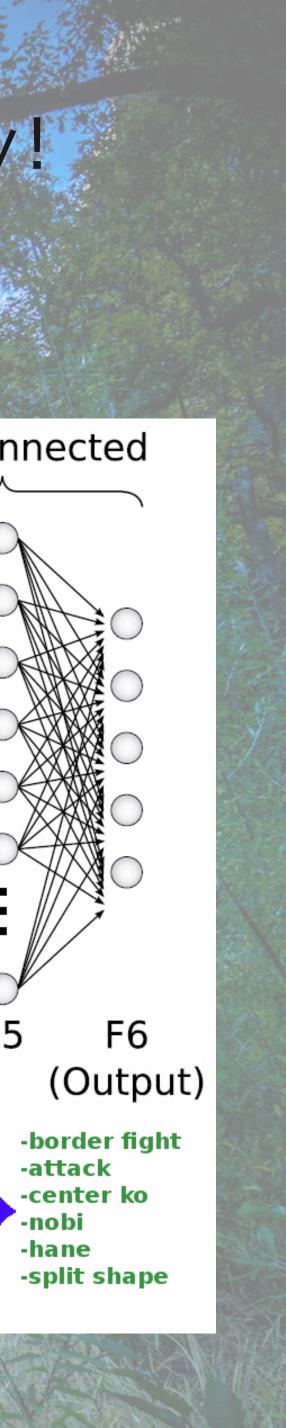


example creation: Bob van den Hoek







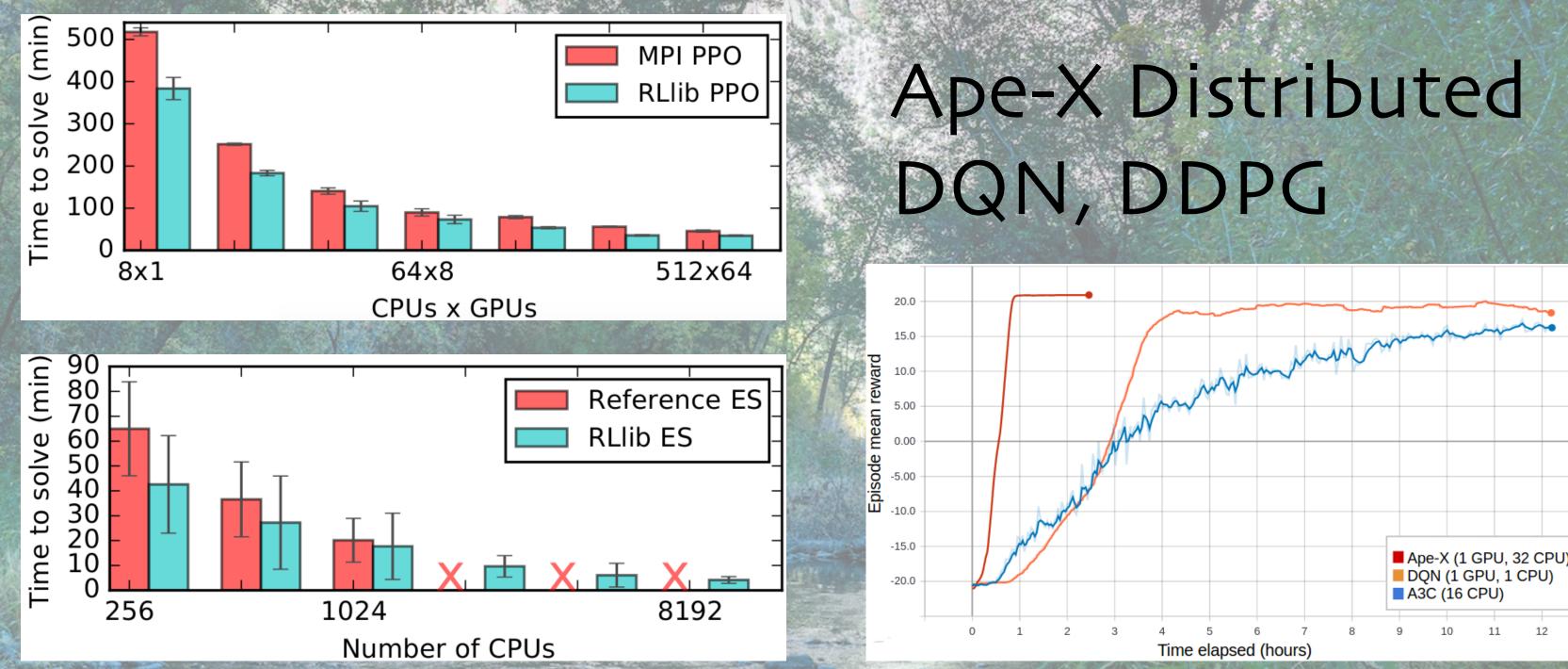


@deanwampler

RLlib Provides a Unified Framework for Scalable RL that Doesn't Compromise on Performance

Distributed PPO

Evolution Strategies



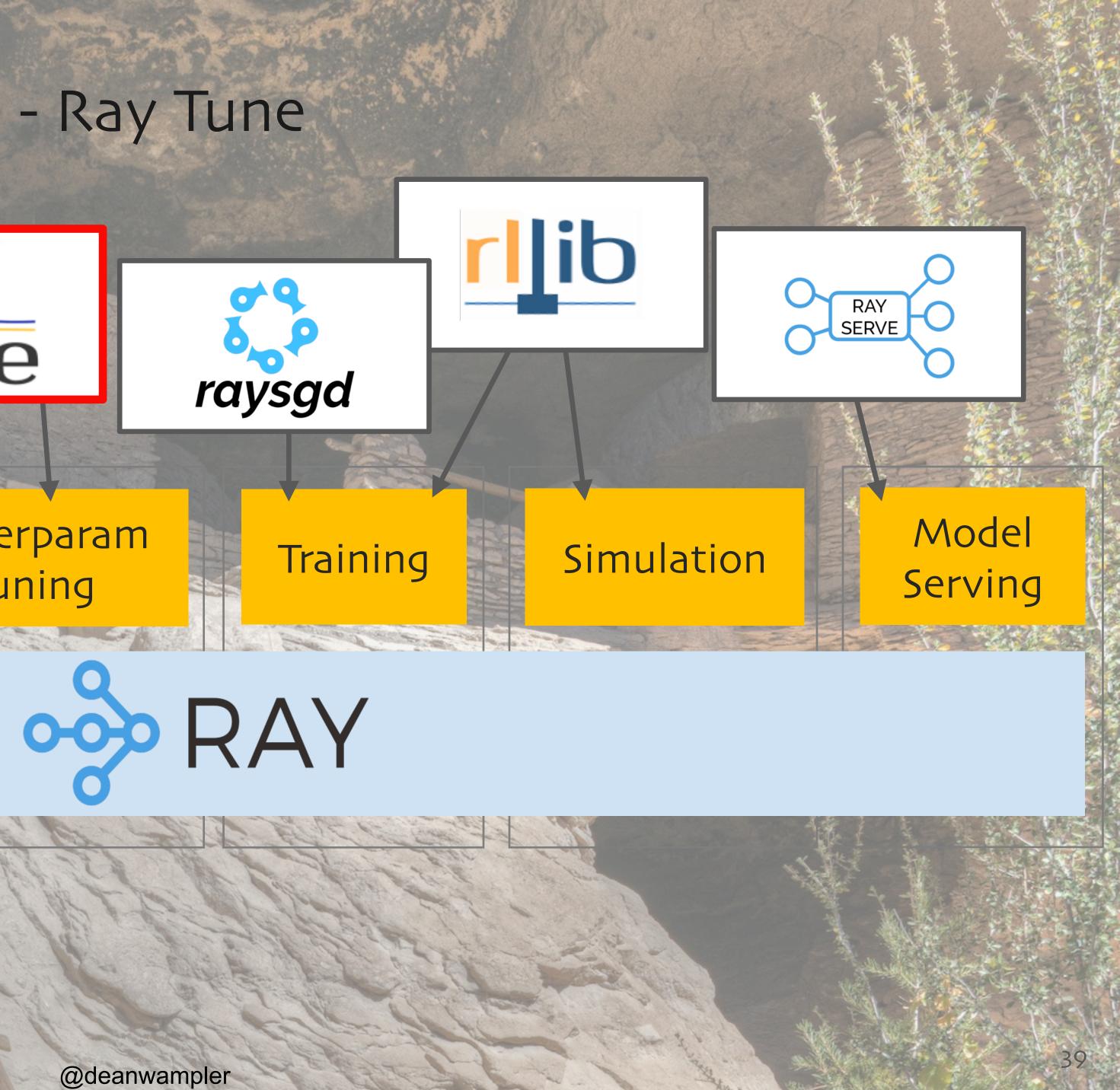


Hyperparameter Tuning - Ray Tune

Featurization

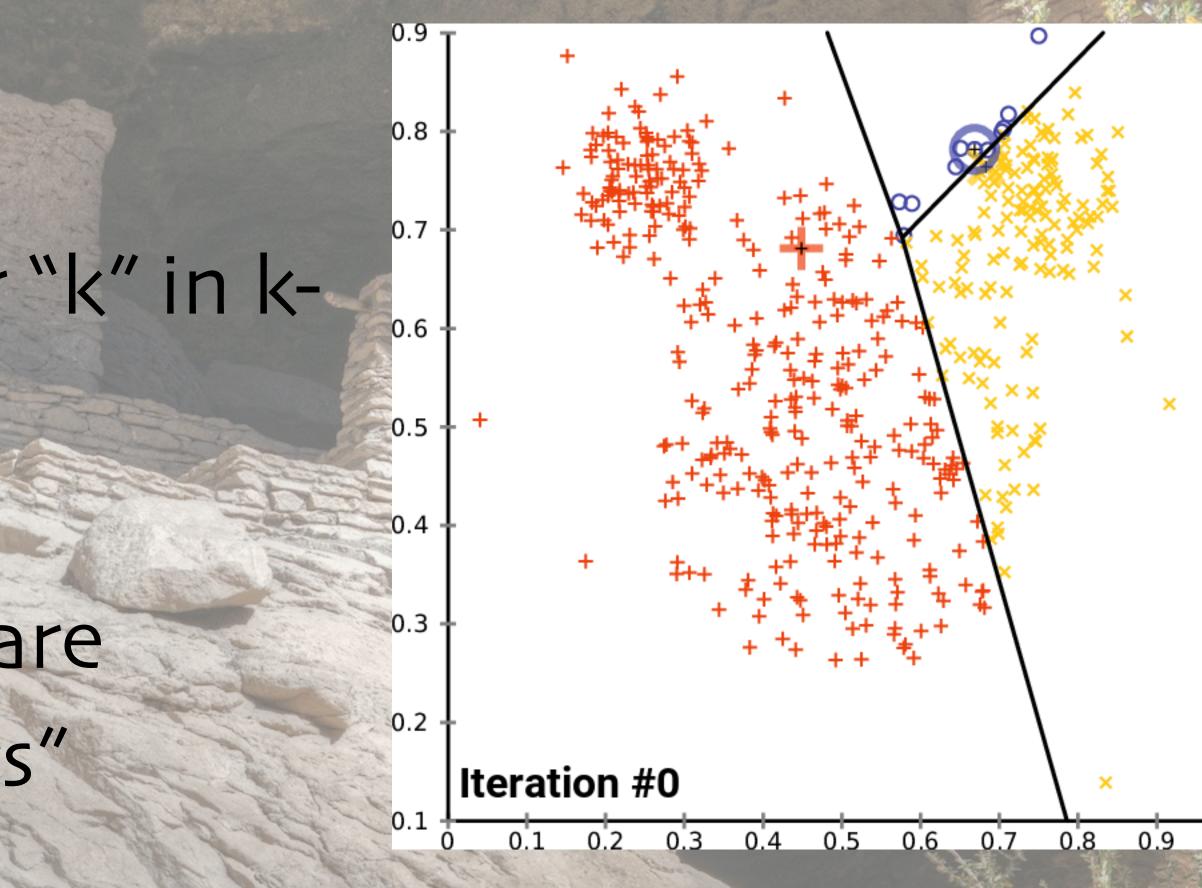
Streaming

Hyperparam Tuning

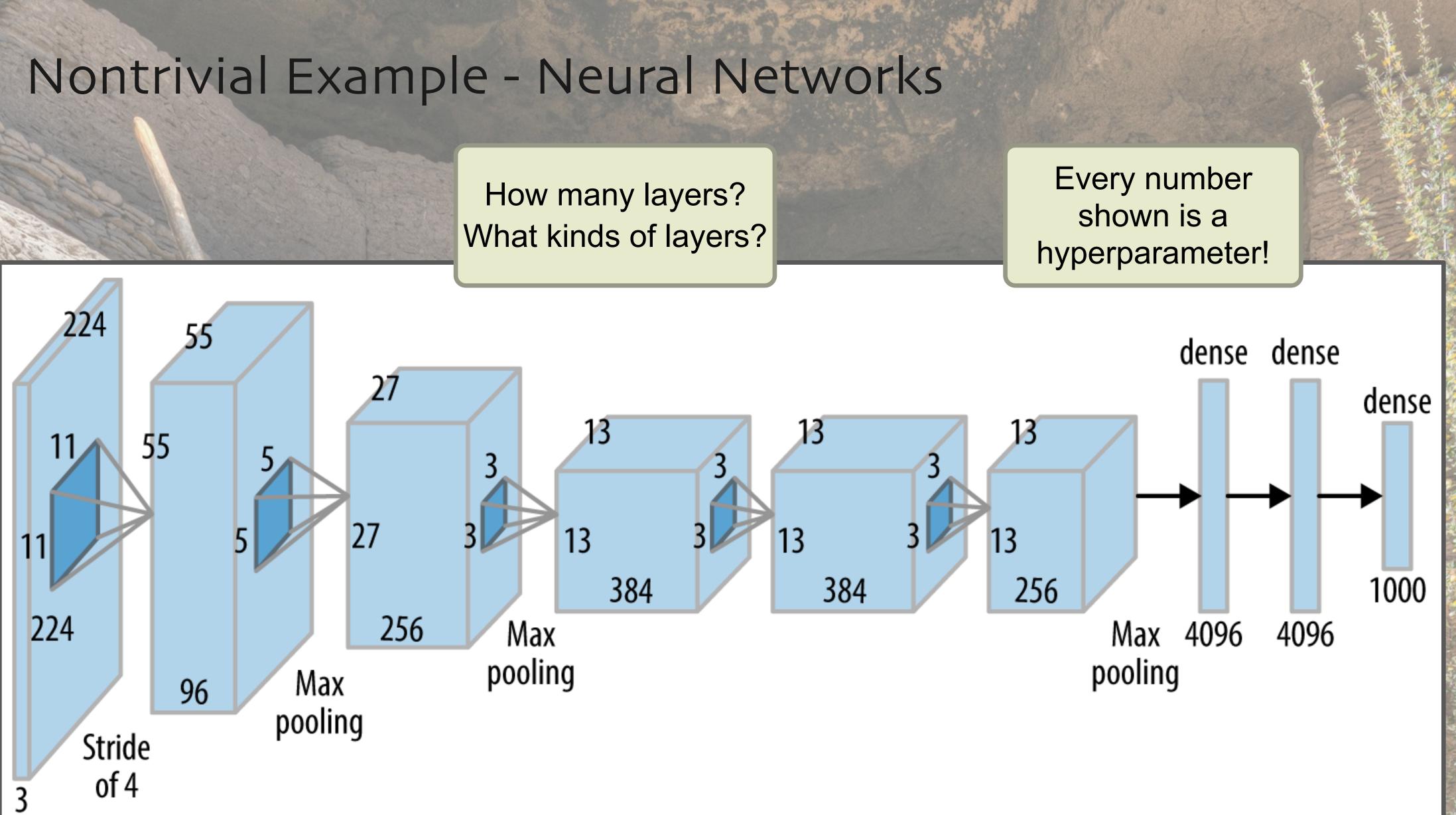


What Is Hyperparameter Tuning?

Trivial example: What's the best value for "k" in kmeans?? k is a "hyperparameter" The resulting clusters are defined by "parameters"



credit: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

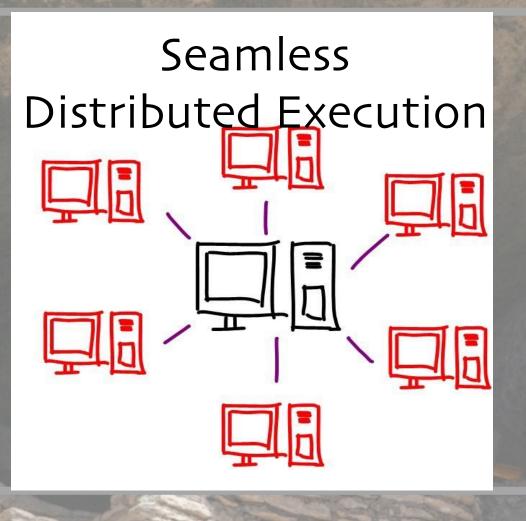


Tune is Built with Deep Learning as a Priority

Resource Aware Scheduling

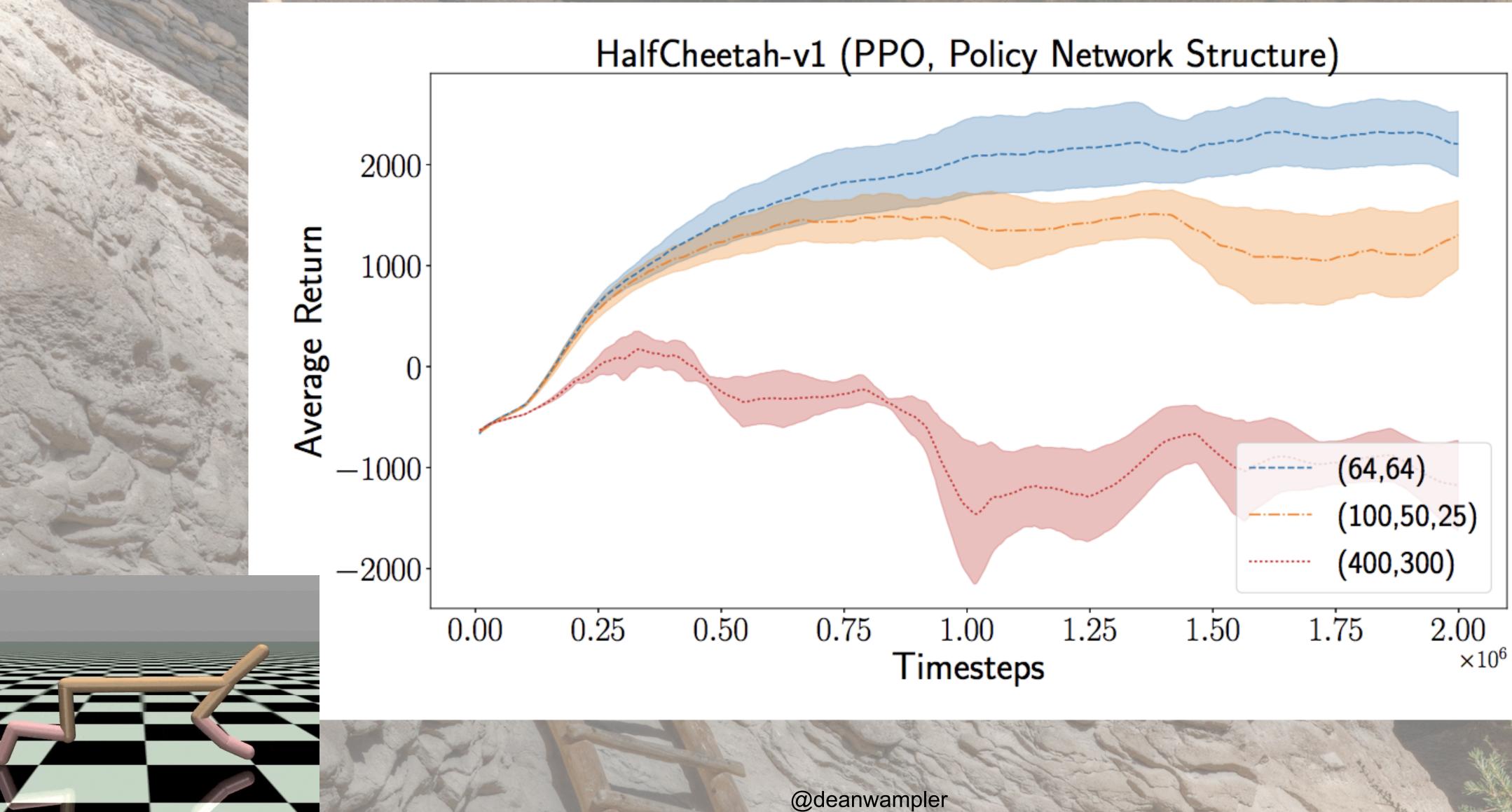
Simple API for new algorithms

class TrialScheduler: def on_result(self, trial, result): ... def choose_trial_to_run(self): ...



Framework Agnostic

Hyperparameters Are Important for Performance



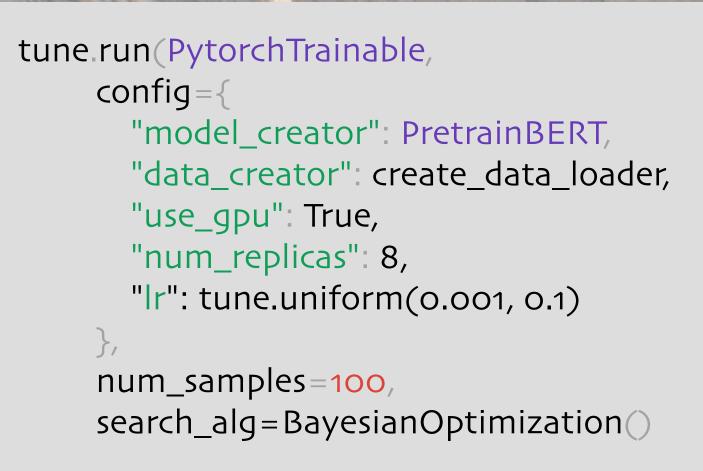
Why We Need a Framework for Tuning Hyperparameters

We want the best model

Resources are expensive

Model training is timeconsuming

Tuning + Distributed Training



Native Integration with TensorBoard HParams

destructure 1	TensorBo	oard SCAL	RS HPARAMS	
11 VAN CARA	Hyperparame activation relu		TABLE VIEW	
- C Sarker	✓ tanh✓ widthMin		Color by ray/tune/neg_mean_l •	
STATES I LESS	-infinity ^{Max} +infinitv		 width Linear Logarithmic Quantile 	
AND	Metrics ray/tune/iterations_since_res		Quantile	
Carl Value	Min -infinity	Max +infinity		activation
	Min -infinity	mean_loss _{Max} +infinity		
and the second	ray/tune/neg_mean_loss			
	Min -infinity	Max +infinity		
The state of the second of the	Min -infinity	time_since_restore _{Max} +infinity		relu -
	<u>Status</u>			_

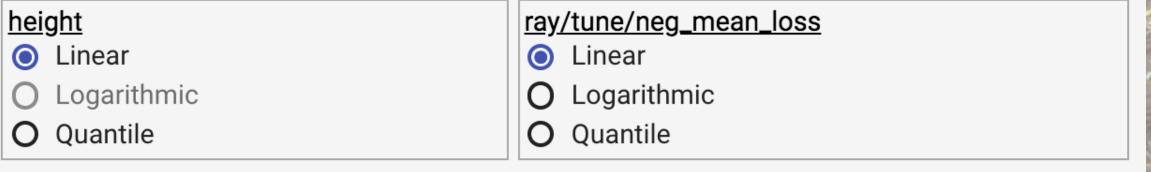
?

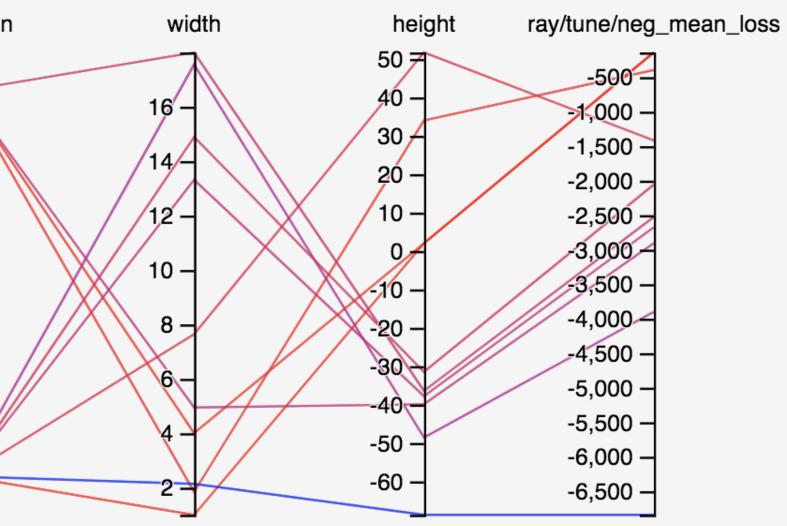
• C

PARALLEL COORDINATES VIEW

SCATTER PLOT MATRIX VIEW

INACTIVE





What about Ray for Microservices?

What Are Microservices?

They partition the domain
Conway's Law - Embraced
Separate responsibilities
Separate management

What Are Microservices?

They partition the domain Conway's Law - Embraced Separate responsibilities Separate management

What we mostly care about for today's talk, the "Ops in DevOps"

Conway's Law - Embraced

 "Any organization that designs a system will produce a design whose structure is a copy of the organization's communication structure" Let each team own and manage the services for its part of the domain

en.wikipedia.org/wiki/Conway's law

API Gateway

µ-service 2

REST

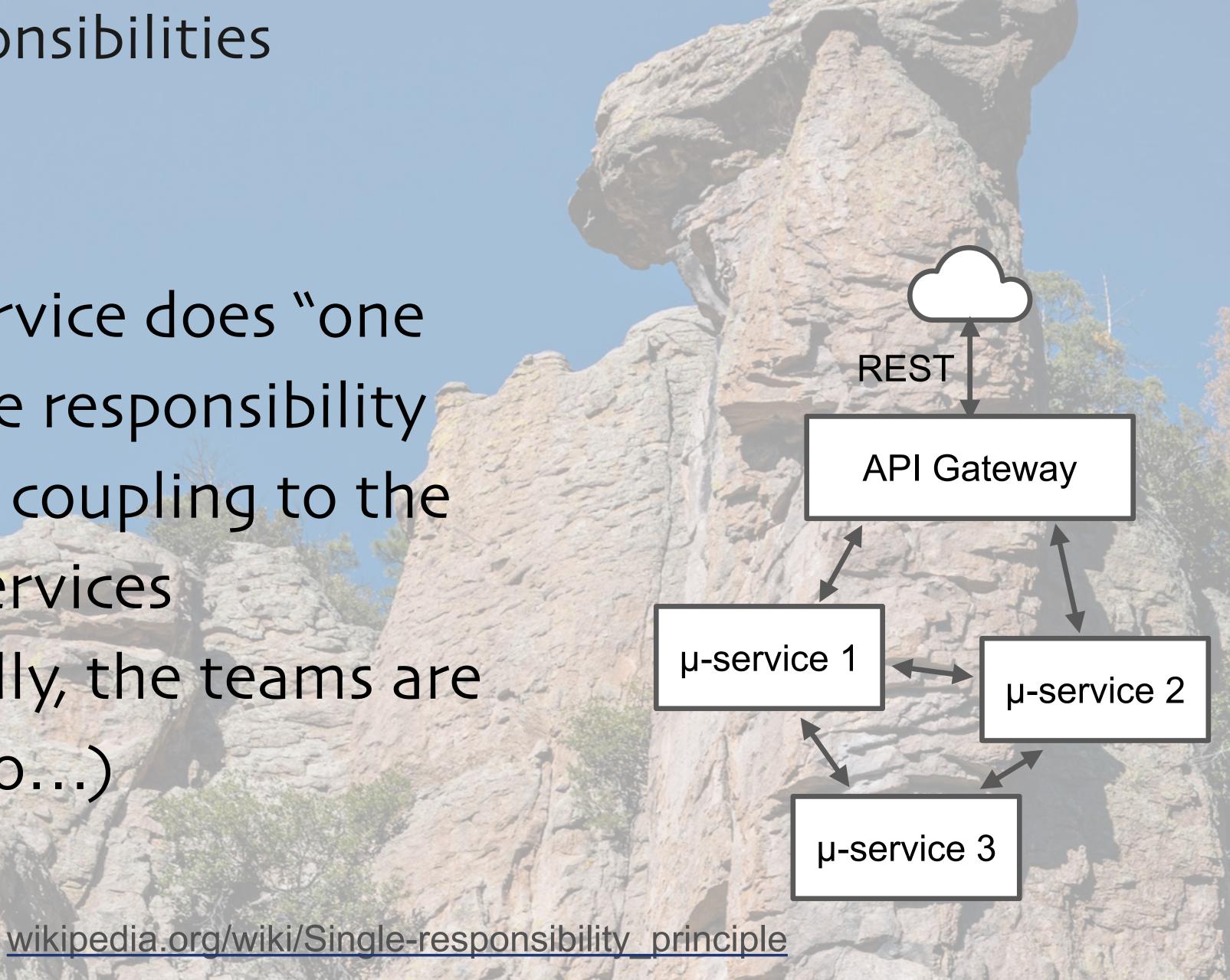
µ-service 1

@deanwampler

µ-service 3

Separate Responsibilities

Each microservice does "one thing", a single responsibility with minimal coupling to the other microservices • (Like, hopefully, the teams are organized, too...)



Separate Management

Each team manages its own instances • Each microservice has a different number of instances for scalability and resiliency But they have to be managed explicitly

API Gateway

REST

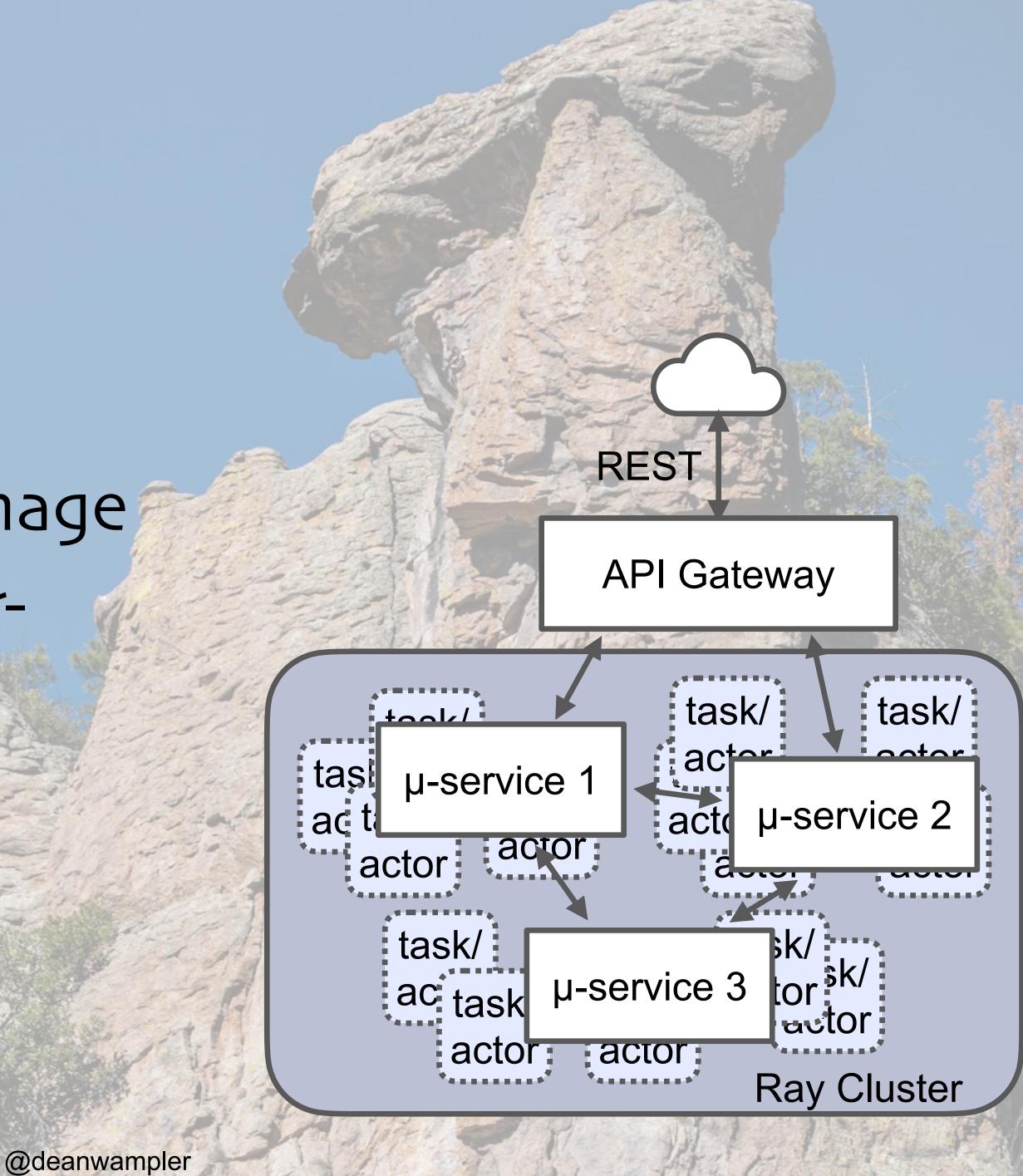
µ-service 1

μ-service 2

 μ -service 3

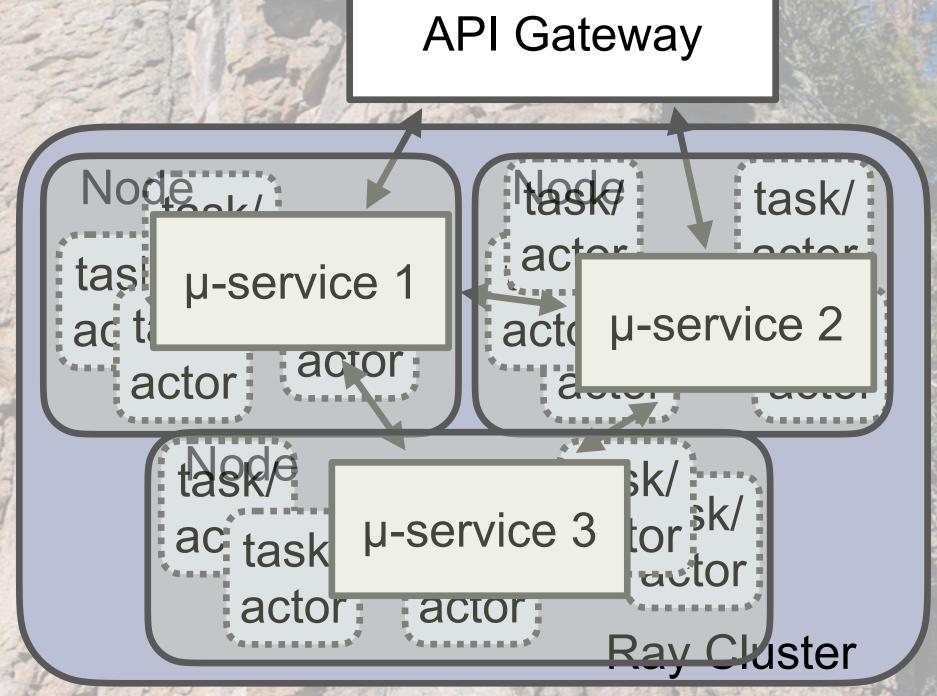
Management - Simplified

 With Ray, you have one "logical" instance to manage and Ray does the clusterwide scaling for you.



What about Kubernetes (and others...)?

Ray scaling is very fine grained. It operates within the "nodes" of • coarse-grained managers Containers, pods, VMs, or physical machines



REST

Adopting Ray and the Ray community

If you're already using...

• joblib • multiprocessing.Pool

Use Ray's implementations Drop-in replacements 0 • Change import statements Break the one-node limitation!

See these blog posts: https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

For example, from this:

from multiprocessing.pool import Pool

To this:

from ray.util.multiprocessing.pool import Pool

And Ray is integrated with asyncio

Ray Community and Resources

ray.io Need help? • ray-dev Google group

• Tutorials (free): <u>anyscale.com/academy</u>

Ray Slack: ray-distributed.slack.com

Conclusion

Ray is the new state-of-the-art for distributed computing The shortest path from your laptop to the cloud simple code on your laptop

Run complex distributed tasks on large clusters from

raysga

Alter and the second se

tune

ray.io dean@deanwampler.com (adeanwampler dominodatalab.com

Slides at polyglotprogramming.com/talks

