
Ray - Scalability from a Laptop to a Cluster

Dean Wampler - Nov 6, 2020
dean@deanwampler.com
@deanwampler
ray.io
Domino Data Lab

mailto:dean@deanwampler.com
https://twitter.com/deanwampler
https://ray.io
https://dominodatalab.com

dominodatalab.com

https://www.dominodatalab.com/

@deanwampler

Outline

● Why Ray?
● ML/AI Ray Libraries
● Ray for Microservices
● Adopting Ray

@deanwampler

Why Ray??

@deanwampler

@deanwampler
U

sa
ge

 %

 2012 2014 2016 2018. 2020Time

 0

 5

10

15

Two Major Trends Hence, there is a pressing
need for robust, easy to

use solutions for
distributed PythonModel sizes and therefore

compute requirements
outstripping Moore’s Law

Moore’s Law/Denard Scaling

 (2x every two years)

35x every tw
o years!

GPU
CPU

Python growth driven by
ML/AI and other data

science workloads

2013 2014 2015 2016 2017 2018 2019

https://openai.com/blog/ai-and-compute/

https://openai.com/blog/ai-and-compute/

@deanwampler
U

sa
ge

 %

 2012 2014 2016 2018. 2020Time

 0

 5

10

15

Two Major Trends Hence, there is a pressing
need for robust, easy to

use solutions for
distributed PythonModel sizes and therefore

compute requirements
outstripping Moore’s Law

Moore’s Law/Denard Scaling

 (2x every two years)

35x every tw
o years!

GPU
CPU

Python growth driven by
ML/AI and other data

science workloads

2013 2014 2015 2016 2017 2018 2019

https://openai.com/blog/ai-and-compute/

Aimed at data scientists and engineers who are
less interested in fine-grained distributed

computing tools, who want something that
“just works”.

https://openai.com/blog/ai-and-compute/

@deanwampler

Hyperparam
Tuning

The ML Landscape Today

8

Training Model
ServingStreamingFeaturization

All require distributed
implementations to scale

Simulation

@deanwampler

Hyperparam
Tuning

The Ray Vision: Sharing a Common Framework

9

Training Model
ServingStreaming SimulationFeaturization

Framework for
distributed Python (and

other languages…)

Domain-specific libraries
for each subsystem

More libraries
coming soon

@deanwampler

API - Designed to Be Intuitive and Concise

10

Functions -> Tasks

def make_array(…):
 a = … # Construct a NumPy array
 return a

def add_arrays(a, b):
 return np.add(a, b) The Python you

already know…

@deanwampler
11

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

import ray
import numpy as np
ray.init()

API - Designed to Be Intuitive and Concise

Functions -> Tasks For completeness, add these first:

Now these functions
are remote “tasks"

@deanwampler

Node 1

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)

12

API - Designed to Be Intuitive and Concise

make_array

ref1

Functions -> Tasks

@deanwampler

Node 1 Node 2

13

API - Designed to Be Intuitive and Concise

make_array

ref1

make_array

ref2

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)

Functions -> Tasks

@deanwampler

Node 3

Node 1 Node 2

14

API - Designed to Be Intuitive and Concise

make_array make_array

ref2

add_arrays

ref3

ref1

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)
ref3 = add_arrays.remote(ref1, ref2)

Functions -> Tasks

@deanwampler

Node 3

Node 1 Node 2

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

15

Ray handles sequencing
of async dependencies

Ray handles extracting the
arrays from the object refs

API - Designed to Be Intuitive and Concise

Functions -> Tasks

make_array make_array

ref2

add_arrays

ref3

ref1

@deanwampler
16

API - Designed to Be Intuitive and Concise

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Functions -> Tasks

What about
distributed

state?

@deanwampler
17

API - Designed to Be Intuitive and Concise

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Functions -> Tasks

class Counter(object):
 def __init__(self):
 self.value = 0
 def increment(self):
 self.value += 1
 return self.value

Classes -> Actors

The Python
classes you

love…

@deanwampler

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def increment(self):
 self.value += 1
 return self.value
 def get_count(self):
 return self.value

18

API - Designed to Be Intuitive and Concise

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Functions -> Tasks Classes -> Actors

You need a
“getter” method
to read the state.

… now a remote
“actor”

@deanwampler

@ray.remote
class Counter(object):
 def __init__(self):
 self.value = 0
 def increment(self):
 self.value += 1
 return self.value
 def get_count(self):
 return self.value

c = Counter.remote()
ref4 = c.increment.remote()
ref5 = c.increment.remote()
ray.get([ref4, ref5]) # [1, 2]

Classes -> Actors

19

API - Designed to Be Intuitive and Concise

@ray.remote
def make_array(…):
 a = … # Construct a NumPy array
 return a

@ray.remote
def add_arrays(a, b):
 return np.add(a, b)

ref1 = make_array.remote(…)
ref2 = make_array.remote(…)
ref3 = add_arrays.remote(ref1, ref2)
ray.get(ref3)

Functions -> Tasks

@deanwampler

Machine Learning with
Ray-based Libraries

@deanwampler

@deanwampler

Ray Libraries

22

Hyperparam
Tuning Training Model

ServingStreaming SimulationFeaturization

@deanwampler

Reinforcement Learning - Ray RLlib

23

Hyperparam
Tuning Training Model

ServingStreaming SimulationFeaturization

rllib.io

http://rllib.io

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

https://www.geekwire.com/2016/alphago-ai-program-wins-1-million-prize-go-showdown-champion-lee-sedol/

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

@deanwampler

Reinforcement Learning
Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

@deanwampler

Go as a Reinforcement
Learning Problem

AlphaGo (Silver et al. 2016)
● Observations:
○ board state

● Actions:
○ where to place the stones

● Rewards:
○ 1 if win
○ 0 otherwise

Decisions
(actions)

Consequences
(observations, rewards)

environmentagent

@deanwampler

RLlib: A Scalable, Unified Library for RL

Industrial
Processes

System
Optimization

Advertising,
Recommendations FinanceGames

Robotics,
Autonomous

Vehicles
RL applications

OpenAI
Gym

Multi-agent/
Hierarchical

Policy
Serving

Offline
Data (1) Application Support}

(2) Abstractions for RL}
Custom Algorithms RLlib Algorithms

RLlib Abstractions

Ray Tasks and Actors (3) Distributed Execution}

@deanwampler

A Broad Range of Popular Algorithms

● gradient-free
○ Augmented Random Search (ARS)
○ Evolution Strategies

● Multi-agent specific
○ QMIX Monotonic Value Factorisation

(QMIX, VDN, IQN)

● Offline
○ Advantage Re-Weighted Imitation Learning

(MARWIL)

● High-throughput architectures
○ Distributed Prioritized Experience Replay (Ape-X)
○ Importance Weighted Actor-Learner Architecture (IMPALA)
○ Asynchronous Proximal Policy Optimization (APPO)

● Gradient-based
○ Soft Actor-Critic (SAC)
○ Advantage Actor-Critic (A2C, A3C)
○ Deep Deterministic Policy Gradients (DDPG, TD3)
○ Deep Q Networks (DQN, Rainbow, Parametric DQN)
○ Policy Gradients
○ Proximal Policy Optimization (PPO)

https://ray.readthedocs.io/en/latest/rllib-algorithms.html#augmented-random-search-ars
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#evolution-strategies
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#qmix-monotonic-value-factorisation-qmix-vdn-iqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-re-weighted-imitation-learning-marwil
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#distributed-prioritized-experience-replay-ape-x
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#importance-weighted-actor-learner-architecture-impala
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#asynchronous-proximal-policy-optimization-appo
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#soft-actor-critic-sac
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#advantage-actor-critic-a2c-a3c
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-deterministic-policy-gradients-ddpg-td3
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#deep-q-networks-dqn-rainbow-parametric-dqn
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#policy-gradients
https://ray.readthedocs.io/en/latest/rllib-algorithms.html#proximal-policy-optimization-ppo

@deanwampler

@deanwampler

Now in Azure

@deanwampler

Diverse Compute Requirements Motivated Creation of Ray!

Decisions (actions)

Consequences
(observations, rewards)

environmentagent

Simulator (game
engine, robot sim,

factory floor sim…)

Neural network
“stuff”

And repeated play,
over and over again,
to train for achieving

the best reward

Complex agent?

@deanwampler

RLlib Provides a Unified Framework for Scalable RL
that Doesn’t Compromise on Performance

Distributed PPO

Evolution
Strategies

Ape-X Distributed
DQN, DDPG

@deanwampler

@deanwampler

Hyperparameter Tuning - Ray Tune

39

Hyperparam
Tuning Training Model

ServingStreaming SimulationFeaturization

@deanwampler

What Is Hyperparameter Tuning?

Trivial example:
● What’s the best value for “k” in k-

means??
● k is a “hyperparameter”
● The resulting clusters are

defined by “parameters”

credit: https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

https://commons.wikimedia.org/wiki/File:K-means_convergence.gif

@deanwampler

Nontrivial Example - Neural Networks

Every number
shown is a

hyperparameter!

How many layers?
What kinds of layers?

@deanwampler

Tune is Built with Deep Learning as a Priority
Resource Aware

Scheduling
Seamless

Distributed Execution

Simple API for
new algorithms

Framework Agnostic

tune.io

http://tune.io

@deanwampler

Hyperparameters Are Important for Performance

@deanwampler

Why We Need a Framework for Tuning Hyperparameters

Model training is time-
consuming

Resources are expensive

We want the best model

@deanwampler

Tuning + Distributed Training

tune.run(PytorchTrainable,
 config={
 "model_creator": PretrainBERT,
 "data_creator": create_data_loader,
 "use_gpu": True,
 "num_replicas": 8,
 "lr": tune.uniform(0.001, 0.1)
 },
 num_samples=100,
 search_alg=BayesianOptimization()

)

@deanwampler

Native Integration with TensorBoard HParams

@deanwampler

What about Ray
for Microservices?

@deanwampler

@deanwampler

What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

@deanwampler

What Are Microservices?

● They partition the domain
● Conway's Law - Embraced
● Separate responsibilities
● Separate management

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3
What we mostly care

about for today’s talk, the
“Ops in DevOps”

@deanwampler

Conway’s Law - Embraced

● “Any organization that designs a
system will produce a design whose
structure is a copy of the
organization's communication
structure”

● Let each team own and manage the
services for its part of the domain

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

en.wikipedia.org/wiki/Conway's_law

https://en.wikipedia.org/wiki/Conway's_law

@deanwampler

Separate Responsibilities

● Each microservice does “one
thing”, a single responsibility
with minimal coupling to the
other microservices

● (Like, hopefully, the teams are
organized, too…)

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

wikipedia.org/wiki/Single-responsibility_principle

https://en.wikipedia.org/wiki/Single-responsibility_principle

@deanwampler

Separate Management

● Each team manages its own
instances

● Each microservice has a
different number of instances
for scalability and resiliency

● But they have to be managed
explicitly

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2

µ-service 3

µ-service 1
µ-service 2µ-service 1

@deanwampler

Management - Simplified

● With Ray, you have one
“logical” instance to manage
and Ray does the cluster-
wide scaling for you.

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

@deanwampler

What about Kubernetes (and others…)?

● Ray scaling is very fine grained.
● It operates within the “nodes” of

coarse-grained managers
● Containers, pods, VMs, or

physical machines

Ray Cluster

task/
actortask/

actor
task/
actor

task/
actortask/

actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor

task/
actor
task/
actor

task/
actor

REST

API Gateway

µ-service 1
µ-service 2

µ-service 3

Node Node

Node

@deanwampler

Adopting Ray
and the Ray community

@deanwampler

@deanwampler

If you’re already using…

● joblib
● multiprocessing.Pool

● Use Ray’s implementations
● Drop-in replacements
● Change import statements
● Break the one-node limitation!

For example, from this:

 from multiprocessing.pool import Pool

To this:

 from ray.util.multiprocessing.pool import Pool

See these blog posts:
https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

● … And Ray is
integrated with
asyncio

https://medium.com/distributed-computing-with-ray/how-to-scale-python-multiprocessing-to-a-cluster-with-one-line-of-code-d19f242f60ff
https://medium.com/distributed-computing-with-ray/easy-distributed-scikit-learn-training-with-ray-54ff8b643b33

@deanwampler

Ray Community and Resources

● ray.io
● Tutorials (free): anyscale.com/academy
● Need help?
● Ray Slack: ray-distributed.slack.com
● ray-dev Google group

https://ray.io
https://anyscale.com/academy/
https://forms.gle/9TSdDYUgxYs8SA9e8
https://groups.google.com/forum/?nomobile=true#!forum/ray-dev

Conclusion

● Ray is the new state-of-the-art for distributed computing
● The shortest path from your laptop to the cloud
● Run complex distributed tasks on large clusters from

simple code on your laptop

ray.io
dean@deanwampler.com
@deanwampler
dominodatalab.com

Slides at
polyglotprogramming.com/talks

https://ray.io
mailto:dean@deanwampler.com?subject=Follow%20up%20from%20your%20Ray%20talk
https://twitter.com/deanwampler
https://www.dominodatalab.com/
http://polyglotprogramming.com/talks

