
Become a Better Developer
with Functional Programming

dean@deanwampler.com
@deanwampler

polyglotprogramming.com

1OSCON, July 26, 2011

The Haystack, Oregon

Friday, April 12, 13

All photos © 2010 Dean Wampler, unless other noted. Most of my photos are here: http://www.flickr.com/photos/
deanwampler/. Most are from the Oregon coast, taken before last year’s OSCON. Some are from the San Francisco area,
including the Bay. A few are from other places I’ve visited over the years.

(The Haystack, Cannon Beach, Oregon)

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2

programmingscala.compolyglotprogramming.com/
fpjava

Dean Wampler

Functional
Programming

for Java Developers

Friday, April 12, 13

I got interested in FP about 5 years ago when everyone was talking about it. I decided it was time to learn myself and I expected
to pick up some good ideas, but otherwise remain primarily an “object-oriented developer”. Actually, it caused me to rethink my
views and now I tend to use FP more than OOP. This tutorial explains why.

http://programmingscala.com
http://programmingscala.com
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava
http://polyglotprogramming.com/fpjava

3

•The problems of our time.

•What is Functional
Programming?

•Better data structures.

•Better concurrency.

•Better objects.

Friday, April 12, 13

Outline.

(Nehalem State Park, Oregon)

The problems
of our time.

4

Nehalem State Park, Oregon

Friday, April 12, 13

What problems motivate the need for change, for which Functional Programming is well suited?

(Nehalem State Park, Oregon)

Concurrency

San Francisco Bay
Friday, April 12, 13

Concurrency is the reason people started discussing FP, which had been primarily an academic area of interest. FP has useful
principles that make concurrency more robust and easier to write.

(San Francisco Bay)

6

Horizontal scaling
is

unavoidable.

Friday, April 12, 13

The reason everyone is talking about concurrency is because we’ve hit the limit of vertical scalability of Moore’s Law. Now we’re
scaling horizontally, so we need to know how to exploit multiple CPUs and cores.

(At dusk flying over the Midwest - lightened)

7

Multithreaded
programming

is the
assembly language
of concurrency.

Friday, April 12, 13

Multithreaded programming is hard and too low-level for most needs.

We’re
Drowning
in Data.

...
Friday, April 12, 13

Not just these big companies, but many organizations have lots of data they want to analyze and exploit.

(San Francisco)

We need better
modularity.

Mud, Death Hollow Trail, Utah

Friday, April 12, 13

I will argue that objects haven’t been the modularity success story we expected 20 years ago, especially in terms of reuse. I’m
referring to having standards that actually enable widespread interoperability, like electronics, for example. I’ll argue that object
abstractions are too high-level and too open-ended to work well.

(Mud near Death Hollow in Utah.)

We need
better
agility.

Half Dome, Yosemite NP

Friday, April 12, 13

Schedules keep getting shorter. The Internet weeded out a lot of process waste, like Big Documents Up Front, UML design, etc.
From that emerged XP and other forms of Agile. But schedules and turnaround times continue to get shorter.

(Ascending the steel cable ladder up the back side of Half Dome, Yosemite National Park)

We need a return
to simplicity.

Maligne Lake, Jasper Nat. Park

Friday, April 12, 13

Every now and then, we need to stop, look at what we’re doing, and remove the cruft we’ve accumulated. If you’re a Java
programmer, recall how efforts like the Spring Framework forced a rethinking of J2EE. I claim that a lot of the code we write,
specifically lots of object middleware, is cruft. Functional programming isn’t *simple*, but in my view it reflects a refocusing on
core principles and minimally-sufficient design.

(Maligne Lake, Near Jasper National Park, Jasper, Alberta)

What is Functional
Programming?

12Nehalem State Park, Oregon
Friday, April 12, 13

This is rich field, so I can’t cover everything. I’ll mention the things that I believe are most useful to know for beginners and
those curious about FP.

(Nehalem State Park, Oregon)

13

Functional
Programming
is inspired by
Mathematics.

Friday, April 12, 13

FP follows the “rules” for the behavior of functions, variables, and values in mathematics. Everything else falls out from there...

What is Functional
Programming?

14

Immutable
Values

Friday, April 12, 13

First, values in FP are immutable, but variables that point to different values, aren’t.

15

Immutable Values

y = sin(x)

x and y are variables.
Once you assign a value to x,
you fix the value assigned to y.

1 = sin(π/2)

Friday, April 12, 13

First, values in FP are immutable, but variables that point to different values, aren’t.

16

Immutable Values

y = sin(x)

You can start over with new values
assigned to the same variables.

But you never modify the values, themselves.
Friday, April 12, 13

17

Immutable Values

π += 1

What would that mean?

Friday, April 12, 13

This would make no sense.

18

Immutable Values

If a value is immutable,
synchronizing access is no longer necessary!

Concurrency becomes far easier.
Friday, April 12, 13

Of course, you don’t need functional programming to make values immutable.

19

Java
class List<T> {
 final T _head;
 final List<T> _tail;
 T head() {return _head;}
 List<T> tail() {return _tail;}

 List (T head, List<T> tail) {
 _head = head; _tail = tail;
 }
 …
}

Friday, April 12, 13

I’ll provide some Java examples, but mostly Ruby examples, since its syntax is compact and relatively easy to learn - both good
for presentations like this!
Here’s a linked list that we’ll use a lot. It is defined by the head of the list (the left-most element) and the tail or rest of the list,
itself a list! Make the fields final in Java and don’t provide setters. (I’m dropping public, private, etc. for clarity.) List objects will
be immutable, although we can’t control the mutability of T objects!
If you don’t like static typing, at least appreciate the fact that you know immediately that tail is also a List<T>.
I’m not using JavaBeans conventions here to reduce unnecessary clutter. In fact, is there any reason to NOT make the fields
public?

20

Java

List<? extends Object> list =
 new List<Integer>(1,
 new List<Integer>(2,
 new List<Integer>(3, …)));

Friday, April 12, 13

Creating a list (we’ll see less verbose syntax later).
I’m showing *covariant typing*, a poorly understood feature in Java (and it could be implemented better by the language…).
Read this as, “I declared list to be of List<T> for any subtype T of Object, so List<String> is a subtype of List<Object>, and a
valid object to assign to list.” NOTE: this is *different* than assigning Integers (and Strings and Floats and…) to a List<Object>.
How should we terminate this list?? What should the final tail be?? We’ll come back to that.

21

Ruby
class List
 attr_reader :head, :tail
 def initialize(head, tail)
 @head = head
 @tail = tail
 end
 …
end

Friday, April 12, 13

So, don’t use attr_accessor or attr_writer in Ruby.
If you don’t like dynamic typing, at least appreciate the compact, clean syntax.

22

Ruby

list = List.new(1,
 List.new(2,
 List.new(3, …)))

Friday, April 12, 13

Creating a list (we’ll see less verbose syntax later)
How should we terminate this list?? What should the final tail be?? We’ll come back to that.

What is Functional
Programming?

23

Side-effect
free

functions
Friday, April 12, 13

Math functions don’t have side effects. They don’t change object or global state. All work is returned and assigned to y.

24

y = sin(x)

sin(x) does not change state anywhere!

Functions

Friday, April 12, 13

Math functions don’t have side effects. They don’t change object or global state. All work is returned and assigned to y.

25

We can replace sin(π/2) with 1.

1 = sin(π/2)

Referential
Transparency

We can replace 1 with sin(π/2)!
Functions and values are interchangeable

Friday, April 12, 13

A crucial implication of functions without side effects us that functions and values are interchangeable. A mundane benefit is
that it’s easy to for an implementation to cache previous work for a given input value, for efficiency. But there are more profound
benefits.

26

y = sin(x)

sin(x) can be used anywhere.
I don’t have to worry about the

context where it’s used

Functions

Friday, April 12, 13

This makes testing, reuse, and concurrency much easier if I don’t have to worry about external state modifications.

27

Make your methods side-effect free.

Side-effect free methods
and immutable objects

class List
 …
 def add(item)
 List.new(item, self)
 end
 …
end

Create new instances.
Friday, April 12, 13

Don’t modify the existing list, make a new one.
(We won’t have time discuss how you optimize making copies to minimize that overhead…)

What is Functional
Programming?

28

First-class
functions

Friday, April 12, 13

29

First Class: values that can be assigned to
variables, pass to and from functions.

First Class Functions

i = 1
l = List.new(i, …)
f = lambda { |x|
 puts "Hello, #{x}!"
}

Lambda is a common name for functions.
Friday, April 12, 13

 A “thing” is first class in a language if you can use it as a value, which means you can assign it to variables, pass it as an
argument to a function and return it from a function. In Ruby, objects, even classes are first class. Methods are not. Lambdas are
ruby’s way of defining anonymous functions (A second mechanism, Procs, is similar).
The term “lambda” comes from Lambda Calculus, a mathematical formalism developed in the ‘30s that explored how functions
should work. The lambda symbol was used to represent anonymous functions.

30

f = lambda { |x|
 puts "Hello, #{x}!"
}
def usearg(arg, &func)
 func.call(arg)
end

usearg("Dean", &f)
"Hello, Dean!"

First Class Functions

Friday, April 12, 13

There are other syntaxes for defining and calling Ruby procs/lambda.

31

We’ll see how first-class functions let us build
modular, reusable and composable tools.

First Class Functions

Friday, April 12, 13

This is one of the most powerful concepts in programming.

32

Java?
public interface
Function1Void<A> {
 void call(A arg); // arbitrary
}

public static void usearg(
 String arg,
 Function1Void<String> func) {
 func.call(arg);
 }}

Friday, April 12, 13

Java doesn’t have first-class functions. The closest we can come are function “objects”. Often these interfaces are instantiated as
anonymous inner classes.
I picked an arbitrary name for the function.

33

Java?

public static void main(…) {
 usearg("Dean",
 new Function1Void<String>(){
 public void call(String s){
 System.out.printf(
 "Hello, %s!\n", s);
 }
 });
}

Friday, April 12, 13

Verbose, ugly and hard to follow.
The ability to communicate ideas in concise terms really matters!! Your brain expends a lot of effort parsing all this code!

34

Java?
public interface
Function1Void<A> {
 void call(A arg);
}
…
public interface
Function2<A1,A2,R> {
 R call(A1 arg1, A2 arg2);
}
…

How many one-off interfaces
could you replace with uniform

abstractions like these?

Another
example
function.

Friday, April 12, 13

Java APIs must have hundreds of *structurally* identical interfaces, each with its own ad-hoc interface and method name.
Imagine how much memorization reduction would be facilitated if they were all replaced with uniform abstractions like these?

Side note: Java 8 will *hopefully*, *finally* add a lambda syntax to eliminate lots of this boilerplate.

35

Higher-order
Functions

def usearg(arg, &func)
 func.call(arg)
end

Functions that take other functions as
arguments or return them as results

are called higher-order functions.

Friday, April 12, 13

There’s a technical reason for the name “higher-order” that we won’t have time to discuss, but since you’ll hear this term used, I
wanted to define it in the way people typically use the term.

What is Functional
Programming?

36

Recursion

Friday, April 12, 13

37

Recursion
class List
 …
 def empty?
 false # always??
 end
 def to_s
 empty? ?
 "()" :
 "(#{head.to_s},#{tail.to_s})"
 end
 …
end

tail.to_s is a recursive call.
Friday, April 12, 13

Recursion is a natural tool for working with “recursive” data structures, like List. It’s also a way to traverse data structures without
mutable loop counters!
Note that we haven’t shown how to represent an empty list! We will.
If the list is empty, we terminate the recursion, returning the string “()”. Otherwise, we form a string by calling head.to_s and
tail.to_s. The latter is a recursive call. (We could have left off the “to_s” here, but to make things explicit...

38

Recursion

puts List.new(1,
 List.new(2,
 List.new(3, EMPTY) # ??

=> "(1,(2,(3,())))"

We’ll define EMPTY shortly…
Friday, April 12, 13

We’ll define EMPTY shortly, which will have an empty? method that returns false.
If we run this code, we get the string shown. Note the nesting of parentheses, reflecting the nesting of structure!

Better data
structures

39

Nehalem State Park, Oregon

Friday, April 12, 13

(Nehalem State Park, Oregon)

Better data
structures

40

No Nulls?

Friday, April 12, 13

(Nehalem State Park, Oregon)

41

Nulls are a serious
source of bugs.

Friday, April 12, 13

We know that nulls are a pain...

42

If values are immutable,
can we avoid using

nulls?

Friday, April 12, 13

Functional programming emphasizes rigor and always having valid values assigned to variables. Can we eliminate the use of
nulls?

43

What should happen?

cap is of type String or Null?
or is Null a subtype of String?

Map<String,String> capitals = …;
…
String cap =
 capitals.get("Camelstan");
String cap2 = cap.toLowerCase();

NullPointerException!!

Friday, April 12, 13

Let’s return to Java, because this section makes more sense for statically-typed languages.
We have a map of the capital cities for the world’s countries. We ask for the capital of Camelstan, then try to use the value.
We forgot to check for null.
If null were of type Null, then could tail be thought of as a variable of type String OR Null?
Actually, Java *effectively* has the notion of a Null type that is a subtype of all other (reference) types, but not explicitly.

44

What should happen?

Map<K,V>.get signature:
 V get(Object key);

It’s lying slightly, because
a V or a null is returned.

String cap =
 capitals.get("Camelstan");

Friday, April 12, 13

The signature for Map.get doesn’t tell the full story of what might happen. We’re used to the fact that null might be returned, but
naively, reading this signature, we have every right to believe a valid string will *always* be returned.

45

What should happen?

What if we changed the signature?
 Option<V> get(Object key);
…
Option<String> cap =
 capitals.get("Camelstan");

Explicitly indicate that a value
might exist or not; it is optional.

Friday, April 12, 13

The signature for Map.get doesn’t tell the full story of what might happen. We’re used to the fact that null might be returned, but
naively, reading this signature, we have every right to believe a valid string will *always* be returned.
Type safety will prevent us from “forgetting” that the value is optional, in the same way that we can forget that null is returned.
We have to handle the option explicitly.

46

Option
interface Option<T> {
 boolean hasValue();
 T get();
}

final class Some<T> extends
Option<T> {
 boolean hasValue(){return true;}
 T get() {return t;}
 private T t;
 // constructor...
}

Friday, April 12, 13

Here is the Option interface and the first of TWO implementing classes, which is why it’s declared final. Some is the object
instantiated when there IS a value.
Some people hate “final” because it’s seen as bad for testing (you can’t replace the object with a test-oriented subclass). There’s
no need to EVER do that here, and maintaining type safety (at least as much as we can) is more important.

47

Option
interface Option<T> {
 boolean hasValue();
 T get();
}

final class None<T> extends
Option<T> {
 boolean hasValue(){return false;}
 T get() {throw new Exception(…);}
}

Friday, April 12, 13

Here is the Option interface and the second of the TWO implementing classes. None is the object instantiated when there ISN’T a
value.

48

An optional value
Map<String,String> capitals = …;
Option<String> cap =
 capitals.get("Camelstan");
if (cap.hasValue()) {
 String cap2 =
 cap.get().toLowerCase();
 …
} else {
 logError("Camelstan …");
}

Friday, April 12, 13

This code may be a little verbose, but it’s not much different than the normal null checks you’re supposed to do. Also, there are
mechanisms that can be used, like providing iteration over this “collection”, that can eliminate the explicit hasValue check in
many cases. For example, if you don’t care that there is no value; you’re just processing a bunch of things, some with values,
some without, then you can easily ignore the without cases...

49

Replace Nulls
with Options.

Friday, April 12, 13

Change your APIs to use Options whenever Nulls are possible, either as return values or as optional argument values!

Better data
structures

50

Lists

Friday, April 12, 13

Let’s look at one of the functional data structures, List, which we’ve already looked at a bit, but we need to explore further.

51

Let’s finish List
class List
 …
 def empty?; false; end
 def to_s
 empty? ?
 "()" :
 "(#{head},#{tail})"
 end
 …
end

Previously...

Friday, April 12, 13

Let’s finish the implementation of List. In particular, let’s figure out how to terminate the list, which means representing an
empty list for the tail.
I changed empty? to be all on one line, compared to the previously shown implementation.
I removed the explicit calls to to_s on head and tail in self.to_s; they will be called implicitly.

52

class List
 …
 EMPTY = List.new(nil,nil)
 def EMPTY.head
 raise "EMPTY list has no head!!"
 end
 def EMPTY.tail
 raise "EMPTY list has no tail!!"
 end
 def EMPTY.empty?; true; end
 def EMPTY.to_s; "()"; end
end

A separate object to
represent empty.

Friday, April 12, 13

We declare a *constant* named EMPTY, of type List. We use nil for the head and tail, but they will never be referenced, because
we redefine the head and tail methods for this object (so called “singleton methods”) to raise exceptions. We also define empty?
to return true and to_s to return “()”.
By overriding the methods on the instance, we’ve effectively given it a unique type.
(There’s a more short-hand syntax for redefining these methods, but for simplicity, I’ll just use the syntax shown.)
NOTE: It would be reasonable for EMPTY.tail to return itself!

53

class List
 …
 def to_s
 "(#{head},#{tail})"
 end
 …
 def EMPTY.to_s; "()"; end
 …
end

Rewrite to_s.

List.to_s is recursive, but
EMPTY.to_s will terminate the

recursion with no conditional test!
Friday, April 12, 13

The check for empty is gone in to_s! It’s not an infinite recursion, though, because all lists end with EMPTY, which will terminate
the recursion.
We’ve replaced a condition test with structure, which is actually a classic OO thing to do.

54

Recall...

puts List.new(1,
 List.new(2,
 List.new(3, EMPTY)

=> "(1,(2,(3,())))"

Friday, April 12, 13

55

Lists are represented
by two types:

List and EMPTY.

Friday, April 12, 13

For functional linked lists, only two types are used to represent all of them, List and EMPTY. That let us use the structural
difference to manage recursion without conditional tests, among other benefits. We used nil to declare EMPTY, but never used
those values.

56

List is an
Algebraic Data Type.

Friday, April 12, 13

The name comes from Category Theory, which we won’t get into. The key thing to note is that this is a constrained type
hierarchy. There are only two allowed subtypes that can implement the abstraction. (Since this is Ruby, we didn’t define an
“interface” with the key methods.)

Better data
structures

57

filter, map, fold

Friday, April 12, 13

Let’s look at the 3 fundamental operations on data structures and understand their power.

58

Filter, map, fold

filter Return a new collection with
some elements removed.

map Return a new collection with
each element transformed.

fold Compute a new result by
accumulating each element.

All take a function argument.
Friday, April 12, 13

The function argument tells each method what to do.

59

Filter, map, fold
Ruby

filter find_all

map map

fold inject

Friday, April 12, 13

These names are not always used in different languages. Java doesn’t even have these concepts in its collections! However, some
3rd-party libraries provide them.

60

Add map to List

def map(&f)
 t = tail.map(&f)
 List.new(f.call(head), t)
end
def EMPTY.map(&f); self; end

f.call(head) converts
head into something new.

f takes one arg, each item,
and returns a new value for

the new list.

Friday, April 12, 13

Add map first, because it’s the easiest. Note that we will show the implementations for both List and EMPTY together, to compare
and contrast and to make the behavior of the recursion clear.

61

Example of map

list = … # 1,2,3,4
lm = list.map {|x| x*x}
puts "list: #{list}"
puts "lm: #{lm}"
=> list: (1,(2,(3,(4,()))))
=> lm: (1,(4,(9,(16,()))))

Friday, April 12, 13

Demonstrate mapping a list of 4 integers to their squares. Note that we didn’t modify the original list.

62

Add filter to List

def filter(&f)
 t = tail.filter(&f)
 f.call(head) ?
 List.new(head, t) : t
end
def EMPTY.filter(&f); self; end

f.call(head) returns
true or false (keep or discard)

f takes one arg, each item,
and returns true or false.

Friday, April 12, 13

f.call(head) returns true if we keep the element or false if we discard it. If true, we return a new list with head and whatever t is.
Otherwise, we just return t.

63

Example of filter

list = … # 1,2,3,4
lf = list.filter {|x| x%2==1}
puts "list: #{list}"
puts "lf: #{lf}"
=> list: (1,(2,(3,(4,()))))
=> lf: (1,(3,()))

Friday, April 12, 13

Demonstrate filtering a list of 4 integers to create a new list with just the odd values. Note that we didn’t modify the original list.

64

There are two folds:
foldl (left) and
foldr (right).

Friday, April 12, 13

There are two folds because of the way they group the elements as they parse them, either grouping from the left or the right,
as we’ll see.

65

Add foldl to List

def foldl(accum, &f)
 tail.foldl(
 f.call(accum, head), &f)
end
def EMPTY.foldl(accum,&f)
 accum
end tail.foldl(…) is called after

calling f.call(…)

accum is the
accumulator.

f takes two args, accum
and each item, and

returns a new accum.

Friday, April 12, 13

Foldl calls tail.foldl after calling f.call(accum, head). Note that it “groups” the accum with the first element, then works down the
list.

66

Add foldr to List

def foldr(accum, &f)
 f.call(head,
 tail.foldr(accum, &f))
end
def EMPTY.foldr(accum,&f)
 accum
end tail.foldr(…) is called

before calling f.call(head,…)

f takes two args, each
item and accum, and
returns a new accum.

Friday, April 12, 13

Foldr calls tail.foldr before calling f.call(head,accum). Note that it “groups” the accum with the last element (because head isn’t
handled until the whole recursion finishes!), so it works down to the end of the list first, then builds the accumulator on the way
back up.
Note that the arguments to f are reversed compared to foldl. We’ll see why this is useful in a moment.

67

Example of foldl

ll = list.foldl(0) {|s,x| s+x}
lls= list.foldl("0") {|s,x|
 "(#{s}"+#{x})"
}
puts "ll: #{ll}"
puts "lls: #{lls}"
=> ll: 10
=> lls: (((0+1)+2)+3)+4)

Friday, April 12, 13

Sum the list using foldl and also build a string that shows us who it proceeded!

68

Example of foldr

lr = list.foldr(0) {|x,s| x+s}
lrs= list.foldr("0") {|x,s|
 "(#{x}"+#{s})"
}
puts "lr: #{lr}"
puts "lrs: #{lrs}"
=> lr: 10
=> lrs: 1+(2+(3+(4+0))))

Friday, April 12, 13

Sum the list using foldr and also build a string that shows us who it proceeded! Note that the block has the x and s args reversed
compared to foldl! This is conventional so the accumulator shows up in the last position, as shown in the string.

69

Compare foldl, foldr

foldl: (((0+1)+2)+3)+4) == 10
foldr: 1+(2+(3+(4+0)))) == 10

The sums are the same,
but the strings are not!

Addition is commutative and associative.

Friday, April 12, 13

Compare the left recursion with the right recursion. Note that reversing the block args for foldr resulted in this clearly formatted
string showing the right recursion. This is why people like to use that convention.
The additions were the same because + is commutative, but the string formation isn’t, as the two strings are different!

70

Try subtraction

foldl: (((0-1)-2)-3)-4) == -10
foldr: 1-(2-(3-(4-0)))) == -2

Substitute - for +.
Subtraction is neither

commutative nor associative.

Friday, April 12, 13

If you substitute - for +, you’ll also get different results.

71

foldl and foldr
yield different results
for non-commutative
and non-associative

operations.
Friday, April 12, 13

There are other differences that we won’t have time to discuss, but you might explore. foldl is tail-recursive, so it can be
optimized into a loop (if your language or VM supports that - many don’t). In contrast, foldr isn’t tail-recursive, but it can be
used to fold over infinite data structures when only a finite subset of it is used.

Better data
structures

72

Tools of
modularity

Friday, April 12, 13

Let’s look at one of the functional data structures, List, which we’ve already looked at a bit, but we need to explore further.

73

filter, map and fold
as modules...

Friday, April 12, 13

So, we looked at these. What’s the big deal?? They are excellent examples of why functional programming is the right approach
for building truly modular systems...

74

A Good Module:
interface Single responsibility, clear

abstraction, hides internals

composable Easily combines with other
modules to build up
behavior

reusable Can be reused in many
contexts

Friday, April 12, 13

Here are some of the qualities you expect of a good “module”. It exposes an interface that focuses on one “task”. The use of the
abstraction is clear, with well defined states and transitions, and it’s easy to understand how to use it. The implementation is
encapsulated.
You can compose this module with others to create more complex behaviors.
The composition implies reusability! Recall that it’s hard to reuse anything with side effects. Mutable state is also problematic if
the module is shared.

75

Group email addresses

addrs = List.make(
"Dean@GMAIL.COM",
"bob@yahoo.com",
"tom@Spammer.COM",
"pete@YAHOO.COM",
"bill@gmail.com")

Let’s convert to lower case, filter out
spammers, and group the users by address…

Exercise: implement
List.make

Friday, April 12, 13

Let’s group a “huge” list of email address.

mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM
mailto:Dean@GMAIL.COM

76

Group email addresses
grouped = addrs.map {|x|
 x.downcase
}.filter {|x|
 x !~ /spammer.com$/
}.foldl({}) {|grps,x|
 name, addr = x.split('@')
 l = grps[addr] || List::EMPTY
 grps[addr] = List.new(name,l)
 grps
}

Friday, April 12, 13

We first map each string to lower case, then remove the strings that end with “spammer.com”, using a regular expression, and
finally fold over the remaining items. The fold takes an empty hash map {} as the initial value. We split each string on ‘@’, then
initialize the list of names for that address, if not already initialized. Now we create a new list, adding the name, and reassign to
the hash map. Finally, the block has to return the hash map for the next pass (or the end of the foldl).
Note: there is mutation of the hash map going on, but it is local to this thread!

77

Group email addresses

…
grouped.each {|key,value|
 puts "#{key}: #{value}"
}
=> yahoo.com: (pete,(bob,()))
=> gmail.com: (bill,(dean,()))

We calculated this grouping
in 10 lines of code!!

Friday, April 12, 13

For nice output, iterate over the hash map with “each” and print each key-value pair on its own line.

78

If we had
GroupedEmailAddresses

objects,
how much more code

would be required?
Friday, April 12, 13

10 lines of code, reusing filter, map, and fold vs. how much custom, one-off code?

79

How much more
development time

would be required?

Friday, April 12, 13

How much time would you spend implementing the custom solution?

80

filter, map, and fold
are ideal modules.

Each has a clear abstraction,
composes with others,

and is reusable.

Friday, April 12, 13

What makes them so modularity is their stability, clear abstraction, near infinite composability to build higher-order
abstractions, which implies reusability!

81

filter, map, and fold
are combinators.

Friday, April 12, 13

The term “combinator” is a technical term in FP. For our purposes, these functions take other functions as arguments, which is
how they are adapted to different purposes, and they combine with each other to build up more sophisticated “calculators”.

82

Aside:
Did we just break

the Law of Demeter?
addrs.map{…}
 .filter{…}
 .foldl(…){…}

Friday, April 12, 13

LoD says it’s bad to chain method calls together, because each “link” introduces new object dependencies into the code and
every time the signature for one of these methods changes, it breaks this code. It’s a small that indicates the calculation should
be moved to a more appropriate place.
That’s not an issue here. First, we keep returning a List (except at the end), so we aren’t adding dependencies. Second, map,
filter and fold are so stable, they are unlikely to ever change.

Better data
structures

83

Persistent data
structures

Friday, April 12, 13

Let’s look at one of the functional data structures, List, which we’ve already looked at a bit, but we need to explore further.

84

Isn’t copying
immutable values

inefficient.

Friday, April 12, 13

We said earlier that values should be immutable, but what if they are huge? Isn’t it too expensive to make copies?

85

Structure Sharing
class List
 def prepend(head2)
 List.new(head2, self)
 end
 …
end

Recall...

Note: we’re sharing the
original list with the new list:

Structure Sharing

Friday, April 12, 13

If we prepend an element to an existing list, we create a new list, but share the old list as the tail. Recall that this would not be
safe if lists or their elements are mutable.

86

Structure Sharing lets us
“copy” values efficiently.

But it only works if the
objects are immutable!!

Friday, April 12, 13

87

What about Maps,
Sets, Vectors, ... ?

Separate the abstraction
from the implementation...

Friday, April 12, 13

List easily supports structural sharing, what about other data structures? If we separate the external interface from the internal
implementation, we can implement these types with data structures that provide efficient copies, also using structure sharing.

88

Trees enable
structure sharing

and provide
O(log(n))

access patterns.
Friday, April 12, 13

The choice of tree data structure is important, but we won’t get into that.

89

For simplicity, we’ll
just use unbalanced

binary trees:
average O(ln(n)).

Friday, April 12, 13

Binary trees average order log base 2(n) performance. Unbalanced is generally bad, but ignoring balancing lets us focus on the
key concept, structure sharing. Real implementations might use 32-way trees, giving log base 32(n) performance, and use one
or another balanced tree types. The choice of implementation is made to optimize search, insertion, cache locality in the CPU, or
other performance goals.

90

value1

Time 0

a1

a4

a3a2

b1

b4

b3b2

If value1 is a Map, each
node might contain a

key-value pair.

Friday, April 12, 13

Consider value1, which implements a Map, where the

91

At time 1, value1
still exists. The new
value2 reuses a3,

a4, and the b1 tree

value1

Time 1

a1

a4

a3a2

b1

b4

b3b2

value2

Friday, April 12, 13

Consider at some later time, Time1, a new value2 is created that “mutates” value1, but in fact, it just introduces a new root node
and shares much of value1, which still exists!

92

Persistent because
previous values

still exist.value1

Time 1

a1

a4

a3a2

b1

b4

b3b2

value2

Friday, April 12, 13

So, a “history” of versions is maintained, as long as there are references to the old versions. It’s not persistent in the database
sense (although you could store these to disk…).

Better Concurrency

93End of Cape Lookout, Oregon
Friday, April 12, 13

Better Concurrency

94

Actors

Friday, April 12, 13

95

The Actor Model of
Concurrency

is not specifically
functional, but it

follows the theme of
principled mutation.

Friday, April 12, 13

This is not a model that came out of the functional research community, but it fits the principle of finding “principled” ways to
handle and control mutation.

96

Actor1 Actor2

Actor3

1

2 3

4

Actors coordinate
work by sending

messages.

Alan Kay thought
of objects as

message-passing
entities.

Friday, April 12, 13

A schematic view. Each actor sends a message, which resides in the receiver’s mailbox to be processed one at a time. When
finished, the receiver can send a reply, send a message to a different actor, or do nothing.
Alan Kay, the inventor of Smalltalk, had this model in mind (although not in name) as his vision for objects; message passing
entities that coordinate state mutation this way!
Erlang recently made the actor model “famous” (It was invented in the ‘70s by Hewitt and others).

97

Actor1 Actor2

Actor3

1

2 3

4

Actor2 might
update the
database.

Actor3 might
update the in-

memory objects.

Actor1 might
be handling
UI events.

Friday, April 12, 13

Each actor has specific responsibilities and “owns” specific mutable values. This is one model of using them, but be careful
about bottlenecks!

98

Actor Libraries

Java Akka, FunctionalJava, Kilim

Ruby Revactor, Omnibus, Akka
through JRuby!

... Your language probably has
an Actor library, too.

Friday, April 12, 13

Google for the actor libraries for your language.

99

Akka Example
import akka.actor.*;
import static akka.actor.Actors.*;
import java.util.*;

public class MemoryActor
 extends UntypedActor {
 final Map<String,Date> seen =
 new HashMap<String,Date>();

 public void onReceive(…) {…}
}

Friday, April 12, 13

Let’s see a Java example using Akka’s Actors. Note that you could do this with JRuby, too!
We declare an actor that will “remember” the messages (treated as strings for simplicity) that it receives, along with the times
they were received. We’ll store this information in a HashMap. The parent class is named UntypedActor because we’ll treat all
messages as Objects.

100

Akka Example
 public void onReceive(
 Object message){
 String s = message.toString();
 String reply = "OK" ;
 if (s == "DUMP") {
 reply = seen.toString());
 } else {
 seen.put(s, new Date());
 }
 getContext().replySafe(reply);
 }

Friday, April 12, 13

We have to define the onReceive message that is declared abstract in UntypedActor. For simplicity, we’ll just convert the
message to a string. If it equals “DUMP”, that’s our signal to return a “dump” of the current state of the hash map, as a string.
Otherwise, we add the message string to the hashmap as the key with the current time as the value. Then we send a reply to the
caller, either the “dump” of the hash map or “OK”.

101

Akka Example
public ActorExample {
 public static void main(… args) {
 ActorRef ar = actorOf(
 MemoryActor.class).start();
 for (String s: args) {
 Object r = ar.sendRequestReply(s);
 System.out.println(s+": "+r));
 }
 Object r=ar.sendRequestReply("DUMP");
 System.out.println("DUMP: "+r));
}}

Friday, April 12, 13

Finally, a main class to run it. It calls Akka’s “actorOf” method to create an instance of MemoryActor and return a
“reference” (a.k.a. handle) to it. This “handle-body” pattern is used so Akka can restart an actor if necessary, then update the
reference to point to the new actor so the reference doesn’t become stale!
We loop through the input arguments and send each one to MemoryActor, await the reply, then print it out.

102

Akka Example
$ java -cp … ActorExample \
I am a Master Thespian!
I: OK
am: OK
a: OK
Master: OK
Thespian!: OK
DUMP: {
am=Wed Jul 25 20:14:44 CDT 2011,
a=Wed Jul 25 20:14:44 CDT 2011,
Master=Wed Jul 25 20:14:44 CDT 2011,
Thespian!=Wed Jul 25 20:14:44 CDT 2011,
I=Wed Jul 25 20:14:44 CDT 2011}

Friday, April 12, 13

Compile and run it with the arguments “I am a Master Thespian”. You get five lines with <string>: OK and a final line (which I’ve
wrapped for better legibility, DUMP: <hash_map.toString>. Note that the hash map toString doesn’t preserve insertion order,
which is the general case for hash maps.

103

For simplicity, we used
synchronous messages.

Asynchronous messages
scale better.

Friday, April 12, 13

To simplify the example, I just used synchronous messages, but in a real app, you would use async messages, because they
scale better.

Better Concurrency

104

Software
Transactional

Memory

Friday, April 12, 13

105

ACID Transactions

• Atomicity

• Consistency

• Isolation

• Durability

Friday, April 12, 13

You’re familiar with ACID transactions, a central feature of relational databases.

106

ACID transactions
ensure data integrity.

Friday, April 12, 13

They have many benefits...

107

Manage memory
with Transactions?

• Atomicity

• Consistency

• Isolation

• Durability

Friday, April 12, 13

Can we get the same semantics for updating values in memory?? Note that memory isn’t durable.

108

Software Transactional
Memory (STM)

• Atomicity

• Consistency

• Isolation

• Durability

Friday, April 12, 13

Software: it’s managed in software (there were some experimental efforts to do this in hardware in the 90s).
Transactional semantics.
Memory: we’re mutating values in memory.

109

value1

Time 0

a1

a4

a3a2

b1

b4

b3b2

Persistent Data
Structures

are just what we need.

Friday, April 12, 13

Consider value1, which implements a Map, where the

110

At time 0, two
references, ref1 and
ref2 both refer to the

same value.

ref1 ref2

value1

Time 0

a1

a4

a3a2

b1

b4

b3b2

Friday, April 12, 13

111

At time 1, ref2 has
been moved to the

new value.

ref1 ref2

value1

Time 1

a1

a4

a3a2

b1

b4

b3b2

value2

Friday, April 12, 13

A transaction is used to move the reference. Some APIs resemble the use of the synchronized keyword in Java. The transaction
may include both the construction of value2 and the reassignment of ref2 to value2. However, since values are immutable, it’s
possible in this case to construct value2 first, then use a transaction to move ref2 to it.

112

ref1 ref2

value1

Time 1

a1

a4

a3a2

b1

b4

b3b2

value2

In Clojure simple
assignment to mutate
a value isn’t allowed.
STM is one of several

mechanisms you
must use.

Friday, April 12, 13

Clojure is making STM “famous”.

Better Objects
113

The Haystack, Oregon

Friday, April 12, 13

Better Objects
114

Immutable
Values

Friday, April 12, 13

115

Immutable values
are better for

concurrency and they
minimize obscure
bugs because of

side effects.
Friday, April 12, 13

If you must do multithreaded programming, it’s far easier if your values are immutable, because there is nothing that requires
synchronized access. Also, obscure bugs from “non-local” side effects are avoided.

116

 Immutability tools
• final or constant variables.

• No field “setter” methods.

• Methods have no side effects.

• Methods return new objects.

• Persistent data structures.

Friday, April 12, 13

These techniques help you achieve immutability in any language. Persistent data structures let you make “copies” of big data
structures efficiently.

Better Objects
117

TDD

Friday, April 12, 13

118

Test Driven Development
(including refactoring)

is still useful in FP,
but there are changes.

Friday, April 12, 13

If you must do multithreaded programming, it’s far easier if your values are immutable, because there is nothing that requires
synchronized access. Also, obscure bugs from “non-local” side effects are avoided.

119

First, you tend to use
more experimentation

in your REPL
and less test first.

Friday, April 12, 13

It’s somewhat like working out a math problem. You experiment in your Read Eval Print Loop (interactive interpreter), working
out how an algorithm should go. They you commit it to code and write tests afterwards to cover all cases and provide the
automated regression suite. The test-driven design process seems to fit less well, but other people may disagree!

120

Testing Money
class Money
 PRECISION = 0.00001
 attr_reader value
 def initialize value
 @value = round(value)
 end

 def round value
 # return rounded to ? digits
 end
 …
end

Friday, April 12, 13

Money is a good domain class to implement as a “functional” type, because it has well-defined semantics and supports several
algebraic operations!
The round method rounds the value to the desired PRECISION. I picked 5 decimal places, even though we normally only show at
most a tenth of a penny...

121

Testing Money

 …
 def add value
 v = value.instance_of?(Money) ?
 value.value : value
 Money.new(value + v)
 end
 …
end

Friday, April 12, 13

The add method tests the value to see if it’s another Money or a (assumption) a float. It returns a new Money (of course!)

122

Imaginary RSpec
describe "Money addition" do
 money_gen = Generator.new do
 Money(-100.0) to Money(100.0)
 end
…

Define a “generator” that
generates a random sample

of instances between the
ranges shown.

Friday, April 12, 13

RSpec is a popular Ruby testing framework in the style of Behavior Driven Development (BDD). I am showing fictitious extensions
to illustrate a particular functional approach - testing properties that should hold for all instances. So it’s less about “testing by
example” and (as much as is possible) testing universal properties.

We start by defining a function that can generate N random sample instances within an arbitrary range.

123

Imaginary RSpec
describe "Money addition" do
 money_gen = Generator.new do
 Money(-100.0) to Money(100.0)
 end
 property "is commutative" do
 money_gen.make_pairs do |m1,m2|
 m1.add(m2).should_be_close(
 m2.add(m1), Money::PRECISION)
 end
 end
end

verify that addition is
commutative!

Friday, April 12, 13

In our fictitious RSpec extensions, we verify the property that addition is commutative. We ask the “money_gen” to create some
random set of pairs, passed to the block, and we verify that m1+m2 == m2+m1 within the allowed precision.

124

Test Driven Development
becomes

property verification.

Friday, April 12, 13

Of course, you’ll still write a lot of conventional OO-style tests, too.

125

Recall
grouped = addrs.map {|x|
 x.downcase
}.filter {|x|
 x !~ /spammer.com$/
}.foldl({}) {|grps,x|
 name, addr = x.split('@')
 l = grps[addr] || List::EMPTY
 grps[addr] = List.new(name,l)
 grps
} How might you

refactor this code?
Friday, April 12, 13

Remember how we grouped email addresses? What is refactoring like in such a world?

126

Recall
grouped = addrs.map {|x|
 x.downcase
}.filter {|x|
 x !~ /spammer.com$/
}.foldl({}) {|grps,x|
 name, addr = x.split('@')
 l = grps[addr] || List::EMPTY
 grps[addr] = List.new(name,l)
 grps
}

Extract Function?

Friday, April 12, 13

We could extract some of these blocks into Ruby “procs” that we pass in to the methods. This would make the code less dense
and provide opportunities for generalization (e.g., pluggable spam address filters).
We can also do traditional refactoring of some of the lines in the foldl block. However, let’s avoid premature refactoring! If the
extracted function is never used anywhere else, don’t extract it, unless clarity is a problem.

127

class List
 …
 def to_s
 "(#{head},#{tail})"
 end
 …
 def EMPTY.to_s; "()"; end
 …
end List.to_s is recursive, but

EMPTY.to_s will terminate the
recursion with no conditional test!

Recall
Replace Conditional

with Structure

Friday, April 12, 13

We avoided conditionals in many list methods by using subclass polymorphism. That is we used good ol’ OO-style refactoring.

Better Objects
128

Design
Patterns

Friday, April 12, 13

129

Does FP make
Design Patterns

obsolete?

Friday, April 12, 13

Some people have claimed that FP makes design patterns obsolete. This confuses the idea of patterns with specific examples.
There are some OO patterns that simply go away or are built into functional languages. Other OO patterns are still useful and FP
has it’s own collection of patterns, although the FP community has not traditionally used that terminology.

130

Some OO patterns
go away:

Visitor

Good riddance!
Friday, April 12, 13

Visitor is confusing, ugly, and invasive

131

Others are built into
the FP languages:
Iterator, Composite,

Command, ...

Friday, April 12, 13

Some other patterns are already in the language. Does that mean they *aren’t* actually patterns?? Or, does it mean that we
shouldn’t think of patterns as something that *has* to be external to the language itself?

132

Others are new to FP:
Fold, Monoid, Monad,
Applicative, Functor...

We saw fold. The others come
from Category Theory...

Friday, April 12, 13

Fold we saw. I’m just going to mention these Category Theory “patterns”, but not define them. They’re part of the intermediate
material...

133

Visitor is replaced by
Pattern Matching and

less reliance on joining
functions + state

into objects.
Friday, April 12, 13

Visitor is confusing, ugly, and invasive. It’s designed to allow “visitors” to see object internals without simply exposing internals
with getters. It’s a way of adding (or simulating adding) new methods to existing classes for closes-type languages like Java.

The word “pattern” in “pattern matching” is not meant in the design pattern sense.

134

Pattern Matching is one
of the most pervasive

tools in functional
programming.

Friday, April 12, 13

135

Haskell/Erlang Like...
String toString(emptyList()){
 return "()";
}
String toString(list(head,tail)){
 return "("+head+","+tail+")";
}
…
List<X> list = new List<X>();
toString(list);

Friday, April 12, 13

I’ve used Java syntax here, but this is the sort of code you see in Haskell and Erlang all the time, for example. A ListToString
module would have multiple functions with the same name but different argument lists. The runtime picks the function by
matching the argument to the first fit. AND it automatically extracts the head and tail for nonempty lists.
How does this work? Depending on the language, there would be a mechanism to *deconstruct* (or *destructure*) objects. Note
that I’m showing our factory methods used in this way. So, there would need to be a “symmetry” defined in the language for this
purpose. Scala uses a mechanism like this.

136

Haskell/Erlang Like...
def to_s(List::EMPTY)
 "()"
end
def to_s(List(head,tail))
 "("+head+","+tail+")";
end
…
list = List.new(…)
to_s(list)

Friday, April 12, 13

I’ve used “illegal” Ruby syntax here, but this is the sort of code you see in Haskell and Erlang all the time, for example. A
ListToString *module* would have multiple functions with the same name but different argument lists. The runtime picks the
function by *matching* the argument to the first fit. AND it automatically extracts the head and tail for nonempty lists.
How does this work? Depending on the language, there would be a mechanism to *deconstruct* (or *destructure*) objects. Note
that I’m showing something that looks like a constructor call in the second example. So, there would need to be a “symmetry”
defined in the language for this purpose. Scala uses a mechanism like this.

137

Wait!
Why am I defining to_s

outside the classes??

Friday, April 12, 13

Why IS to_s (or toString in other languages) in all objects? Yea, it’s nice for debugging, but when is the format what you want?
What if you want XML today and JSON tomorrow?

138

package Bpackage A

toJSON
ParentA1

toJSON
ChildA1

toJSON
ChildA2

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

package ToJSON

toJSON(ParentA1)
toJSON(ParentB1)
toJSON(ChildB1)
toJSON(ChildB2)
toJSON(...)

or

Friday, April 12, 13

You really don’t want to just bloat your classes with these things AND you want the *implementation* of “toJSON” for all types to
be defined as modularly as possible. *I argue that putting stuff like this in class hierarchies all over you app scatters the logic
and breaks modularity!
But doesn’t “package ToJSON” break other rules? Like what if we add a new child to a hierarchy? We have to balance these
competing design forces. For List, which is an Algebraic Data Type, this alternative works extremely well. For arbitrary
hierarchies, it’s more challenging.

Better Objects
139

OO
Middleware

Friday, April 12, 13

140

In a highly-concurrent
world, do we really

want a middle?

Friday, April 12, 13

141

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Web Client 1 Web Client 2 Web Client 3

Service 1 Service 2 Database

Process 1 Process 2 Process 3

Which Scales Better?

or

Friday, April 12, 13

If we funnel everything through a faithfully-reproduced domain object model, our services will be bigger, harder to decompose
into smaller pieces, and less scalable. *Modeling* our domain to understand it is one thing, but implementing it in code needs to
be rethought. The compelling power of combinators and functional data structures are about as efficient and composable as
possible. It’s easier to compose focused, stateless services that way and scale horizontally.

142

What about ORM?

Object Model

toJSON
ParentB1

toJSON
ChildB1

toJSON
ChildB2

Object-
Relational
Mapping

Other Logic

Database

Query

SQL

Result Set

Objects

1

2

3

4

Other Logic

Database

Query

SQL

Result Set

1

2

or

Question Object-Relational Mapping
Friday, April 12, 13

What if your business logic just worked with the collections returned from your database driver? It’s true that some of these
collections, like Java’s ResultSet, don’t have the powerful combinators we’ve been discussing, but those “methods” could be
added as static service methods in a helper class.
The question to ask is this: does the development and runtime overhead of converting to and from objects justify the benefits?

143

Object middleware,
including ORM, isn’t
bad. It just has costs

like everything else...

Friday, April 12, 13

Just remember that every design decision has costs, so evaluate those costs with a clear head...

Recap

Nehalem State Park, Oregon

Friday, April 12, 13

(Nehalem State Park, Oregon)

Concurrency

San Francisco Bay
Friday, April 12, 13

Concurrency is the reason people started discussing FP, which had been primarily an academic area of interest. FP has useful
principles that make concurrency more robust and easier to write.

(San Francisco Bay)

We’re
Drowning
in Data.

...

Friday, April 12, 13

Not just these big companies, but many organizations have lots of data they want to analyze and exploit.

(San Francisco)

We need better
modularity.

Mud, Death Hallow Trail, Utah

Friday, April 12, 13

I will argue that objects haven’t been the modularity success story we expected 20 years ago, especially in terms of reuse.

(Mud near Death Hollow in Utah.)

We need
better
agility.

Half Dome, Yosemite NP

Friday, April 12, 13

Schedules keep getting shorter. The Internet weeded out a lot of process waste, lot Big Documents Up Front, UML design, etc.
From that emerged XP and other forms of Agile. But schedules and turnaround times continue to get shorter.

(Ascending the steel cable ladder up the back side of Half Dome, Yosemite National Park)

We need a return
to simplicity.

Maligne Lake, Jasper Nat. Park

Friday, April 12, 13

Every now and then, we need to stop, look at what we’re doing, and remove the cruft we’ve accumulated. I claim that a lot of the
code we write, specifically lots of object middleware, is cruft.

(Maligne Lake, Near Jasper National Park, Jasper, Alberta)

150

Going from here:

• If you like statically-typed
languages, check out:

• Scala

• Haskell

• F#

• OCaml

Friday, April 12, 13

Learn a real functional language to see how these ideas work in a language that supports them natively, as well as concepts we
didn’t cover. Here is a list of the most popular statically-typed functional languages.

151

Going from here:

• If you like dynamically-typed
languages, check out:

• Clojure

• Erlang

• Other Lisp dialects

Friday, April 12, 13

Here is a list of the most popular dynamically-typed functional languages.

152

Going from here:

• Channel 9 videos

• Blogs, books, ...

Friday, April 12, 13

There are excellent MSDN Channel 9 videos on functional programming.
Numerous blogs, books, etc...

Dean Wampler

Functional
Programming

for Java Developers

Thank You!

• dean@deanwampler.com

• @deanwampler

• polyglotprogramming.com

Friday, April 12, 13

mailto:dean@deanwampler.com
mailto:dean@deanwampler.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

