
Noninvasiveness and Aspect-Oriented Design: Lessons
from Object-Oriented Design Principles

 Dean Wampler
Aspect Programming

 aspectprogramming.com
dean@aspectprogramming.com

Draft

ABSTRACT
For aspect-oriented design (AOD) to become mainstream,
appropriate design principles are needed to guide its proper use in
real, evolving systems. Design principles should tell us what types
of coupling are appropriate between aspects and the software
entities they advise, what if any restrictions should exist on non-
invasiveness, how can aspects be used in ways that preserve
correct behavior in the advised entities, and how do aspects
complement other design constructs? I examine these questions
using several object-oriented design (OOD) principles, considered
from an AOD perspective. I demonstrate how AOD contributes
design solutions to satisfy these principles, while it introduces
nuances in their interpretations. Conversely, the OOD principles
suggest good AOD-specific principles. In particular, they have
implications for noninvasiveness, which is aspect weaving
without module modification, but with appropriate controls.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented
Programming.

General Terms
Design, Theory.

Keywords
Aspect-oriented programming, object-oriented programming,
software design principles.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) is attractive
because of its ability to modularize crosscutting concerns.
However, for mainstream adoption, it must also promote good
engineering principles for initial development and for ongoing
evolution to address changing requirements [1].

To date, modularization of concerns like input & output (I/O),
persistence, security, logging, performance, etc. have seen the
most activity in Aspect-Oriented Design (AOD). These concerns
are sometimes described as part of the “nonfunctional”
requirements of a typical application, in contrast to the domain
logic, which is represented by the functional requirements.

AspectJ [2] introduced the term advice for the code inserted by an
aspect into a software entity1, reflecting this emphasis on

1 “Entity” refers generically to a module, package, class, aspect,

function, etc.

augmentation to an existing design [3], rather than a fundamental
reworking of it2.

These types of aspects usually require no modification of the
entity, a property initially referred to as obliviousness [4].
Obliviousness usually works in these cases because the domains
of the entity and the aspects are often disjoint.

However, partitioning the domain logic itself into aspects is more
likely to introduce logic conflicts, because the domain entities will
tend to overlap; similar objects play different roles in different
aspects. Obliviousness is not sophisticated enough to address
these design issues. For example, Hyper/J [5] and Composition
Filters [6] both implement aspects separately and generate
applications using a composition meta-language. How do we
ensure that the composition process does not corrupt each aspect’s
behavior in isolation? Appropriate forms of “active” collaboration
are needed to preserve logical correction during aspect
composition to create applications.

Even for disjoint entities and aspects, an entity may need some
control over possible advices, introductions, and join points, for
reasons of program correctness, security, etc.

Recently, the term noninvasiveness (See, e.g., [7]) was proposed
as an alternative to obliviousness. It retains the notion of advice
insertion without direct entity modification, but it recognizes the
need for techniques of control.

Do AO applications evolve? Tourwé, et al. [1] argue that aspects
written with current technologies tend to be tightly coupled to the
rest of the application logic, leading to an AOSD-Evolution
Paradox, where the initial version of an application using AOSD
has better modularization than a comparable, non-AOSD
implementation, but change to satisfy evolving requirements is
harder, due to tight coupling of the aspects to the rest of the
application. This coupling occurs because current ways of
specifying join points tend to be very concrete and make explicit
assumptions about program structure, e.g., the package hierarchy,
naming conventions, etc. Part of the paradox is that obliviousness
only exists on the application side of the application-aspect
relationship, while the aspects are not at all oblivious to the
application they advise. This paradox is a practical barrier to
AOSD adoption.

To explore noninvasiveness, good AOD, and issues of software
evolution, I start with a set of object-oriented design and

2 However, AspectJ advice is more powerful than the term might

suggest. We frequently use AspectJ terminology because it is
familiar.

packaging principles described by Martin [8]. AOD facilitates
these principles in various ways, but these principles also suggest
guidelines for good AOD itself, including effective controls and
noninvasiveness. This analysis compliments the work of other
authors who have examined design patterns [9] from an AO
perspective [10-11]. I also consider the evolution of AO-based
software, by examining the AOSD-Evolution Paradox in more
detail.

2. Principles of Object-Oriented Design
Martin has described eleven principles of OO design and
packaging [8]. Five deal specifically with class and interface
design as they affect issues of evolution, reuse, and stability.
Three focus on package cohesion and three focus on package
coupling. They are summarized in Table 1.

In this section, I describe the principles, conventional OOD
approaches to them, and how to support them using AOD
techniques. Later, I examine what they tell us about good AOD.

2.1 OOD Design Principles
2.1.1 The Single Responsibility Principle3 (SRP)

A class should have only one reason to change.

The SRP states that a class4 with multiple reasons to change,
reflecting multiple purposes or tangled concerns (AOSD
terminology) is hard to change when requirements change,
making the class rigid.

The rigidity comes from the coupling of concerns in the class. If
the class needs to evolve along one concern axis, the changes
often compromise the class’s ability to support the other concerns,
even when they remain static. Furthermore, since each concern
usual has external dependencies, the dependencies become
coupled, too. Hence, reuse is compromised in applications that
don’t need some of the concerns and their dependencies.

Note that the way the SRP is worded highlights the fact that a
tangled entity that never needs to change poses only minor issues.
The need for maintenance, evolution, and reuse make tangling a
problem that needs to be solved.

The SRP is another way of stating the classic separations-of-
concerns problem that AOSD, like OOSD before it, was invented
to help solve. Hence, standard refactoring techniques from both
disciplines apply, e.g., [12].

2.1.2 The Open-Closed Principle (OCP)
Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for modification.

Another form of rigidity exists when a change in one location
causes a cascade of changes to other points in the system, which is
a barrier to making the original change. These cascades also tend

3 The names, acronyms and definitions are quoted from [8]. Note

that the where “class” appears, “aspects” can be added to it. The
descriptions and examples are adapted from [8].

4 The SRP could also refer to aspects, of course. Packages or
similar collaborations like modules and components aren’t
mentioned because they are discussed in several of the other
principles.

to result in brittle systems, because it is hard to find all the points
where changes are required, so bugs often result from the changes.

The OCP is a solution to this problem. An entity can be open for
extension, so its behavior can be changed, but it must be closed
for modification, meaning its code cannot be changed. The OCP
reduces rigidity and brittleness because preventing change in the
original entity and its clients, as long as the interface itself doesn’t
change, prevents a cascade of changes.

Instead, new entities are added to create extensions. Typically,
they implement an abstraction, such as an interface, exposed by
the original entity. An appropriate mechanism for connecting a
particular implementation to the client must also exist, such as a
Factory [9].

An obvious example of an OCP-violating application is one that
hard-codes conditional logic for the known types in a hierarchy,
where unique action is taken depending on the object’s class.
Introduction of a new type forces updates to all such code blocks.

The usually OOD solution is to declare methods in the original
abstraction that represent the variant behaviors and then to define
concrete implementations of the methods in classes that satisfy the
abstraction.

A second common approach is the Template Method pattern [9],
where a base class defines a set of unimplemented methods and a
concrete method that invokes them in a particular order, thereby
defining a protocol. Subclasses define the unimplemented
methods to specify the actual behavior.

However, as Martin points out, the OOD approaches to OCP still
have one limitation; it is not possible to anticipate all changes that
clients might want. A new client requirement might not be
satisfied by the existing abstraction. This will force the abstraction
to change, which will probably cause a cascade of client changes.

Even if you could anticipate all possible changes, it would not be
desirable to design the original entity for all such contingencies,
as this would lead to overly-complicated entity interfaces, bloated
and inefficient code, and an unacceptable implementation effort,
all to support options for change that might never be used.

This is one of the reasons that frameworks have not been as
successful as expected. Traditional frameworks face a catch-22
situation; they need maximal flexibility to be useful to a broad
range of projects, yet that same flexibility tends to make them
bloated with lots of complexity and undesirable overhead, which
is a barrier to adoption. Agile Programmers, particular those in the
Extreme Programming (XP) camp, reject the traditional notion of
designing-in program extension points (“hooks”) to support
potential extensions that might be needed in the future. Instead,
they refactor the software to include those hooks when they are
actually needed. [8,12]

Consider a simple example of geometric shapes that satisfies the
OCT. It has an overridden draw method and a client that iterates
through a list of shapes and draws them (Listing 1).

Shape.java:
interface Shape {
 public void draw();
 void drawAllShapes (Vector list);
};

Circle.java:
class Circle implements Shape {
 public void Draw() {… }
};

Square.java:
class Square implements Shape {
 public void draw() {… }
};

ShapeClient.java:
class ShapeClient {
…
 void drawAllShapes (Vector list) {
 Iterator i = list.iterator();
 while (i.hasNext()) {
 Shape s = (Shape) i.next();
 s.draw();
 }
 }
}

Listing 1

The drawAllShapes method assumes that the shapes can be
drawn in any order. Now suppose that a new client wants to draw
shapes ordered by the number of vertices they contain, i.e., circles
(0), points (1), lines (2), triangles (3), etc. In our contrived
example, assume the client can’t order the list in advance, so the
existing drawAllShapes method is not usable. There is no way
for the client to query the shape for the number of vertices, so the
original Shape interface has to be modified to declare an
overridden method that returns the number of vertices. The client
can then write a method for drawing shapes in order. Because the
Shape abstraction changes, all clients must be changed or at least
rebuilt5.

The AOD solution is to extract interface elements that reflect
different concerns and to make them into separate aspects. The
draw method is part of an I/O concern that should be extracted
into a separate set of aspects (most likely one per class in the
Shape hierarchy). If the draw methods are added through
introductions, they will reproduce the abstraction that existing
clients already use, making modification to them unnecessary6.

The number of vertices is an intrinsic property of a shape, so it
makes sense to add a “get” method to the original abstraction with
implementations in the hierarchy. We could either modify the
hierarchy directly (preferred, though “painful”) or use another set
of aspect introductions. The latter approach has the virtual of
allowing us to keep the original abstraction for those clients that
don’t care about the new functionality. This may be a practical
requirement to minimize the impact to an existing system.

Hence, new aspects can be introduced to address new
requirements, while still satisfying the OCP. Listing 2 shows an
AspectJ example that refactors the original design in two ways.

5 Adding a new method doesn’t change the part of the interface

the existing clients care about, but it does change the “binary”
footprint.

6 However, you have to be careful about issues like “binary
compatibility”, depending on the aspect system in use.

Clients of the original draw method still have it, but it has been
refactored to a set of aspects. At the same time, the support for
vertices has been added to the original abstraction (rather than
using aspect introductions).

Shape.java:
interface Shape {
 public int getNumVertices();
}

Circle.java:
class Circle implements Shape {
 public int getNumVertices() { return 0;
};
}

Square.java:
class Square implements Shape {
 public int getNumVertices() { return 4;
};
}

DrawableShape7.aj
aspect DrawableShape {
 public void Shape.draw() { … }
};

DrawableCircle.aj:
aspect DrawableCircle {
 public void Circle.draw() { … }
};

DrawableSquare.aj:
aspect DrawableSquare {
 public void Square.draw() { … }
};

ShapeClient.java:
class ShapeClient { /* same as before! */ }

ShapeClient2.java:
Class ShapeClient2 {
 protected Vector
 sortByNumVertices (Vector v) { … };

 void drawAllShapes (Vector list) {
 Vector list2 = sortByNumVertices(v);
 Iterator i = list2.iterator();
 while (i.hasNext()) {
 Shape s = (Shape) i.next();
 s.draw();
 }
 }
}

Listing 2

7 At a naïve level, aspects are the adjectives that modify the object

nouns. Therefore, I use aspect names that are adjectives with the
name of the object they modify appended to avoid “namespace”
conflicts. I will leave it to the reader to decide if this naming
convention makes sense. (What about aspects that advise
multiple classes in several hierarchies?)

Using aspect refactoring and introductions reduces the size of the
original abstraction (the dubious service method
drawAllShapes is gone from Shape), yet makes it more
flexible for future changes without breaking existing clients.
However, since aspects involve interface or class modification, do
they violate the OCP? Technically they don’t, since the actual
source code is not changed, just the run-time structure. Still, we
are inserting new methods and state into the entity’s run-time
structure. Is that safe?

First, practically speaking, for some aspect systems and
languages, adding a new aspect will require rebuilding the clients,
which strict OCP seems to oppose. For situations where this is
acceptable, modifications through aspects won’t violate the OCP
if they preserve the contract of the software entity, in the sense of
Bertrand Meyer’s Design by Contract (DbC) [13] principle. I will
return to the role of DbC in AOD in more depth in subsequent
sections.

Returning to aspect-based refactoring and modularization, how far
should the designer go with such fine-grained modularization?
AOD probably won’t eliminate the problem that, at some level,
extreme modularization will result in obfuscation because
information gets spread over many entities, and its benefits in
flexibility.

Multi-Dimensional Separation of Concerns [5] attempts to strike
the appropriate balance by embracing the partitioning of the
domain model into a set of concerns, each of which focuses on a
particular “feature”. Concerns are composed together to create
applications. Jacobson has proposed that use cases are these
domain-logic concerns [14].

2.1.3 The Liskov Substitution Principle (LSP)
Subtypes must be substitutable for their base types.

Programs that depend on a base class B will likely break if a
derived class D is used that in some way does not conform to the
behavior defined by B. More specifically, if a program P’s
behavior is unchanged by the substitution of D for instances of B,
then D is considered a subtype of B.

Most OO languages restrict the possible violations of the LSP.
Most allow derived classes to add to the public interface defined
in a parent class, but not remove items from it, e.g., by declaring a
parent’s public method private. Removing a method in D and
using it in place of a B would break clients expecting the missing
method.

Most LSP violations not prevented by language restrictions are
also violations of the OCP. A common example is the abuse of
run-time type identification (RTTI) facilities in languages like
Java and C++. For example, suppose a function takes an argument
of type B and it has to take action based on the actual subtype of
an object passed in for the argument. This would violate the OCP,
since the method would probably misbehave if an object of a new
derived class D’, unknown to the function, were passed to it.

A more subtle OCP violation is suggested by the description of
the LSP above. Class D is considered a subclass of B if the
behavior of program P is invariant. This implies two things: (i)
that substitutability, or the “IS-A” relationship, is a statement
about behavior, not structure, and (ii) that substitutability is
actually in the context of the client using the classes. Martin
demonstrates these points using the common, but questionable,
assertion that a Square is a subclass of a Rectangle.

Structurally, a Square has the same properties as a
Rectangle. That is, you can define a square using a
Rectangle’s four points. However, as far as a Rectangle is
concerned, its width and height can vary independently, while a
Square constrains them to be equal. Naïvely, a Square could
simply set its width equal to its height any time the one or the
other is changed. However, consider the following client program
of a Rectangle.

Void testSanity (Rectangle& r) {
 r.SetWidth(4);
 r.SetHeight(5);
 assert (r.GetArea() == 20);
}

Listing 3

This client of a Rectangle assumes the area should equal the
height times the width, as explicitly set in the preceding lines.
However, this fails for Squares, because a Square doesn’t
obey the contract for a Rectangle’s behavior, even though it is
structurally the same.

The example also illustrates that the validity of the domain’s
behavior can’t be determined in isolation, but only in relation to
the expectations of its clients! The LSP and the OCP both show
the importance of understanding and maintaining an entity’s
contract, relative to client expectations. I will discuss below the
implications of the LSP for advice and introductions.

2.1.4 The Dependency Inversion Principle (DIP)
(i) High-level modules should not depend on low-level modules. Both
should depend on abstractions.

(ii) Abstractions should not depend upon details. Details should
depend upon abstractions.

A common flaw in layered architectures is for the upper layers to
depend directly on the details of the layers just below them. These
dependencies are transitive; if layer A depends on layer B and
layer B depends on layer C, then layer A depends on layer C.
This creates the perverse situation where high-level application
and context-setting modules are both fragile in the face of change
and they can’t be reused easily with different lower layers.

The solution is for both layers to depend on an abstraction, as
shown in Figure 4, adapted from Martin [6].

Figure 4

Note that the interfaces are actually defined in the client layer, not
the serving layer, as is commonly seen. This has two benefits.
First, It allows the client to define exactly what services it needs,
nothing more or less. This supports the Interface Segregation
Principle (ISP), which is discussed below. The second benefit is
that each layer is completely portable, as long as a replacement
subordinate layer implements the client-defined interface.

A simple heuristic for the DIP is “depend on abstractions”, which
implies three things.

1. No variable should hold a pointer or reference to a
concrete class.

2. No class should derive from a concrete class.

3. No method should override an implemented method in
any of its base classes.

Some violations of this heuristic are fine, such as dependencies on
concrete but very stable classes (e.g., Java’s String class).

Nordberg [11] shows how aspects can solve examples of
dependencies that violate the DIP and the Acyclic Dependency
Principle (ADP), discussed below, such as the well-known Visitor
Pattern [9]. He also argues that one of the reasons that component-
based development (CBD) has not been successful is because
software parts have dependencies on connectors that are typically
both concrete and unstable, in contrast to mechanical and
electrical “CBD”, where the connectors are well standardized and
stable. Dependencies on unstable connectors make component
development and assembly infeasible.

If the layer dependency is actually a tangled concern, then it
should be factored out of the top layer. If so, then untangling the
concern may eliminate the dependency. For example, if the Client
layer in Figure 4 needs to persist state to a database in the Service
layer, then the dependency is actually a tangled concern that may
be refactored as shown in Figures 5 and 6.

Figure 5

In Figure 5, the Client module is now decoupled completely from
the Service module. All the dependencies are in the aspect. Here, I
assume that aspect still defines an abstraction that the Service
module implements. Hence, the modules are decoupled accept at
one point, which is easier to maintain and modify when required.

A different approach is shown in Figure 6, where the notion of an
interface is removed and the aspect now depends directly on both
the Client and the Service modules. Technically, this violates the
DIP again. Furthermore, it probably also violates the Stable
Dependencies Principle (SDP), discussed below, which states that
modules should only depend on stable modules, because an
unstable dependency introduces instability in the dependent.

Recalling the AOSD-Evolution Paradox discussed in [1], the
coupling of the aspect in Figure 6 is concrete in two directions,
making integration aspects unstable and rigid. Unfortunately,
such aspects are very common. However, if the aspects are small
enough, changes will be easy to make when required. Hence, the
rigidity should be manageable. As usual in real-world projects, we
don’t need perfect solutions to all design problems, just “good
enough” solutions.

However, in practical terms violations of our principles may be
tolerable if they are well isolated and small enough that the
trouble they cause is nominal. In the example, the persistence
aspect may meet these criteria and the violations of the DIP and
the SDP may be tolerable. We should only solve problems worth
solving!

Figure 6

Consider other recent approaches to decoupling concerns. The
various J2EE specifications [15] tried to decouple concerns with

Client

Client

Service

« interface »
Client Service

Interface

Service Layer

Client

Client

Service

« aspect »
Persistent Client

Service Layer

Client

Client

Service

« aspect »
Persistent Client

Service Layer

mixed success8. “Application assemblers” join modules together
and configure properties for a fixed list of known concerns, such
as persistence and transactions, using XML-based property files
called deployment descriptors. This is done without modifying the
source code of the modules, making them more reusable.

A more successful approach to decoupling of aspects and
satisfying the DIP has been the recent emergence of lightweight
containers for enterprise applications that exploit two concepts
called Inversion of Control (IoC) and Dependency Injection (DI)
[16].

IoC is fairly common in frameworks. Instead of objects managing
their own lifetimes or creating custom, ad hoc manager objects,
this chore is inverted by having a container handle lifecycle
management, usually according to a well-defined protocol, but
will requiring container-specific lifecycle code to be embedded in
the objects9.

Dependency Injection is a special type of IoC that adds facilities
for making the container populate the dependencies of objects, the
properties (attributes) and references to other objects, rather than
requiring each object or an ad hoc manager to populate the
dependencies.

For example, the Spring framework [16] has containers that can
manage plan-old Java objects (POJOs) without requiring the
objects to embed container-specific lifecycle code or to use JNDI
to locate dependencies10. Instead, the containers use the
constructors and the JavaBean properties [17] of the object as the
client-defined interface that the container “implements”11, as in
our layer example. Hence, Spring and similar IoC/DI systems
satisfy the DIP. Also, a basic AO system in Spring provides
weaving of concerns like persistence and transaction management.
IoC/DI plus aspect support almost completely remove
requirements for coupling between application objects, containers,
and supporting libraries. This greatly improves comprehension
(by supporting the SRP), testing, reusability, and maintenance.

2.1.5 The Interface Segregation Principle (ISP)
Clients should not be forced to depend upon methods that they do
not use. Interfaces belong to clients, not to hierarchies.

There is a tendency, for convenience, for services to offer fat
interfaces with clusters of methods. Each cluster serves a
particular client type. Any one client will ignore the other clusters.
The problem is that changes to the interface in the uninteresting
methods can affect the clients. This is another manifestation of
tangled concerns.

The solution is for the clients to define the interfaces. They will
include just the services the client needs, as discussed in the
previous section on the Dependency Inversion Principle.

8 Many ideas in J2EE can be viewed as imperfect precursors to

better AOSD approaches.
9 The Enterprise Java Bean (EJB) container also manages

lifecycles of “beans”, but it requires container-specific lifecycle
code to be embedded in the bean implementation.

10 Although, when special circumstances require it, container APIs
are available for implementing customized behavior.

11 Reflection is used to determine the client’s interface and XML
files are used to specify how to satisfy the dependencies.

Of course, aspects are especially useful for both untangling
concerns and in localizing interfaces where they are actually
needed. As in our previous example, if the interface used by a
client is actually for a concern, it may be extracted to an aspect
where the interface is collocated with the glue code that joins the
client and server modules together.

2.2 Package Cohesion Principles
The previous set of principles focused mostly on classes,
interfaces, and their relationships. Now, I briefly review the
principles in [8] that deal with groupings of classes and interfaces,
organized as packages in languages like Java.

2.2.1 The Release-Reuse Equivalency Principle
(REP)

The granule of reuse is the granule of release.

A practical issue with software is the release and maintenance
processes. Developers release updates periodically and at the
same time, clients seek ways to reuse modules. Since some classes
will always have some dependencies on others, the developer
should package together dependent classes into a release
“granule” and clients should expect that they will need to reuse
the entire granule or none of it. It is not realistic to expect to pick
and choose pieces of a release for reuse.

When aspects are used, they should be part of the release-reuse
granule if they are tightly coupled to entities within it. Similarly,
an update to a granule of aspects may force an update to its
dependencies.

2.2.2 The Common Reuse Principle (CRP)
The classes in a package are reused together. If you reuse one of the
classes in a package, you reuse them all.

Classes that form tight collaborations are natural choices for
grouping. However, classes with weak coupling should not be
packaged together. Suppose a package depends on only one class
in a different package, the dependency is still to the entire
package, because that is the granule of reuse, according to the
REP. Therefore, it is best to package together classes that are so
closely linked that they are inseparable and a dependency to one is
effectively a dependency to all. This will result in small, well-
focused packages.

Separating concerns as aspects makes it easier to create small-
well-focused packages, but care must be taken in designing the
coupling between these otherwise, well-focused packages.

2.2.3 The Common Closure Principle (CCP)
The classes in a package should be closed together against the same
kinds of changes. A change that affects a closed package affects all
the classes in that package and no other packages.

The CCP is the package version of the Single Responsibility
Principle (SRP), which applied to individual classes. CCP is a
practical principle; change is required as systems evolve and
localizing the change to one package and making that package
cohesive enough that it has only one concern, will make it easier
to change and to release an updated package when needed.

The “closure” part of the CCP relates to the Open-Closed
Principle (OCP). As we’ve seen, closing an entity to modification
is not always possible when unanticipated requirements emerge.

However, if the changes are limited to a few packages, then the
impact of change is reduced.

As discussed before, aspects make it easier to support the SRP and
the OCP. Therefore, by extension, they help support the CCP.

2.3 Package Coupling Principles
The package coupling principles focus on dependencies between
packages.

2.3.1 The Acyclic Dependencies Principle (ADP)
Allow no cycles in the package dependency graph.

If you graph the dependencies between packages, it should form a
directed acyclic graph (DAG). When there are cycles in the graph,
all the packages in the cycle must be built, tested, and released
together. They are effectively one large package. In a DAG
structure, building, testing, and releasing a package only requires
the sequence of its dependent packages down to leaf nodes, which
are packages with no dependencies. In fact, this structure makes it
easy to rebuild the application by building and testing the leaf-
node packages first, then their immediate dependents, etc., up to
the top-level package upon which no other package depends.

When cycles occur, they can be removed by applying the
Dependency Inversion Principle (DIP) or by factoring out
dependent classes into a new package so that a DAG structure is
restored. Of course, refactoring to aspects can assist in this
process.

An interesting implication of the ADP is that top-down package
design based on a functional decomposition usually doesn’t work,
because it becomes necessary to introduce packages that may not
have an obvious association with the domain logic. Instead the
package structure has to evolve to facilitate the buildability of the
application.

2.3.2 The Stable Dependencies Principle (SDP)
Depend in the direction of stability.

As demonstrated previously, it is harder to justify changing a
package if it has a lot of dependents, since a change will force
changes, or at least rebuilding, of the dependent packages.
Therefore, to minimize this ripple effect, dependencies should
point from less stable to more stable packages. Similarly, a
package that depends on many other packages is inherently
unstable because it is susceptible to change any time one of its
dependencies changes.

2.3.3 The Stable Abstractions Principle (SAP)
A package should be as abstract as it is stable.

The SDP tells us to depend in the direction of stability. What if we
need flexibility in the stable packages? The solution is the Open-
Closed Principle (OCP), which tells us to design classes that
promote extension without modification. Abstract classes or
interfaces satisfy the OCP.

The stability requirement is achieved by having the dependencies
point to packages that contain only abstractions, which are
relatively stable, while other, less-stable packages provide
concrete implementations of the abstractions, which tend to be
less stable. In an application that supports the SAP, the only
dependents of the concrete packages should be one or a few
“factories” that glue the application together.

3. Aspect Design
In the previous sections, I summarized the OOD principles from
[8] and how they are supported by AOD. Now I return to AOD
itself and discuss how the OOD principles lead us to AOD-
specific principles. I then discuss noninvasiveness from the
perspective of what we have learned.

3.1 Principles of Good Aspect Design
The OOD principles can be applied to AOD in some obvious
ways, which we won’t discuss in detail here, but which are
summarized in the last column of Table 1. For example, each
principle should be rephrased to include the word “aspect” where
the word “class” (or entity) appears. Also, aspects should follow
the same packaging recommendations, etc.

However, aspects suggest a definition for a new Open-Closed
Principle (OCP’ – “prime”):

3.1.1 The New Open-Closed Principle (OCP’)
Software entities (classes, modules, functions, etc.) should be open
for extension, but closed for source and contract modification

That is, aspects actually modify the entity they advice or provide
introductions, but in a specific and controlled way (manual editing
is still not permitted, for example). Aside from possibly having to
rebuild clients (depending on the aspect system), these
modifications are acceptable as long as they do not violate the
original contract of the entity.

So, the OCP’, along with the Liskov Substitution Principle (LSP),
constrain aspects to maintain the invariance of the entity’s
contract. This leads us to our first AOD-specific principle.

3.1.2 The Advice Invariance Principle (AIP)
Advice must conform to the contract of the advised join points.

An extensible entity defines a contract, which includes an
abstraction (e.g., an interface) and constraints on its use that must
be respected by extensions, whether those extensions are
subclasses, new entities conforming to an interface, or aspects.

The abstraction is typically a set of method signatures and
sometimes data objects that clients may use. Language-specific
AO systems keep the signatures invariant. (If they tried to change
the signatures, run-time or compile-time errors would usually
occur.)

The constraints on use of the abstraction are best described using
Meyer’s Design by Contract [13], which stipulates three kinds of
contracts.

• Preconditions for a method must be true before it can
execute. They define what the method requires in order to do
its job successfully. Typically, they are constraints on the
arguments to the method, object state, and/or relevant global
data.

• Postconditions must be true when the method returns. They
define what the method guarantees to accomplish, assuming
the preconditions were met.

• Invariants define state invariants satisfied by the entity
within the atomicity of calls to its client-visible methods.

(The invariants may be temporarily violated within the
methods themselves12.)

Notice that before advice can be used to test preconditions,
after advice can be used to test postconditions, and around
advice can be used to test invariants. DbC is a programmer’s
crosscutting concern. Aspects are an excellent tool for testing and
enforcing contracts (See, e.g., [18,19]).

With regards to derived-classes and satisfying the LSP, Meyer has
started,

A routine redeclaration [in a derivative] may only replace the
original precondition by one equal or weaker, and the original
postcondition by one equal or stronger13.

A redeclaration can weaken the precondition or strengthen the
postcondition because neither change violates the LSP, because
the new “routine” is still substitutable for the original routine.

Recall our previous example of how a Square may not be
substitutable for a Rectangle. This is actually a postcondition
violation [8]. When setting the width, for example, of a
Rectangle, the postconditions state that the width of the
Rectangle now must equal the width passed as an argument
and the height must be unchanged. Square relaxes the latter
condition by changing the height to match the width.

I noted before the observation in [8] that substitutability is about
behavior not structure. Contracts constrain behavior to within an
allowed “range”, but they rarely require “behavior invariance”. If
they did, extension would be impossible!

Advice is effectively a derivation at a join point. Specifically,
before advice is a derivation that can change the “initial”
behavior, but not the “final” behavior, while the opposite is true of
after advice. Both behaviors are potentially affected by
around advice. Therefore, the AIP in more detail states the
following.

• Before advice must support the preconditions of the
advised join point or weaker preconditions and it must also
support the entity’s invariants.

• After advice must support the postconditions of the
advised join point or stronger postconditions and it must
support the entity’s invariants. Note that this also applies to
the special type of after advice used for exception
handling clauses, because the thrown exception is also part of
the postcondition contract, albeit for abnormal termination.

• Around advice must support the preconditions of the
advised join point or weaker preconditions. It must support
the postconditions of the advised join point or stronger
postconditions. It must support the entity’s invariants.

What about multiple extensions introduced simultaneously? A
tricky issue with aspects is avoiding aspect collisions, caused by
mutually incompatible advices or introductions. Two or more

12 However, this has implications for reentrant systems.
13 [15], p 573. As [8] also remarks, “weaker” means that the

derivation can choose not to enforce all the original
preconditions. However it can add new ones.

superimposed aspects [2] that are disjoint have no affect on each
other. Hence, each must separately obey the AIP.

In the case of non-disjoint superimpositions, each aspect either
advises join points in one or more of the other aspects, in the
original entity, or both. Most aspect systems provide a precedence
mechanism to eliminate arbitrary execution order. Circular
dependencies among aspects are conceptually possible but often
forbidden because they lead to infinite recursions at run time. At
the very least, they violate the Acyclic Dependencies Principle
(ADP).

The rules for non-disjoint aspects follow the precedence rules. If
aspect A has higher precedence than Aspect B and both advise
join point J, before advice for A is executed first, followed by
before advice for B, followed by J. To satisfy the LSP and the
AIP, the preconditions of A’s before advice must support the
preconditions of B’s before advice or weaker preconditions,
which must be equal to or weaker than J’s preconditions. Also,
A’s advice must satisfy B’s invariants, which must satisfy J’s
invariants.

Similarly for after advice, J is executed first, followed by
after advice for B, followed by after advice for A. To
satisfy the LSP and the AIP, the postconditions of A’s after
advice must support the postconditions of B’s after advice or
stronger postconditions, which must be equal to or stronger than
J’s postconditions.

The rules for around advice combine the rules for before and
after advices.

Finally, note that the non-functional concerns that have seen the
most widespread analysis as aspects are often orthogonal to the
domain logic and therefore tend to obey the AIP by default. It is
when overlapping concerns are discussed, such as the partitioning
of domain logic, that the AIP becomes more important.

3.1.3 The Introduction Invariance Principle (IIP)
An Introduction must conform to the invariants of the advised entity,
and if used in advice, it must conform to the contract of the advice.

This is a corollary to the AIP for introductions, which have an
interesting nuance. If an introduction doesn’t affect existing join
points, which is usually the case, it only needs to satisfy the
invariants of the modified entity14. However, if an introduction is
invoked from an advice that modifies a join point, then it
implicitly affects the join point and therefore the introduction is
subject to the same contract invariants as the advice in which it is
used.

3.1.4 The Join Point Inversion Principle (JIP - DIP
for Aspects)

(i) Join points should not depend on low-level modules. Both should
depend on abstractions.

(ii) Abstractions should not depend upon details. Details should
depend upon abstractions.

14 This is one reason it is often easier to use introductions, rather

than advice, to extend entity behavior without violating the
OCP.

As discussed in the Introduction, [1] points out that an AOSD-
Evolution Paradox exists in today’s aspects systems because
aspects tend to be tightly coupled to the entities they advice,
making evolution difficult. This occurs because most join point
languages in use are based on structural information about the join
points, such as naming conventions and package structure, rather
than the logical patterns of the software. This is clearly a violation
of the Dependency Inversion Principle (DIP), which says that
dependencies should be based on abstractions, not concrete
details.

However, note that OOD has the same issue, to a degree. You
can’t have a Banking application depend on an “account-like”
class; the best you can do is to define an explicit dependency to an
Account abstraction, which will hopefully change rarely. This is
the practical goal of both the Open-Closed Principle (OCP) and
the DIP. However, the problem of explicit dependencies in AO
system is more difficult because many of them are specified as
sets using regular-expression or similar mechanisms. So, a name
change requires a more sophisticated analysis ability to find
matches in join points.

A number of approaches are being investigated for expressing join
points in a more abstract way, including logic meta programming
(see e.g., [18]) and logical query languages (e.g., [19]). Shorter-
term options exploit the new annotation features in languages like
Java and C# to indicate meta-information about entities that might
be useful for join point matching. However, you still have to
choose stable and meaningful annotations and you have to
anticipate all possible annotations of interest to potential aspects.

Until join point abstraction mechanisms mature, three pragmatic
solutions are useful. The first is to write join points that refer to
abstractions, such as interface details, whenever possible, and to
minimize references to concrete details.

The second solution is to make the problem small enough that it is
easy to solve manually. Recall the discussion of the DIP earlier
where I showed how aspects support it by completely extracting
concern-related dependencies as separate aspects. The interface
that would otherwise be defined by the client module is packaged
in an aspect along with part of the implementation that would
have been provided by the serving module. This module can have
undesirable couplings to two or more unstable, concrete packages,
but hopefully the instability is now well localized and
manageable.

The third pragmatic solution is dismissed by [1]; refactor the
modules to make them easier to use with aspects. This rejection is
based on a view that obliviousness is an imperative, whereas
noninvasiveness is now considered more appropriate. Hence,
aspect awareness of some degree is now seen as important for
good design. Furthermore, aspects should be regarded as first-
class design constructs along with classes and other forms.

In this context, it is interesting to consider the MDSoC
perspective [5], that real world objects are inherently subjective
because they belong to different concern hierarchies. Any one
object will appear in different forms in different concern
“dimensions”. It is perhaps true that there is always a dimension
in which a particular “conceptual” pointcut is easy to express
succinctly and abstractly, not unlike the way that some
transformations in mathematics render difficult problems into a
simpler and more tractable form, without loss of information.
However you approach the problem domain, the Single

Responsibility Principal (SRP) tells us that it is good to refactor
our designs into single concerns.

So, we can expect that good design will be a combination of
established OOD principles, as discussed in [8], in combination
with an awareness of the types of advice that might reasonably be
applied to a particular entity. This awareness will govern the
structure chosen for modules and result in software that is more
maintainable and adaptable for new needs.

3.2 Aspect Subtypes
Applying the Liskov Substitution Principle (LSP) to aspects raises
the question, what is a “subaspect” for an aspect? More
specifically what does substitutability mean for aspects?

In general substitutability means that I can insert a subaspect for
any occurrence of the original, abstraction-defining aspect and
program behavior is unchanged, within the constraints of the
original abstraction.

I will mostly focus on AspectJ as an example, but the arguments
should be adaptable to other systems. AspectJ gives aspects class-
like properties, such as the ability to define abstract aspects, with
abstract pointcuts and methods that are implemented in concrete
“subaspects”. Abstract advice is not supported, but this is a minor
limitation. Based on the OCP and LSP, the concrete
implementations must respect the contracts for the abstract
methods, pointcuts, and advices. This also means that the Advice
Invariance Principle (AIP) must apply to concrete advice,
following the same rules as superimposed advice, where the
concrete advice has precedence over the abstract advice, by
default (following the same model in OOSD for overridden
methods).

For our purposes, aspects differ from classes in two important
respects. The first is the concept of join points (and by extension,
pointcuts) where advice is applied and the second is a different
lifecycle model.

Because of the adjectival nature of aspects, they have no purpose
apart from their affect on other entities15. Their lifecycle model
reinforces this fact; they are never instantiated directly by clients,
as standalone entities. Instead, they are managed by the system
and most instances are actually “singletons” [9], where one
instance is used for all join points it advices16.

By existing only in relation to other entities, and recalling that the
LSP states that substitutability is defined by the affect a
substitution has on the larger program’s behavior, the implication
is that an aspect is substitutable for another aspect if the
collaboration between the aspect and the advised entities is
equivalent within the constraints of the larger program’s
requirements.

This then implies that abstract pointcuts need a “signature”, so
they can constrain concrete implementations. In AspectJ, they
have no signature and hence no constraining power. That is, they
offer no contract. Instead, abstract pointcuts should themselves be
declared as abstractions with a clear contract.

15 This statement isn’t quite correct, as stated, for the MDSoC

perspective.
16 There are usually ways to instantiate aspects on a “per object”

basis, etc.

Do pointcut contracts have any sort of weakening or strengthening
behavior, like preconditions and postconditions, under derivation?
This is a question that requires further study, because it seems to
depend on the larger context of how the aspect-entity
collaboration satisfies the program’s-own contract. Also, when
considering common usage today, there is no a priori requirement
for a pointcut to include more or fewer join points under
derivation. Since abstract pointcuts have zero join points in
AspectJ, concrete derivations always include 0 or more join
points!

Another implication is that the subaspects advice must be
substitutable in the join points. Again, the resulting behavior must
satisfy the program’s contract. Note that the set of join points
could be different from the original pointcut.

3.3 Noninvasiveness
In general, modern languages and frameworks impose controls to
prevent unauthorized or ill-advised use of modules. For example,
most OO languages have scoping and protection constructs to
control access to state information and restrict behavior, while
supporting extension through derivation or composition. Many
application frameworks provide security mechanisms to prevent
unauthorized activity, intentional or accidental. To see
mainstream adoption, AO systems have to evolve beyond naïve
obliviousness for the same reasons. Noninvasiveness permits
access controls while maintaining the principle of not requiring
module modifications.

Since advice and introductions must obey the contracts of the join
points they advise, as discussed previously, the contracts must be
explicit enough to constrain the behavior of potential insertions, as
well as to impose access restrictions on potential join points.

Language-specific aspect systems, like AspectJ, respect the
protection model of the language they extend, as long as
workarounds are avoided, like AspectJ’s privileged keyword
for bypassing Java’s access controls, except in very special and
careful circumstances. This approach may be sufficient for access
restriction contracts, which are perhaps less important than
restricting the types of advice permitted. For example, inserting a
“no-op” advice in an inappropriate join point is essentially
harmless.

When restricting the types of advice and introductions, the hardest
conditions to specify are those that involve detailed or subjective
information about the context of the join point. Furthermore, it is
of course not possible to anticipate all conceivable aspects that
might be used, so the constraints need to be general enough to
affect all current and future types of advice that are relevant.

Languages like Java and C# are adding annotation support that
can be used to indicate meta-information about the software. The
language-specific AO systems will be extended to exploit
annotations as join point discriminators. Appropriate annotations
might convey sufficient context information that is harder to
articulate with traditional join point primitives, which tend to rely
on concrete structural details.

Table 2 shows a few examples of possible contracts on advice.

Type of Contract Description

1 All advice Allow anything

2 No advice Reject all advice insertions

3 No advice with memory
usage > M

Reject all advice that
consumes more than M units
of memory

4 No advice with execution
time > N

Reject all advice that takes
more than N units of time to
run

5 No advice that calls API X Don’t permit advice to call
into a particular API (e.g.,
system or I/O calls)

6 No advice that accesses
data D

Prevent advice that accesses
sensitive data

Table 2

Examples 3 and 4 illustrate performance (“non-functional”)
requirements. Examples 5 and 6 can also arise to support
performance, as well as security constraints (detection of “aspect
viruses”). Note that these four constraints would require a
combination of compile-time and run-time analysis and
enforcement.

In fact, while work remains to characterize all the types of advice
that might be subject to constraints, the examples here are all
enforceable through aspects written in the common aspect systems
available today. So, part of a software entity’s contract should be
a set of its own aspects that constrain and enforce the possible
“external” aspects [20]. Furthermore, these contract aspects
should always take precedence over all external aspects.

4. Conclusions
By examining some well-known principles of good object-
oriented design, I have demonstrated how aspects support them,
but also what these principles tell us about good aspect-oriented
design. In particular, I have discussed the role of contracts
between aspects and entities as constraints on how aspects are
used in order to preserve program correctness, security, etc.,
thereby supporting the principal of noninvasiveness. Along the
way I examined some weaknesses in current aspect systems,
including the AOSD-Evolution Paradox. Finally, I commented on
the nature of aspect derivation.

5. ACKNOWLEDGMENTS
My thanks to my colleagues at BridgePort Networks and the
contributors on “aosd-discuss” for stimulating discussions.

6. REFERENCES
[1] Tom Tourwé, Johan Brichau and Kris Gybels, On the

Existence of the AOSD-Evolution Paradox, AOSD 2003
Workshop on Software-engineering Properties of Languages
for Aspect Technologies (Boston, Massachusetts, USA,
March 17-21, 2003).

[2] AspectJ. http://www.aspectj.org/.

[3] Katara, M. and Katz, S. Architectural Views of Aspects.
Proceedings of AOSD 2003 (Boston, Massachusetts, USA,
March 17-21, 2003). ACM Press, New York, NY, 2003, 1-
10.

[4] R. Filman and D. Friedman. Aspect-oriented programming is
quantification and obliviousness. In Workshop on Advanced
Separation of Concerns, OOPSLA 2000, 2000.

[5] Ossher, H. and Tarr. P. Multi-Dimensional Separation of
Concerns and the Hyperspace Approach. Proceedings of the
Symposium on Software Architectures and Component
Technology. Kluwer, 2000.

[6] Bergmans, L. and Aksit, M. Composing Crosscutting
Concerns Using Composition Filters. Communications of the
ACM, 44(10:51-57, October 2001.

[7] Aosd-discuss thread. “Obliviousness Principle in Aspect-
Oriented Software Development.”
http://server2.hostvalu.com/pipermail/discuss_aosd.net/2003-
August/000617.html.

[8] Martin, R., Newkirk, J., and Koss, R. Agile Software
Development, Principles, Patterns, and Practices. Prentice
Hall, Upper Saddle River, NJ, 2003.

[9] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design
Patterns; Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[10] Hannemann, J. and Kiczales, G. Design Pattern
Implementation in Java and AspectJ. In Proceedings of
OOPSLA ’02 (Seattle, Washington, USA, November 4-8,
2002). ACM Press, New York, NY, 2002, 161-173.

[11] Nordberg, M. E. Aspect-Oriented Dependency Inversion.
OOPSLA 2001 Workshop on Advanced Separation of
Concerns in Object-Oriented Systems, 2001.

[12] Fowler, M. Refactoring. Addison-Wesley, Reading, MA,
2000.

[13] Meyer, Bertrand. Object-Oriented Software Construction, 2nd
edition. Prentice Hall, Saddle River, NJ, 1997.

[14] Jacobson, I. Use Cases as Aspects. Invited talk, AOSD 2003
(Boston, Massachusetts, USA, March 17-21, 2003).

[15] J2EE Technology. http://java.sun.com/j2ee/.

[16] Johnson, R. and Hoeller, J. J2EE Development without EJB.
Wiley, Indianapolis, IN, 2004.

[17] JavaBeans Technology.
http://java.sun.com/products/javabeans/.

[18] Skotiniotis, T. and Lorenz, D. Cona -- Aspects for
Contracts and Contracts for Aspects.
http://www.oopsla.org/2004/ShowEvent.do?id=594.

[19] Barter – Beyond Design by Contract.
http://barter.sourceforge.net/.

[20] De Volder, K. and D'Hondt, T. Aspect-Oriented Logic Meta
Programming, Proceedings of Meta-Level Architectures and
Reflection, Second International Conference, Reflection'99.
LNCS 1616. Springer-Verlag, 1999, pp. 250-272.

[21] JQuery, a Query-Based Code Browser.
http://jquery.cs.ubc.ca/.

[22] Larochelle, D., Scheidt, K. and Sullivan, K. Join Point
Encapsulation.
http://www.cs.virginia.edu/~eos/papers/encapsulation.pdf.

TLA* Name Definition AOD Perspective

SRP The Single
Responsibility
Principle

A class should have only one
reason for change.

Another way of stating the problem of tangled concerns,
which aspects help solve. Aspects should also obey the
SRP (“A class or aspect….”).

OCP The Open-Closed
Principle

Software entities (classes,
modules, functions, etc.)
should be open for extension,
but closed for modification.

The entities should be closed for source modification.
Aspects can modify the source in a controlled way, but
must object the join-points’ contracts.

LSP The Liskov
Substitution Principle

Subtypes must be
substitutable for their base
types.

Factoring out concerns reduces the likelihood of LSP
violations that result when a client expects a certain
behavior that wasn’t anticipated by the module designer.
The offending concern can be replaced with a concern that
meets client expectations, thereby restoring substitutability
of the hierarchy in the client’s domain.

DIP The Dependency
Inversion Principle

(i) High-level modules should
not depend on low-level
modules. Both should depend
on abstractions.

(ii) Abstractions should not
depend on details. Details
should depend on
abstractions.

For dependencies that are concerns not related to the
domain logic, extraction into aspects localizes the coupling
to the aspects themselves, making management of the
dependency more tractable and enhancing reuse of the
original, decoupled modules.

ISP The Interface
Segregation Principle

Clients should not be forced
to depend upon methods that
they do not use. Interfaces
belong to clients, not to
hierarchies.

Same as for the DIP. Extraction of concerns from clients
further decouples them from services and also localizes the
“client” interface” in the aspect and the code that uses the
service.

REP The Release-Reuse
Equivalency
Principle

The granule of reuse is the
granule of release.

Aspects tend to yield smaller, less broadly-coupled
packages. However, aspects that are closely coupled to
packages may need to be part of the release granule.

CRP The Common Reuse
Principle

The classes in a package are
reused together. If you reuse
one of the classes in a
package, you reuse them all.

Similar to the REP, aspects promote the “SRP for
packages”, but also require careful packaging due to
dependencies on the packages.

CCP The Common
Closure Principle

The classes in a package
should be closed together
against the same kinds of
changes. A change that affects
a closed package affects all
the classes in that package and
no other packages.

Aspects promote having packages with one concern. An
AOSD system will tend to have more, smaller, well-
focused packages.

ADP The Acyclic
Dependencies
Principle

Allow no cycles in the
package dependency graph.

Aspects are one tool for breaking cycles. Aspect packages
should also be acyclic.

SDP The Stable
Dependencies
Principle

Depend in the direction of
stability.

Aspects can localize dependencies and provide stable
abstractions. Aspects should also depend only on
abstractions.

SAP The Stable
Abstractions
Principle

A package should be as
abstract as it is stable.

Aspects should try to obey the SAP, but current join point
languages are too concrete.

*The three-letter acronyms, names and definitions are quoted from [8].

Title 1: Object-Oriented Design Principles and Aspects

