
Aspect-Oriented
Programming in

Academia and Industry

Dean Wampler

Object Mentor
dean@objectmentor.com

1Friday, October 19, 2007

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

What is AOP?

History of AOP

Academia vs. industry

Future work

2Friday, October 19, 2007

class Account
 attr_reader :balance

 def credit (amount)
 raise "..." unless amount >= 0
 @balance += amount
 end

 def debit (amount)
 raise “…” unless amount < @balance
 @balance -= amount
 end
end

3Friday, October 19, 2007

Clean
and

Simple
4Friday, October 19, 2007

But, Real Applications Need:

class Account
 attr_reader :balance
 def credit (amount); …; end
 def debit (amount); …; end
end

Transactions

Persistence

Security

5Friday, October 19, 2007

Tangled

Account

Code

6Friday, October 19, 2007

Scattered

Persistence,

Code

Transactions,
Security, ...

7Friday, October 19, 2007

Modularity

is

Compromised.

8Friday, October 19, 2007

We would like to say...

Before returning the Account balance, read
the current balance from the persistence
store.

After the Account balance changes, update
the new balance in the persistence store.

Before changing the Account balance,
authenticate and authorize the user.

9Friday, October 19, 2007

require ‘aquarium’
class Account
 include Aquarium::Aspects::DSL::AspectDSL

 before :attribute => :balance,
 :attribute_options => [:reader] do |jp, *args|

 jp.context.advised_object.balance =
 read_from_database(…)
 end
 ...

reopen Account

aquarium.rubyforge.org

jp: Join Point
10Friday, October 19, 2007

 …
 after_returning :attribute => :balance,
 :attribute_options => [:writer] do |jp, *args|

 update_in_database (
 jp.context.advised_object.balance,…)
 end
 ...

11Friday, October 19, 2007

 …
 before :methods => [:credit, :debit],
 :attributes => [:balance] do |jp, *args|

 raise “…” unless user_authorized
 end
end

12Friday, October 19, 2007

Can’t we just use

Metaprogramming?

(when available)

13Friday, October 19, 2007

Languages that support our
paradigms yield:

Higher Productivity

Higher Quality

14Friday, October 19, 2007

Refactoring Account
Handle “overdraft” requirements as an aspect

15Friday, October 19, 2007

class Account
 attr_reader :balance

 def credit (amount)
 raise "..." unless amount >= 0
 @balance += amount
 end

 def debit (amount)
 raise “…” unless amount < @balance
 @balance -= amount
 end
end

16Friday, October 19, 2007

class Account
 attr_reader :balance

 def credit (amount)
 raise "..." unless amount >= 0
 @balance += amount
 end

 def debit (amount)
 @balance -= amount
 end
end

17Friday, October 19, 2007

module AllowableOverdraftAccount
 attr_accessor :max_overdraft
 before :type => :Account,
 :method => :debit do |jp, *args|
 account = jp.context.advised_object
 if (account.balance - args[0]) <
 -max_overdraft
 raise “…”
 end
 end
end

18Friday, October 19, 2007

Some History
A Personal Perspective

19Friday, October 19, 2007

"Open Implementation,
Analysis and Design of
Substrate Software"
OOPSLA ’95 Tutorial

 G. Kiczales, R. DeLine, A. Lee, C. Maeda

20Friday, October 19, 2007

“Black Box” Problems

Limits of Object-Oriented Modularity

Need controlled access to internals

Often at the “meta-level”

21Friday, October 19, 2007

Metaobject protocols (MOPs) and reflection

MOPs for

File system cache management

Virtual memory management tuning

Process scheduler tuning

Tutorial Reflected Work On...

22Friday, October 19, 2007

At the same time...

The Internet Bubble!!

23Friday, October 19, 2007

Persistence

Transactions

High availability

Security

...

Industry developers were
feeling the pain of cross-
cutting concerns (CCC)

24Friday, October 19, 2007

Common Problems Led to
AspectJ

25Friday, October 19, 2007

Xerox PARC

Extension of Java

Modularizes the cross-cutting concerns
(CCC)

AspectJ

26Friday, October 19, 2007

aspect AllowableOverdraftAccount {
 float Account.maxOverdraft;
 before (Account account, float amount) :
 execution (* Account.debit(..)) &&
 target(account) && args(amount) {
 if ((account.balance - amount) <
 - maxOverdraft)
 throw new OverdraftException(...);
 }
 }
}

27Friday, October 19, 2007

Most web/enterprise software is statically
typed

Where the pain is felt

Why Java?

28Friday, October 19, 2007

Java’s “MOP” is insufficient for CCC

Rise of byte-code engineering tools

Configured with XML!

But sufficient as a base for AOP tools

Why Java?

29Friday, October 19, 2007

Java’s Virtual Machine (and maybe the API’s)
may become more important than Java itself!

An Aside...

30Friday, October 19, 2007

Generative Programming
Czarnecki and Eisenacker

31Friday, October 19, 2007

Analysis and Design

Domain engineering

Feature modeling

Generative Programming

32Friday, October 19, 2007

Implementation Technologies

Generic programming

C++ template metaprogramming

AOP

Intentional programming

Generative Programming

33Friday, October 19, 2007

IBM Research

Morphed from “Subject-Oriented
Programming”

Hyper/J

More ambitious than AspectJ

Multidimensional Separation
of Concerns

34Friday, October 19, 2007

Symmetric AOP

Aspects as first-class citizens, like classes

Asymmetric AOP

Aspects as “adjuncts”

AspectJ’s de facto model

Multidimensional Separation
of Concerns

35Friday, October 19, 2007

AOP pervasive in open-source Java
enterprise frameworks

Spring

JBoss

Industry Landscape Today

36Friday, October 19, 2007

Lots of .NET/CLR AOP projects

Industry adoption still “tepid”

Industry Landscape Today

37Friday, October 19, 2007

Aspect-Oriented Design
Relearning Object-Oriented Principles

38Friday, October 19, 2007

Quantification and
Obliviousness
R. Filman and D Friedman (OOPSLA 2000)

39Friday, October 19, 2007

AOP can be understood as the
desire to make quantified
statements about the behavior
of programs, and to have
these quantifications hold over
programs written by
oblivious programmers.

40Friday, October 19, 2007

Modules should be

open for extension,

but closed for modification

Open-Closed Principle
(Meyer):

41Friday, October 19, 2007

Persistence Aspect

after set (Account.name)

Account
name

Account
first_name
last_name

Version 1 Version 2

???X

42Friday, October 19, 2007

Aspects make initial version easier,

but subsequent versions harder!

43Friday, October 19, 2007

AOSD-Evolution

Paradox!
On the Existence of the

AOSD-Evolution Paradox.
Tom Tourwé, Johan Brichau,

Kris Gybels.
44Friday, October 19, 2007

Next Generation of
Thought...

45Friday, October 19, 2007

Non-invasiveness vs.
Obliviousness
G. Kiczales, et al.

46Friday, October 19, 2007

Modules should be aware of
possible advices, without
assuming specifics...

Advice: The new behavior
invoked at the join point.

47Friday, October 19, 2007

… and modules should
expose pointcuts...

Pointcut: The set of “interesting”
join points.

… and maybe restrict
access,...

48Friday, October 19, 2007

… but we should still be
able to advise modules
without modification.

49Friday, October 19, 2007

class Account
 attr_reader :balance
 def credit (amount)
 ...
 end
 def debit (amount)
 @balance -= amount
 end

 STATE_CHANGE = Pointcut.new
 :methods => [:credit, :debit]
end

aquarium.rubyforge.org

50Friday, October 19, 2007

…
Aspect.new :pointcut =>
 Account.STATE_CHANGE do | … |
 # Persist the change...
end

51Friday, October 19, 2007

We’re rediscovering
OO Design Principles

Using Abstractions!

52Friday, October 19, 2007

Open Modules

Modular Reasoning About Advice

J. Aldrich

Cross-Cutting Programming Interfaces (XPI)

Modular Software Design with Crosscutting
Interfaces

Griswold, Sullivan, et al.

For Completeness...

53Friday, October 19, 2007

What Industry Cares About

54Friday, October 19, 2007

Simple (enough) to understand and use

Strong tool support

Maintainability of long-lived software

We must get paid, ASAP!

Industry Criteria for
Technology

55Friday, October 19, 2007

What Academia Cares
About

56Friday, October 19, 2007

Non-trivial, interesting problems

Theoretical rigor

Publish or perish!

But longer time lines are acceptable

Academia’s Criteria

57Friday, October 19, 2007

Industry and Academia
Working Together
Some current and future growth areas for AOP

58Friday, October 19, 2007

Language-Oriented
Programming

Raise the abstraction level by constructing
Domain Specific Languages (DSLs)

Could hide the complexity of aspects, objects,
metaprogramming, etc.

59Friday, October 19, 2007

Contrived Example:
…
for_types(with_pointcut(PERSISTABLE))
do |type|
 map_attributes_of(type)
 .excluding.attributes_marked(:transient)
 on_state_changes(:write_to_store)
 use_cache(:memcached)
end

60Friday, October 19, 2007

What Industry Will Do...

Invent lots of little, ad hoc DSL’s

Create a “Tower of Babel” situation

Developers will struggle to learn all the DSLs
of all the libraries/tools they need

61Friday, October 19, 2007

What Academia Could Do...

You understand language design, AI, etc.

Help industry understand

Globally-applicable DSL design
principles

Mapping DSLs to object, aspect, …
assembly code

62Friday, October 19, 2007

Massively Large Systems

How would you build a city?

How would you build a software system of the
same complexity?

63Friday, October 19, 2007

What Industry Will Do...

Incremental improvements on what we already
know how to do

Build systems whose complexity exceeds the
capabilities of our modularity tools

Struggle to maintain these systems...

64Friday, October 19, 2007

What Academia Could Do...

Understand the unique characteristics of
massive systems

Find new ways to build them in a modular,
manageable way

65Friday, October 19, 2007

Don’t worry too much about industry relevance!

We need people working on longer-term
problems

Instead of incremental improvements…

Focus on fundamental problems and
innovation!

Some Final Thoughts

66Friday, October 19, 2007

Thank You!

dean@aspectprogramming.com

aquarium.rubyforge.org

contract4j.org

67Friday, October 19, 2007

mailto:dean@aspectprogramming.com
mailto:dean@aspectprogramming.com

