Aspect-Oriented
Programming Iin
Academia and Industry

Dean Wampler

Object Mentor
dean@objectmentor.com

mailto:dean@objectmentor.com
mailto:dean@objectmentor.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

x\/Vhat is AOP?
xHistory of AOP

x Academia vs. Industry

% -Uture work

class Account
attr reader :balance

def credit (amount)

raise "..." unless amount >= 0
@balance += amount
end

def debit (amount)

raise “...” unless amount < @balance
@balance -= amount
end

end

Friday, October 19, 2007

But, Real Applications Need:

class Account
attr reader :balance
def credit (amount); . . end
def debit (amount); .. @ end

end \

Security

langled

Account

Code

Scattered

Persistence,
Transactions,
Security, ...

Code

Modaularity

S

Compromiseq.

We would like to say...

Before returning the Account balance, read
the current balance from the persistence
store.

After the Account balance changes, update
the new balance In the persistence store.

Before changing the Account balance,
authenticate and authorize the user.

require ‘aguarium’
class Account # reopen Account
include Aquarium::Aspects::DSL::AspectDSL

before :attribute => :balance,
:attribute_options => [:reader] do |jp, *args]

jp.context.advised_object.balance =
read_from_database(...)
end

aquarium.rubyforge.org

Jp: Join Point

after_returning :attribute => :balance,
:attribute_options => [:writer] do |jp, *args|

update _In database (
jp-context.advised_object.balance,...)
end

before :methods => [:credit, :debit],
:attributes => [:balance] do |jp, *args]

raise “...” unless user authorized
end
end

Can’t we just use

Metaprogramming?

(when available)

L anguages that support our
paradigms yield:

x Higher Productivity

x Higher Quality

Refactoring Account

Handle “overdraft™ requirements as an aspect

class Account
attr reader :balance

def credit (amount)

raise "..." unless amount >= 0
@balance += amount
end

def debit (amount)

raise “...” unless amount < @balance
@balance -= amount
end

end

Friday, October 19, 2007

class Account
attr reader :balance

def credit (amount)

raise "..." unless amount >= 0
@balance += amount
end

def debit (amount)
@balance -= amount
end
end

Friday, October 19, 2007

module AllowableOverdraftAccount
attr accessor:max averdraft
before :type => :Account,

:method => :debit do |jp, *args|
account = jp.context.advised_object
if (account.balance - args[0]) <

-max_overdraft
raise “...”
end
end
end

Some History

A Personal Perspective

"Open Implementation,
Analysis and Design of

Substrate Software”
OOPSLA 95 Tutorial

G. Kiczales,

=

Deline, A. Lee, C. Maeda

“‘Black Box™ Problems

® | imits of Object-Oriented Modularity

x Need controlled access to Internals

x Often at the “meta-level”

Tutorial Reflected Work On...

® \Metaobject protocols (MOPSs) and reflection
x MOPs for
® ile system cache management

x \irtual memory management tuning

® Process scheduler tuning

At the same time...

lINndustry developers were
feeling the pain of Cross-
cutting concerns (CCCO)

® Persistence
® [ransactions
x High availability

® Security

Common Problems Led to
Aspectd

Aspectd

x Xerox PARC

® Extension of Java

®x Modularizes the cross-cutting concerns
(CCO)

aspect AllowableOverdraftAccount {
float Account.maxOverdraft;
before (Account account, float amount) :
execution (* Account.debit(..)) &&
target(account) && args(amount) {
if ((account.balance - amount) <
- maxOverdraft)
throw new OverdraftException(...);

Why Java”

®x Most web/enterprise software is statically
typed

® \\Vhere the pain Is felt

Why Java”

® Java’'s “MOP” is insufficient for CCC

x Rise of byte-code engineering tools
x Configured with XML!

» But sufficient as a base for AOP tools

An Asige...

® Java’s Virtual Machin
may lbecome m

e (and maybe the A

Pl’s)

ore iIr

nportant than Java 1

self!

Generative Programming

Czarnecki and Eisenacker

Generative Programming

®x Analysis and Design

®x Domain engineering

® Feature modadeling

Generative Programming

® |mplementation Technologies

® (Generic programming

x C++ template metaprogramming
x AOP

® |[ntentional programming

Multidimensional Separation
of Concerns

® |[BM Research

®x Morphed from “Sulject-Oriented
Programming’

x Hyper/J

® \ore ambitious than AspectJd

Multidimensional Separation
of Concerns

x Symmetric AOP
® Aspects as first-class citizens, like classes
®x Asymmetric AOP

® Aspects as "adjuncts”

® Aspectd’s de facto model

INnAdustry Lanadscape loday

x AOP pervasive in open-source Java
enterprise frameworks

® Spring

x JBOSS

INnAdustry Lanadscape loday

x | ots of .NET/CLR AOP projects

® [ndustry adoption still “tepid”

Aspect-Oriented Design

Relearning Object-Oriented Principles

Quantification and

Obliviousness
R. Filman and D-Friedman (OOPSLA 2000)

AOP can be understood as the
desire to make quantified
statements about the behavior
of programs, and to have
these quantifications hold over
programs written by

oblivious programmers.

Open-Closed Principle
(Meyer):

® \lodules should be
® 0open for extension,

® hut closed tor modification

Version | Version 2

Friday, October 19, 2007

Aspects make Initial version easier,

but sulbseqguent versions harder!

AOSD-Evolution

On the Existence of the
AOSD-Evolution Paradox.
Tom Tourwe, Johan Brichau,
Kris Gybels.

Next Generation of
Thougnt...

Non-invasiveness vs.
ODbliviousness

G. Kiczales, et al.

Vlodules should be aware of
DOoSsIble advices, without
assuming Speciiics...

Advice: The new behavior
iInvoked at the join point.

... and modules should
eX[POse pointcuts...

... and maype restrict
ACCeSS,...

Pointcut: The set of “interesting”
join points.

... but we should still be
able to advise modules
without moditication.

class Account
attr reader :balance
def credit (amount)
end
def debit (amount)

@balance -= amount
end

STATE. CHANGE = Pointcut.new
:methods => [:credit, :debit]
end

aquarium.rubyforge.org

Aspect.new :pointcut =>
Account.STATE_CHANGE do | ... |
Persist the change...
end

We're rediscovering
OO Design Principles

Using Abstractions!

For Completeness...

x Open Modules
x \lodular Reasoning About Advice

x J. Aldrich

® Cross-Cutting Programming Interfaces (XPI)

x Modular Software Design with Crosscutting
Interfaces

® (5riswold, Sullivan, et al.

What Industry Cares About

Industry Criteria for
lechnology

x Simple (enough) to understand and use

x Strong tool support

®x Maintainability of long-lived software

x \\le must get paid, ASAP!

What Academia Cares
ADOUt

Academia’s Criteria

x Non-trivial, interesting problems

x [heoretical rigor

® Publish or perish!

x But longer time lines are acceptable

INndustry and Academia
Working logether

Some current and future growth areas for AOP

| anguage-Orienteo
Programming

® Raise the abstraction level by constructing

x Could hide-

Domain Specific Languages (DSLs)

‘he complexity of aspects, objects,

metaprogra

mming, etc.

Contrived Example:

for _types(with_pointcut(PERSISTABLE))
do |typel
map_attributes_of(type)
.excluding.attributes_marked(:transient)
on_state changes(:write_to_store)
use_cache(:memcached)
ple

What Industry Will Do...

® [nvent lots of little, ad hoc DSLs

x Create a “Tower of Babel” situation

Developers wi

of all the librari

| struggle to learn all the DSLs
es/tools they need

What Academia Could Do...

® You understand language design, Al, etc.
®x Help industry understand

x Globally-applicable DSL design
principles

x Mapping DSLs to object, aspect, ...
assembly code

Massively Large Systems

= How would you build a city?

= How would you build a software system of the
same complexity?

What Industry Will Do...

® |[ncremental iImprovements on what we already
<NOW how to do

®x Build systems whose complexity exceeds the
capabillities of our modularity tools

® Struggle to maintain these systems...

What Academia Could Do...

®x Understand the unique characteristics of
Mmassive systems

® Find new ways to build them in a modular,
manageable way

Some Final Thoughts

®x Don’t worry too much about industry relevance!

x \\Ve need people working on longer-term
problems

® [nstead of incremental improvements...

® FOocus on fundamental problems and
iInnovation!

Friday, October 19, 2007

Ihank You!

® dean@aspectprogramming.com

® gguarium.rubyforge.org

® contract4).org

mailto:dean@aspectprogramming.com
mailto:dean@aspectprogramming.com

