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What is AOP?

History of AOP

Academia vs. industry

Future work
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class Account
  attr_reader :balance

  def credit (amount)
    raise "..." unless amount >= 0
    @balance += amount
  end

  def debit (amount)
    raise “…” unless amount < @balance
    @balance -= amount
  end
end
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Clean
and

Simple
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But, Real Applications Need:

class Account
  attr_reader :balance
  def credit (amount); …; end
  def debit  (amount); …; end
end

Transactions

Persistence

Security
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Tangled

Account

Code
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Scattered

Persistence,

Code

Transactions,
Security, ...
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Modularity

is

Compromised.
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We would like to say...

Before returning the Account balance, read 
the current balance from the persistence 
store.

After the Account balance changes, update 
the new balance in the persistence store.

Before changing the Account balance, 
authenticate and authorize the user.
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require ‘aquarium’
class Account
  include Aquarium::Aspects::DSL::AspectDSL

  before :attribute => :balance,
     :attribute_options => [:reader] do |jp, *args|

    jp.context.advised_object.balance = 
      read_from_database(…)
  end
  ...

# reopen Account

aquarium.rubyforge.org

jp: Join Point
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  …
  after_returning :attribute => :balance,
      :attribute_options => [:writer] do |jp, *args|

         update_in_database (
            jp.context.advised_object.balance,…)  
  end
  ...
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  …
  before :methods => [:credit, :debit],
      :attributes => [:balance] do |jp, *args|

         raise “…” unless user_authorized 
  end
end
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Can’t we just use 

Metaprogramming?

(when available)
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Languages that support our 
paradigms yield:

Higher Productivity

Higher Quality
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Refactoring Account
Handle “overdraft” requirements as an aspect
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class Account
  attr_reader :balance

  def credit (amount)
    raise "..." unless amount >= 0
    @balance += amount
  end

  def debit (amount)
    raise “…” unless amount < @balance
    @balance -= amount
  end
end
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class Account
  attr_reader :balance

  def credit (amount)
    raise "..." unless amount >= 0
    @balance += amount
  end

  def debit (amount)
    @balance -= amount
  end
end
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module AllowableOverdraftAccount
  attr_accessor :max_overdraft
  before :type => :Account, 
              :method => :debit   do |jp, *args|
    account = jp.context.advised_object
    if (account.balance - args[0]) < 
           -max_overdraft
      raise “…”
    end
  end
end
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Some History
A Personal Perspective
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"Open Implementation, 
Analysis and Design of 
Substrate Software"
OOPSLA ’95 Tutorial

  G. Kiczales, R. DeLine, A. Lee, C. Maeda
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“Black Box” Problems

Limits of Object-Oriented Modularity

Need controlled access to internals

Often at the “meta-level”
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Metaobject protocols (MOPs) and reflection

MOPs for 

File system cache management

Virtual memory management tuning

Process scheduler tuning

Tutorial Reflected Work On...
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At the same time... 

The Internet Bubble!!
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Persistence

Transactions

High availability

Security

...

Industry developers were 
feeling the pain of cross-
cutting concerns (CCC)
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Common Problems Led to 
AspectJ
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Xerox PARC

Extension of Java

Modularizes the cross-cutting concerns 
(CCC)

AspectJ
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aspect AllowableOverdraftAccount {
  float Account.maxOverdraft;
  before (Account account, float amount) : 
    execution (* Account.debit(..)) &&
    target(account) && args(amount) {
      if ((account.balance - amount) < 
           - maxOverdraft)
          throw new OverdraftException(...);
     }
  }
}
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Most web/enterprise software is statically 
typed

Where the pain is felt

Why Java?
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Java’s “MOP” is insufficient for CCC

Rise of byte-code engineering tools

Configured with XML!

But sufficient as a base for AOP tools

Why Java?
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Java’s Virtual Machine (and maybe the API’s) 
may become more important than Java itself!

An Aside...
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Generative Programming
Czarnecki and Eisenacker
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Analysis and Design

Domain engineering

Feature modeling

Generative Programming
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Implementation Technologies

Generic programming

C++ template metaprogramming

AOP

Intentional programming

Generative Programming
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IBM Research

Morphed from “Subject-Oriented 
Programming”

Hyper/J

More ambitious than AspectJ

Multidimensional Separation 
of Concerns
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Symmetric AOP

Aspects as first-class citizens, like classes

Asymmetric AOP

Aspects as “adjuncts”

AspectJ’s de facto model

Multidimensional Separation 
of Concerns
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AOP pervasive in open-source Java 
enterprise frameworks

Spring

JBoss

Industry Landscape Today
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Lots of .NET/CLR AOP projects

Industry adoption still “tepid”

Industry Landscape Today
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Aspect-Oriented Design
Relearning Object-Oriented Principles
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Quantification and 
Obliviousness
R. Filman and D Friedman (OOPSLA 2000)
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AOP can be understood as the 
desire to make quantified 
statements about the behavior 
of programs, and to have 
these quantifications hold over 
programs written by 
oblivious programmers.
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Modules should be 

open for extension,

but closed for modification

Open-Closed Principle 
(Meyer):
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Persistence Aspect

after set (Account.name)

Account
name

Account
first_name
last_name

Version 1 Version 2

???X
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Aspects make initial version easier,

but subsequent versions harder!
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AOSD-Evolution

Paradox!
On the Existence of the 

AOSD-Evolution Paradox. 
Tom Tourwé, Johan Brichau, 

Kris Gybels.
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Next Generation of 
Thought...
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Non-invasiveness vs. 
Obliviousness
G. Kiczales, et al.
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Modules should be aware of 
possible advices, without 
assuming specifics...

Advice:   The new behavior 
invoked at the join point.
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… and modules should 
expose pointcuts...

Pointcut:   The set of “interesting” 
join points.

… and maybe restrict 
access,...
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… but we should still be 
able to advise modules 
without modification.
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class Account
  attr_reader :balance
  def credit (amount)
    ...
  end
  def debit (amount)
    @balance -= amount
  end

  STATE_CHANGE = Pointcut.new
      :methods => [:credit, :debit] 
end

aquarium.rubyforge.org
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…
Aspect.new :pointcut => 
     Account.STATE_CHANGE do | … |
  # Persist the change...
end
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We’re rediscovering
OO Design Principles

Using Abstractions!
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Open Modules

Modular Reasoning About Advice 

J. Aldrich

Cross-Cutting Programming Interfaces (XPI)

Modular Software Design with Crosscutting 
Interfaces

Griswold, Sullivan, et al.

For Completeness...
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What Industry Cares About
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Simple (enough) to understand and use

Strong tool support

Maintainability of long-lived software

We must get paid, ASAP!

Industry Criteria for 
Technology

55Friday, October 19, 2007



What Academia Cares 
About
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Non-trivial, interesting problems

Theoretical rigor

Publish or perish!

But longer time lines are acceptable 

Academia’s Criteria
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Industry and Academia 
Working Together
Some current and future growth areas for AOP
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Language-Oriented 
Programming

Raise the abstraction level by constructing 
Domain Specific Languages (DSLs)

Could hide the complexity of aspects, objects, 
metaprogramming, etc.
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Contrived Example:
…
for_types(with_pointcut(PERSISTABLE)) 
do |type|
  map_attributes_of(type)
    .excluding.attributes_marked(:transient)
  on_state_changes(:write_to_store)
  use_cache(:memcached)
end
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What Industry Will Do...

Invent lots of little, ad hoc DSL’s

Create a “Tower of Babel” situation

Developers will struggle to learn all the DSLs 
of all the libraries/tools they need 

61Friday, October 19, 2007



What Academia Could Do...

You understand language design, AI, etc. 

Help industry understand

Globally-applicable DSL design 
principles

Mapping DSLs to object, aspect, … 
assembly code
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Massively Large Systems

How would you build a city?

How would you build a software system of the 
same complexity?
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What Industry Will Do...

Incremental improvements on what we already 
know how to do

Build systems whose complexity exceeds the 
capabilities of our modularity tools

Struggle to maintain these systems...
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What Academia Could Do...

Understand the unique characteristics of 
massive systems

Find new ways to build them in a modular, 
manageable way

65Friday, October 19, 2007



Don’t worry too much about industry relevance!

We need people working on longer-term 
problems

Instead of incremental improvements…

Focus on fundamental problems and 
innovation! 

Some Final Thoughts
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Thank You!

dean@aspectprogramming.com

aquarium.rubyforge.org

contract4j.org
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