
Dean Wampler

@deanwampler

https://deanwampler.medium.com

dean@deanwampler.com

Lessons Learned from 15 Years

of Scala in the Wild

© Dean Wampler, 2021-2022, unless otherwise noted. All rights reserved.@deanwampler

mailto:dean@deanwampler.com

About
me…

https://research.ibm.com/blog/what-is-accelerated-discovery
© Dean Wampler, 2021-2022, unless otherwise noted. All rights reserved.@deanwampler

programming-scala.com

© Dean Wampler, 2021-2022, unless otherwise noted. All rights reserved.@deanwampler

http://www.apple.com

Greater Clarity

From Implicits to Contextual
Abstractions

Improvements to the Type
System

How Scala Has Evolved

@deanwampler

FP Over OOP

Should Everything Be Typed?

Less Code Is More

“Enterprise Scala”

@deanwampler

What current industry trends
may mean for FP and Scala

The Future??

@deanwampler

Greater Clarity

@deanwampler

Python-esque Syntax in Scala 3

// Scala 2 braces

trait Monoid[A] {

 def add(a1: A, a2: A): A

 def zero: A

}

integer match {

 case 0 => println("zero")

 case _ => println("other value")

}

// Scala 3, no braces option

trait Monoid[A]:

 def add(a1: A, a2: A): A

 def zero: A

integer match

 case 0 => println("zero")

 case _ => println("other value")

@deanwampler

// Implicit Type Conversions

implicit final class ArrowAssoc[A]

 private val self: A) extends AnyVal {

 @inline def ->[B](y: B): (A, B) = (self, y)

 @deprecated("Use `->` instead...", "2.13.0")

 def →[B](y: B): (A, B) = ->(y)

}

// True Extension Methods

import scala.annotation.targetName

extension [A] (a: A)

 @targetName("arrow2")

 inline def ~>[B](b: B): (A, B) = (a, b)

More “Intentional” Constructs

Used to write “a -> b” to
return a tuple “(a, b)”

@deanwampler

From Implicits to

Contextual Abstractions

@deanwampler

Implicits are a mechanism with idiomatic usage.

Givens and using clauses are more intentional.

trait Semigroup[T]:

 extension (t: T)

 infix def combine(other: T): T

 @targetName("plus")

 def <+>(other: T): T = t.combine(other)

trait Monoid[T] extends Semigroup[T]:

 def unit: T

given StringMonoid: Monoid[String] with

 def unit: String = ""

 extension (s: String)

 infix def combine(other: String): String =

 s + other

scala>"one" <+> ("two" <+> "three")

 | ("one" <+> "two") <+> "three"

val res1: String = onetwothree

val res2: String = onetwothree

scala> "one" <+> StringMonoid.unit

 | StringMonoid.unit <+> "one"

val res3: String = one

val res4: String = one

@deanwampler

trait Semigroup[T]:

 extension (t: T)

 infix def combine(other: T): T

 @targetName("plus")

 def <+>(other: T): T = t.combine(other)

trait Monoid[T] extends Semigroup[T]:

 def unit: T

given NumericMonoid[T: Numeric]: Monoid[T] with

 def unit: T = summon[Numeric[T]].zero

 extension (t: T)

 infix def combine(other: T): T =

 summon[Numeric[T]].plus(t, other)

scala> 2 <+> (3 <+> 4)

 | (2.2 <+> 3.3) <+> 4.4

 | (BigInt(2) combine BigInt(3))

 | combine BigInt(4)

 |

val res5: Int = 9

val res6: Double = 9.9

val res7: BigInt = 9

scala> 2 <+> NumericMonoid[Int].unit

 | NumericMonoid[Double].unit <+> 3.3

val res8: Int = 2

val res9: Double = 3.3

@deanwampler

Implicits are a mechanism with idiomatic usage.

Givens and using clauses are more intentional.

trait Context:

 def info: String

given Context = new Context:

 def info: String = "Cloud!"

def process(name: String)(using Context): String =

 s"$name-${summon[Context].info}"

scala> process(“AWS”)

val res0: String = “AWS-Cloud!”

scala> given ctx: Context = new Context:

 | def info: String = "Also Cloud!"

 |

lazy val ctx: Context

scala> process("Azure")(using ctx)

val res1: String = Azure-Also Cloud!

@deanwampler

Implicits are a mechanism with idiomatic usage.

Givens and using clauses are more intentional.

Improvements to the Type System

object Log:

 opaque type Logarithm = Double

 
 // These are the two ways to lift to the Logarithm type

 def apply(d: Double): Logarithm = math.log(d)

 def safe(d: Double): Option[Logarithm] =

 if d > 0.0 then Some(math.log(d)) else None

 // Extension methods define an opaque type’s public APIs

 extension (x: Logarithm)

 def toDouble: Double = math.exp(x)

 def + (y: Logarithm): Logarithm = Logarithm(math.exp(x) + math.exp(y))

 def * (y: Logarithm): Logarithm = x + y

Opaque type aliases:

Almost like regular types, but without the overhead.

@deanwampler

trait Resettable:

 override def toString: String = "Resettable:"+super.toString

 def reset(): Unit

trait Growable[T]:

 override def toString: String = "Growable:"+super.toString

 def add(t: T): Unit

def f(x: Resettable & Growable[String]): String =

 x.reset()

 x.add("first")

 x.add("second")

 x.toString

Intersection Types

Only allowed values must
be of both types

Resettable and Growable.

@deanwampler

trait Resettable:

 override def toString: String = "Resettable:"+super.toString

 def reset(): Unit

trait Growable[T]:

 override def toString: String = "Growable:"+super.toString

 def add(t: T): Unit

def f(x: Resettable & Growable[String]): String =

 x.reset()

 x.add("first")

 x.add("second")

 x.toString

Intersection Types

Types commute: This equals
Growable[String] & Resettable

@deanwampler

val rg = new Resettable with Growable[String] {

 def reset(): Unit = value = ""

 def add(s: String): Unit = value + s

 var value: String = ""

}

val gr = new Growable[String] with Resettable {

 def reset(): Unit = value = ""

 def add(s: String): Unit = value + s

 var value: String = ""

}

rg.toString // "Growable:Resettable"

gr.toString // "Resettable:Growable"

BUT linearization isn’t the
same!!

case class User(name: String, password: String)

def getUsers(id: String, dbc: DBConnection): String | User | Seq[User] =

 try

 val results = dbc.query(s"SELECT * FROM users WHERE id = $id")

 results.size match

 case 0 => s"No records found for id = $id"

 case 1 => results.head.as[User]

 case _ => results.map(_.as[User])

 catch

 case dbe: DBException => dbe.getMessage

getUsers(“1234", myDBConnection) match

 case message: String => println(s"ERROR: $message")

 case User(name, _) => println(s"Hello user: $name")

 case seq: Seq[User] => println(s"Hello users: $seq")

Union Types

Must use pattern matching
to determine the actual

type of the instance.

@deanwampler

Types also commute

“Enterprise Scala”
Unlearning Enterprise Java habits

@deanwampler

FP Over OOP
@deanwampler

SELECT * FROM users WHERE id = “Dean Wampler”

Is anything more concise than SQL?

Like SQL, functional code
tends to be very concise and

to the point, where
composable operations

enable fast, efficient
programming

@deanwampler

Object-Relational Mapping
was a mistake, IMHO…

def foo1[T](xs: Seq[T]): Int

def foo2(xs: Seq[Int]): Int

Parametric Polymorphism

https://medium.com/scala-3/the-value-of-parametric-polymophism-e76bfb9a516b

What can we deduce about
these methods?? The first

can have only one possible
implementation. No

ambiguity!

@deanwampler

Should Everything

Be Typed?

@deanwampler

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 selector:

 matchLabels:

 app: nginx

 replicas: 2 # tells deployment to run 2 pods matching the template

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

When should we avoid static typing??

example from:

https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

Should we faithfully
duplicate this logic in our
Scala code?? Can we use
templates and minimize

knowledge instead?

@deanwampler

Less (Code) Is More

Avoid Converting

Enterprise Java to

Enterprise Scala

@deanwampler

import org.apache.spark.SparkContext

import org.apache.spark.SparkContext._

object InvertedIndex {

 def main(a: Array[String]) = {

 val sc = new SparkContext("local[*]", "Inverted Idx")

 sc.textFile("data/crawl").map { line =>

 val Array(path, text) =

 line.split("\t",2)

 (path, text)

 }.flatMap {

 case (path, text) =>

 text.split("""\W+""") map {

 word => (word, path)

 }

 }.map {

 case (w, p) => ((w, p), 1)

 }.reduceByKey {

 case (n1, n2) => n1 + n2

 }.map {

 case ((w, p), n) => (w, (p, n))

 }.groupByKey

 .mapValues { iter =>

 iter.toSeq.sortBy {

 case (path, n) => (-n, path)

 }.mkString(", ")

 }.saveAsTextFile("/path/out")

 sc.stop()

 }

}

“Inverted Index” in Spark

from:

https://deanwampler.github.io/polyglotprogramming/papers/Spark-TheNextTopComputeModel.pdf

When your code is this concise, do you really
need:

Dependency injection frameworks?

Fancy mocking libraries for testing?

Lots of design patterns?

Factories, Adapters…

Lots of micro services to partition the
logic?

@deanwampler

Will FP Adoption Continue to Grow?

@deanwampler

Will FP Adoption Continue to Grow?
Why are languages like Python, Go, Kotlin, etc. growing in popularity?

None is particularly functional.

FP fans like us might consider them “disabled”.

@deanwampler

1) FP Is Too “Advanced”

For most of the world’s developers,
FP is either too hard or they lack
the motivation to learn it.

In contrast, OOP is “naively”
intuitive and therefore seductive.

@deanwampler

Second worst way OOP was
abused: the belief we should

faithfully represent the domain
in code.

(The worst way was
unconstrained, unprincipled

mutability.)

2) SW Development Itself Is Changing

Two Kinds of Programming

Applications

Services

Both can exist in
the same

environment.

@deanwampler

“Applications”

You write a significant amount
of the program logic yourself.

The domain logic is complex.

Deployment is a secondary
concern.

FP and “real” FP
languages are the

best tool here!
@deanwampler

“Services”

E.g., services in a Kubernetes
cluster.

Integration, wiring, scripting
the biggest challenges.

Code you write is relatively
small and focused.

Go, Bash, Python,
and … YAML.

FP isn’t as important.
@deanwampler

“Services”

Data Science, ML/AI applications

Integration, wiring, scripting of
big libraries.

Code you write is relatively
small and focused.

Mostly scripting:
Python and R

@deanwampler

Two Kinds of Programming

As more and more software
problems get standardized into
frameworks and libraries, we’ll write
less and less code.

That’s a good thing…

… but I claim it is a threat to FP.

@deanwampler

Thank You
deanwampler.com/talks

https://deanwampler.medium.com

dean@deanwampler.com

@deanwampler

http://deanwampler.com/talks
https://deanwampler.medium.com

